PEER-REVIEWED ARTICLE

Food Protection Trends, Vol 40, No. 3, p. 164–170 Copyright^o 2020, International Association for Food Protection 2900 100th Street, Suite 309, Des Moines, IA 50322-3855

Ellen Mendez,¹ Cassandra Jones² and Valentina Trinetta^{1,2 *}

¹Food Science Institute, Kansas State University, 1530 Mid-Campus Dr. North, Manhattan, KS 66506, USA
²Dept. of Animal Sciences and Industry, Kansas State University, 1424 Clafin Road, Manhattan, KS 66506, USA

Engaging Undergraduate Students in Food Safety Study and Food Microbiology Research

ABSTRACT

Despite the importance of STEM (Science, Technology, Engineering, Mathematics) disciplines, the interest and test scores of students in this field seem to lag every year in the United States. Food science may be an ideal tool for enhancement of STEM education, because of its universality, cultural importance and scientific diversity. This study focused on the implementation of teaching tools to engage undergraduate students in learning about food safety and food microbiology. During the Food Microbiology class, three engagement strategies were used: agar art, outbreak case studies and a research group project. The agar art contest was conducted to learn and highlight bacterial morphological diversity; case studies were presented through short stories to teach microbiological and epidemiological principles and practices, and students were challenged with a research group project in which two plating alternatives were compared with regard to assessment of food preservation strategies. Quizzes, appraisal of laboratory

notebooks and exams were used to evaluate learning outcomes. By the end of the semester, ~ 95% (55/58) of the undergraduate students had learned about foodborne pathogen characteristics through case studies, in-class discussion and a research project. Data were compared with data on the previous 2 years, in which no or minimal engagement strategies had been implemented. A preand post-questionnaire were used to assesses students' engagement. The results demonstrate that creative engagement strategies are beneficial for supporting and enhancing students' learning about food safety.

INTRODUCTION

The science of foods goes back to thousands of years ago, when humans discovered how to use fire (3); since then, humankind has developed many methods and technologies to broaden food choices and to process and preserve foods. Today, food science is offered as a major with multiple career opportunities in many colleges and universities all over the United States and abroad. Currently, 40 institutions

*Author for correspondence: Phone: +1 785.532.1667; Email: vtrinetta@ksu.edu

nationwide offer a food science program that meets the standards for degrees in Food Science set by the Institute of Food Technologists (IFT) Higher Education Review Board (HERB) (6). The food science major is considered a STEM (Science, Technology, Engineering, Mathematics) discipline by the Department of Homeland Security (DHS) (2). Since 2000, STEM-related majors have represented only one-third of all bachelor's degree awarded in the U.S., and the rate of transfer out of STEM into a non-STEM field by U.S. undergraduate students averaged around 20% in 2014 (11). Coupled with a 7% decrease in enrollment at the undergraduate level between 2010 and 2017 in the U.S., a need exists to attract students to this important field of study (10).

Many strategies have been implemented to attract students to STEM-related fields, and food science has proven to be a good mechanism, since it is a multidisciplinary field that includes microbiology, engineering, chemistry, and processing, among other areas. Researchers (13) have worked with students from elementary school through high school on a project that used foods to demonstrate the principles of phase change, sensory analysis, shear, formulation, energy and chemistry. Approaches of the activities varied according to the students' level of education. As an example, ice cream frozen with liquid nitrogen was the food model used to teach about phase change and heat transfer. Children from kindergarten to 4th grade learned that liquid nitrogen is colder than ice cream mix, whereas students from 4th to 8th grade observed the changes from liquid to gas for nitrogen and liquid to solid for ice cream, which highlighted the difference between heat requirement and heat release. Students in 9th to 12th grade focused on the phase change at the molecular level. Through these activities, researchers (12) showed that science can be taught at a young age and attract students into STEM at a very early stage. "Food science is the study of the physical, biological, and chemical makeup of food and the concepts underlying food processing," according to the Institute of Food Technologists (IFT) (7). Usually, the curriculum includes a food microbiology course as a core class, typically composed of lectures and practical laboratory sessions, during the junior or senior year. Engaging students on the importance of microbiology and safety of the food supply can be challenging for the instructor who relies on lectures alone. Several studies (1, 4, 12) have demonstrated that students are more successful when engaged in an active learning process rather than in a traditional lecture course. Basically, any activity that involves participation of the students (group problem solving, workshop course designs, or worksheets) rather than being in a traditional listeningonly course contributes to engagement of the students (4). Further, activities in which students participate in experiential learning, such as surveys, research group projects or outdoor work, promote more in-depth understanding of the subject (1). Therefore, the overall goal of the present study was to evaluate strategies to engage undergraduate

students with regard to the importance of food safety and microbiology. Three different approaches were used during the semester: agar art, outbreak case studies and a research group project. Quizzes, in-class discussions and appraisal of laboratory notebooks were used as means of assessing learning outcomes.

MATERIALS AND METHODS

Classes: Food microbiology lecture (FDSCI 600) and food microbiology laboratory (FDSCI 601)

At Kansas State University, food microbiology is taught in two classes, FDSCI 600 (lecture component) and FDSCI 601 (laboratory component), in the 15-week fall semester. This upper level undergraduate course is also open to graduate students. Both classes are usually medium size in enrollment (60 students) and meet for two 50-min lectures and two 2-hour laboratory sessions per week. The classes have an instructional team composed of 1 full-time instructor, one 50%-time teaching assistant, and one 30%time teaching assistant. The course fulfills a requirement for several majors (food science and industry, animal science and industry, and grain science) and colleges (Agriculture and Arts and Sciences). Thus, students arrive to this course with different backgrounds and experiences, but typically are in their junior and senior years. The classes address the role of microorganisms in foodborne illness and food quality, spoilage, and preservation, as well as the control and reduction of microorganisms in foods. The laboratory session (FDSCI 601) complements lecture materials (FDSCI 600) by providing hands-on experience with lecture concepts. Laboratory sections consist of a maximum of 30 students per section, and students perform activities in pairs.

Engaging strategies tested

Agar art. In 2015, the American Society of Microbiology (ASM) launched the ASM Agar Art contest to share the beautiful and diverse world of microorganisms with the public (14). Inspired by the ASM initiative, students in FDSCI 601 had the opportunity to create their own art and to practice isolation and identification techniques on their own. Students were provided a sample of red meat (10 g) experimentally inoculated with 10^5 CFU/g of E. coli ATCC 12435. Instructors guided students on the principles of dilution and plating, demonstrating techniques. Samples were placed in 90 ml of 0.1% peptone water (BD Difco, Sparks, MD) and stomached for 1 minute. Appropriate dilutions, based on instructor suggestions, were performed, and diluted samples were plated on 3M[™] Petrifilm[™] E. coli/Coliform Count Plates (3M, Saint Paul, MN). A presumptive colony of *E. coli*, a blue colony with gas (based on manufacturer instruction), was picked and streaked for isolation on TSA (Tryptic Soy Agar, BD Difco, Sparks, MD), a non-selective medium. Students were provided the 3M[™] Petrifilm[™] E. coli/Coliform Count Plate

Pathogen: Salmonella	Pathogen: E. coli	Pathogen: Listeria	Pathogen: Compylobacter	Pathogen: Bacillus
Case study #1	Case Study #2	Case study #3	Case study #4	Case Study #5
Pergese: The finalizate subsets with microbiological testing insecured with non-matcheated armal product and PCR (Appendix KD). Introduction: In 2015, Ted Grant was training for a boxing match in the local gen, in order to build up, he followed a similar training regimm lines a buy, notwork program wass, and are similar the child miles a buy, notwork program wass, and are similar the Cardin through the 13% children are provided and and similar the Cardin through the 13% children are provided and dired miles and buy who children are given as barries, then add dired mile boxed, not work of the the test three bars, there are brind sing. Cardin three times a day for the next three boxing match. Proliminary Questions: What blochemical or mada testing should be conducted in and the boxed or ideas caused frant to miss the boxing match? What blochemical or mada testing should be conducted in and the boxed or ideas caused from to miss the boxing match? What blochemical or mada testing should be conducted in and the boxed or loads caused from to miss the boxing match? What blochemical or mada testing should be conducted in and the boxed or loads caused from to miss they have all the michanest conducted for this case? Why or why not?	Purpose: The surgesc of this laboratory exercise is to give students a batter idea on program found in visit mean. Case: Rachel White is a 24-year-old female when loss in southeast Dikloma. She is an active member in the community. Thesenetity varianterity, her tail the church index to consider the loss formance. Rachel field finished making consider the loss of transace. Rachel field finished making the constraints of the loss of transace. Rachel field finished making with the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss and the loss of the loss of the loss of the loss of the loss about the loss of the loss of the loss of the loss of the loss about the loss of the loss of the loss of the loss of the loss about the loss of t	Purpose To find there is subjects with microsological fisting of produces, the microsolutions: 19.202, School and Marry works a Apply functed couple March 19.202, School and Marry works a Apply functed couple March 19.202, School and Marry works and the Marry was program. With much aligns, function and the Marry was aligned in the Marries, and the Apply and the Marry was aligned in the Marries, and the Marry begin timing memory aligned in the Marries, and the Marry was aligned in the Marries, and the Marry was produce produced protein the Marry was aligned in the Marry was and produced in the Marry was marks. When rugs and protein the Marry was marked there in the Marries, and the Marry was marked there in the Marry was and the definition the marked there in the Marries and the Marry was well and there in the Marries and the Marry was marked the Marry Marry was and the definition the marked there in the Marry was and the definition the marked the Marry Marry and the Marry was and the marked the Marry Marry was and the definition the marked the Marry Marry Was and the Marry Was marked the Marry Marry and the Marry Was marked the Marry Marry and the Marry Mary Marry Marry Marry Mary Marry Marry Marry Mary Mar	Purpose: The purpose of the laboratory evention is to allow the statistists to learn how to analyze pet food. Case Study: In StUT, the loss family evented to expand their homly by most statistic a page, the day way purstand from a chan pet toor. This assession informed the thinking of the logit of blood the day was fed while in the store. Not warring to charge the store of the assession informed the therm with the pet of blood the day was fed while in the store. Not warring to charge the store of the page of blood the day that the store was heading the dag. The next server all days, the family took um- leading the dag and plaving with a laber the liften sign of basis the day, the family began toolwing the like syntaxtom of low, vesting with the common of blood with the store was the day the lamest to symptoms of Blood to wave. Pressions: Bud and the information abore, what could be the cause of the illines? Do some research regarding cases like this day for 2018. What seems to bo the microorganism of contern h is always the same biological hazard?	Popon To Samo and Adverts and Herandomising all analyses of some- samd products. Introduction Samo and analysis and the samo analysis of the samo samo analysis of the samo analysis of the samo analysis and the extended herands, is a make and a first product, but all the extended herands, is a make and a first product of the samo and the samo analysis of the samo and the first product and the extended the samo analysis of the samo and the first product and the extended the samo analysis of the samo and the first product and the extended the samo analysis of the samo and the first product both a made constraints, is samo and an of the samo and the same and the samo analysis of the samo and the samo samo and the samo analysis of the samo and the samo samo and the samo analysis of the samo and the samo and the construct all the samo and the samo and the same and the same and the same and the samo and the construct all the samo and the samo and the same and the same and the same and the same and and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same same and the information provided, what increasing the same respectively and the same and the same and the same and the same and biochemical testing shall be conducted to same and the information and the same and the same and the same and biochemical testing shall be conducted to same and and biochemical testing shall be conducted to same and same and biochemical testing shall be conducted to and the same and biochemical testing shall be conducted to and the same and biochemical testing shall be conducted to and the same and biochemical testing shall be conducted to and the same and biochemical testing shall be conducted to and the same and biochemical testing shall be biochemical testing the same and the same

Figure 1. The five case studies extrapolated from the laboratory manual are presented by featured foodborne pathogen. Clues such as onset, symptoms and potential food vehicle of transmission are highlighted in yellow for easier reading.

Interpretation Guide available from the manufacturer website and were "challenged" to pick the right colony. Subsequently, students performed the citrate, motility, and sugar fermentation biochemical tests to confirm the identity of the microorganism and used the isolated colonies as "paint" to create art that would fluoresce if *E. coli* had been correctly isolated (5). EMB (Eosin Methylene Blue, Hardy Diagnostic, Santa Maria, CA), a selective medium for *Enterobacteriaceae* and a differential medium for *E. coli*, was used for this exercise.

Case study. During lectures and laboratory sessions, students were presented five case studies involving different foodborne pathogens (Salmonella spp., E. coli, Listeria spp., *Campylobacter* spp., and *Bacillus* spp.), in which patient histories, symptoms and situations in which foods had been consumed recently were detailed. The five case studies, taken from the laboratory manual and shown in Fig. 1, were designed to introduce students to the methods involved in the investigation of foodborne disease and were highly relatable to real-life experiences. The illness episodes were provided in the laboratory manual, and students had one week to read the case, form a hypothesis about the causative agents, and identify the vehicle of transmission (food item). During the same week, the lecture (FDSCI 600) emphasized the characteristics, symptoms and control strategies for each foodborne pathogen. A discussion preceded the laboratory section, after which the students were provided the food identified in the case study and challenged to isolate and enumerate the pathogen of concern. As an example, for case study #3 (Fig. 1), cantaloupes were used as the food implicated in a Listeria outbreak. Students made appropriate dilutions with Modified Oxford Media (MOX, BD Difco, Sparks, MD), identified presumptive Listeria colonies and confirmed their isolates by using tests such as tests of motility and the litmus milk test to confirm specific metabolic activities of microbes (13).

Research group project. Throughout the semester, students were taught how to conduct research by developing a research hypothesis and designing an experimental protocol. They were asked to select a food from a list of items historically linked to E. coli outbreaks and choose among three preservation technologies: (UV radiation, high temperatures and commonly used antimicrobials found in consumers' kitchens, such as spices, garlic and vinegar.) Students justified their choices, formulated a hypothesis (which included the expected log reduction on the inoculated item after treatment with the selected technology) and described the methods they intended to use. Finally, the class was randomly divided into two groups, with four teams in each group. Group 1 was asked to perform dilutions and plate on Plate Count Agar (PCA, Millipore Co., Billerica, MA) media, while Group 2 used a PCA ready-made plate containing a cold-water-soluble gelling agent. Thus teams worked with the same food items and technology, but the enumeration technique differed. The research project occurred during weeks 11 to 15 of the semester. Students inoculated the food matrices, applied the identified interventions and evaluated total aerobic bacteria in the food samples. Students calculated the microbial reduction brought about by the intervention. Subsequently, the instructor helped students estimate the correlation between the two enumeration techniques, and the students provided an oral group presentation to their peers, instructor and guests.

Assessment of learning outcome

To measure the effect of the three engagement strategies used in class, quizzes, appraisal of laboratory notebooks and in-class discussions were used throughout the semester. A

Figure 2. Examples of agar art "paint" of E. coli ATCC 12435 on EMB (Eosin Methylene Blue) agar.

questionnaire pre- and post-semester was used to evaluate students' engagement based on scores of 1 or 2 (strongly disagree or disagree) or of 5 or 6 (agree or strongly agree) on a Likert scale. Comparisons with the two previous years (2016 and 2017) were made to measure quantitative reasoning and critical thinking as well as to estimate the results of the format changes in these classes. During 2016 and 2017, little or no engagement activities had been implemented in this course because of a change of instructors. Feedback, in the form of a detailed rubric, a oneon-one meeting, and a model example for each activity were also provided to the students so that they could understand their strengths and weaknesses and thus enhance their knowledge and their desire to be life-long learners.

Statistical analysis

Descriptive statistical analysis was performed on the compiled results in order to assess students' improved knowledge and engagement, compared with the previous years (2016 and 2017). A statistical comparison was used to determine accuracy of results with the two enumeration techniques used in the research project by computing the coefficient of variation and the concordance correlation coefficient. All analyses were conducted with Stata/SE 12.0 (StataCorp LP, College Station, TX).

RESULTS AND DISCUSSION

Demographic information

Throughout 2016 (number of students = 52), 2017 (number of students = 63) and 2018 (number of students = 58), more than 50% (91/173) of the students enrolled in food microbiology classes (FDSCI 600 and FDSCI 601) were pursuing a Food Science and Industry degree, followed by 32% in Grain Science (55/173), 9% in Microbiology (16/173) and 6% in Animal Sciences and Industry (11/173). The majority of the students were in their senior year, followed by juniors; only a few were sophomores. It is recommended that courses such as FDSCI 600 and 601 be taken after completion of basic courses in biology, microbiology, and introduction to food science, so that students can relate the importance of food safety and microbiology to already familiar concepts of food processing and quality.

Agar art

Overall, 95% (164/173) of the students were able to isolate, identify and use *E. coli* colonies from an inoculated sample of red meat to "paint" on petri dishes. *Figure 2* displays some examples of agar art on EMB agar (Hardy Diagnostic, Santa Maria, CA). During this experience, students learned the importance of differential media to

TABLE 1. Three examples of specific assesment outcomes collected in 2016 and 2017(when no or few engagement strategies were used) and 2018 (when all three
engagement strategies were implemented). The number of students in each
performance category is indicated

Asssesment of learning outcome (examples)					
	Year	Exceeds Expectations	Meets Expectations	Needs Improvement	Below Expectations
1. A quiz question tested a pre-required	2016	21% (11/52)	32% (17/52)	29% (15/52)	18% (9/52)
concept from general microbiology, briefly mentioned in class, but necessary to	2017	31% (20/63)	35% (22/63)	24% (15/63)	10% (6/63)
understand yeast fermentation.	2018	35% (20/58)	50% (29/58)	10% (6/58)	5% (3/58)
2. A case study question asked about the	2016	14% (7/52)	27% (14/52)	29% (15/52)	30% (16/52)
advantage of using an API test for pathogen identification (a method recently used in the	2017	29% (18/63)	32% (21/63)	26% (16/63)	13% (8/63)
laboratory class).	2018	38% (22/58)	41% (24/58)	17% (10/58)	4% (2/58)
3. An assigment challenged students with a specific	2016	13% (7/52)	35% (18/52)	19% (10/52)	33% (17/52)
food item and tasked them with identifying and describing the intrinsic and extrinsic parameters	2017	35% (22/63)	46% (29/63)	11% (7/63)	8% (5/63)
affecting microbial growth.	2018	55% (32/58)	37% (21/58)	6% (35/58)	2% (12/58)

microbial isolation and confirmation; if they did not correctly isolate *E. coli* colonies, their art would not exhibit the green sheen. The University of Alabama at Birmingham has also used agar art in teaching students about microbe-microbe interactions in isolates obtained from environmental samples; students studied changes in their agar artwork over time and then formulated hypothesis about the isolated bacteria (9).

Case studies

Students were presented with five case studies for studying various foodborne pathogens during the semester (Fig. 1). During in-class discussions, students expressed their thoughts about possible causative pathogens and vehicles of contamination. The majority of students correctly identified the responsible microorganism and understood the use of specific identification techniques (Table 1), although some expressed doubt and asked the instructor to clarify and highlight the key points for recognizing a specific microorganism (on-site time, symptoms, handling practices described, etc.). Throughout the three years, we observed an improvement in students' performance when all three engagement strategies were implemented (Table 1). Students appreciated the challenge (according to final feedback, as indicated in Table 2); they were able to engage in laboratory experiences correctly and to describe and correlate biochemical confirmation

results with their initial hypothesis. Some researchers (9) state that solving case studies is a process in which students engage themselves with the situation, initially using their intuition to identify the problem and then analyzing the data to identify possible causes. Once they have stated the problem clearly, they can start to provide creative possible solutions, which they evaluate and from which they finally select the best ones. The process of solving a case study offers an opportunity to use logical reasoning skills, to be intuitive and creative in real-life situations and, in this class, to enhance their STEM skillset (8).

Research group project

Students understood the different phases of a research project: media and supplies preparation before starting the experiments (materials and methods), scheduling (experimental design) and interpretation and reporting of results. Some groups were successful with the selected interventions in reducing or controlling microbial growth, whereas other groups did not observe any statistically significant difference between control and treatment (P > 0.05). Nevertheless, they all learned some of the fundamental processes of research, including comparing results and presenting the information in a summarized and clear manner. Each group compared the two enumeration techniques for microbial counts. Correlation between the

TABLE 2. Summary of pre- and post-semester questionnaires with evaluation scaleand general course feedback (data are from 2018, when all 3 engagementstrategies were implemented)

	Evaluation scale				
	Strongly Agree	Agree	Undecided	Disagree	Strongly Disagree
Pre-semester questionnaire summary		<u>.</u>		-	
I look forward to this class.	38% (22/58)	25% (15/58)	9% (5/58)	10% (6/58)	18% (10/58)
In food microbiology course, I will learn mainly about microoganisms that spoil food.	53% (31/58)	37% (21/58)	6% (4/58)	4% (2/58)	0% (0/58)
Post-semester questionnaire summary					
I learned about food safety and microbiology.	95% (55/58)	2% (1/58)	3% (2/58)	0% (0/58)	0% (0/58)
The laboratory manual was a useful tool to understand experiments and methodology.	3% (2/58)	78% (45/58)	15% (9/58)	2% (1/58)	2% (1/58)

General feedback about the course

I enjoyed coming to class.

• I thought there were good case studies that stimulated students to assess what they had learned in the class.

• The instructor was always there to guide us and improve our laboratory techniques.

• I appreciate the opportunity to do undergraduate research because it allows students to experience directly all the process it takes for a research project. It allows students to see if they are interested in research or not.

14% (8/58)

72% (42/58)

10% (6/58)

3%(2/58)

0% (0/58)

• This research project makes students feel like they are applying a variety of concepts they learn during class. It was the first time for the majority of students to be part of a research project.

TABLE 3. Correlation coefficient, F-test of equality of means between colony counts and
agreement by enumeration techniques used by the students (Group 1 used PCA
medium, while Group 2 used a ready-made plate PCA containing a cold-water-
soluble gelling agent)

	Group 1	Group 2
Students' count correlation (# obs)	0.84 (8)	0.78 (8)
Correlation coefficients	-0.876	-0.307
F-test of equality of means	0.118	0.592
Карра	0.43	0.38
Agreement (%)	50.0	50.0

colony counts using the two techniques was high and positive (P < 0.05). Although the agreement beyond that due to chance (kappa) between colony count reads between the two types of enumeration techniques was slight, concordance was fairly high, as shown by the large concordance correlation coefficients and non-significant P-values for the F-test of equality of means and variances (Table 3). Overall, there was no statistical difference between the two enumeration methods (P < 0.05). During the final presentation, students offered several creative solutions to food safety challenges; one group suggested the use of hot sauce for microwaved chicken wings stored over time, and another group proposed the application of a garlic spread on bread. This experience stimulated their creativity in thinking of practical solutions for everyday problems. Students had the opportunity to use logical reasoning skills and creativity, expanding their appreciation for STEM disciplines.

Final course feedback

Near the end of the course, students provided feedback to questions regarding the activities during the semester, and learning outcomes were assessed. By the end of the semester, 79% (46/58) of undergraduate students had learned about foodborne pathogen characteristics, identified possible contamination vehicles through case studies and in-class discussion, and conducted a research project (*Table 1*). In comparing learning outcome #2, we observed that 40% (21/52) and 61% (39/63) met or exceeded expectations in 2016 and 2017, respectively, when few or no engagement

activities were used. However, in 2018, when all three engagement activities were incorporated into the class, we observed an increase to 79% (46/58). Similar improvements were also observed by Freeman and collaborators (4), in whose study active learning activities helped students improve their performance, especially in small classes. Examples of pre- and post-semester questionnaires and general course feedback are given in Table 2. At the end of the 3 years of study (2018), in the year in which all three engagement strategies were implemented, 95% (55/58) of the respondents answered that in this class they had learned about food safety and microbiology, and 72% (42/58) responded that they usually enjoyed coming to class. Further, the laboratory manual was judged to be a useful tool to help students understand and follow experiment protocol and methodology by 78% (45/58) of students. The data collected in this study suggest that creative engagement strategies are beneficial for supporting students' learning in food microbiology and food safety.

ACKNOWLEDGMENT

The authors thank Dr. Karen Schmidt for her help with manuscript editing, the department of Animal Science and Industry at Kansas State University for the undergraduate research support, and USDA National Institute of Food and Agriculture Hatch/Multi-state project 1014385. A special thanks also to Dr. Natalia Cernicchiaro for her statistical expertise and guidance.

REFERENCES

- Bohn, D. M., and S. J. Schmidt. 2008. Implementing experiential learning activities in a large enrollment introductory food science and human nutrition course. *J. Food Sci. Educ.* 10.1111/1541-4329.12077.
- Carroll, K. C., M. A. Pfaller, M. L. Landry, A. J. McAdam, R. Patel, S. S. Richter, and D. W. Warnock. 2018. Scientists and bioartists create stunning microbial artworks in ASM's 4th Agar Art Contest. Am. Soc. Microbiol. Washington, D.C. 10.1128/9781555819842.
- Department of Homeland Security. 2016. STEM Designated Degree Program List. Available at: https://www.ice.gov/sites/ default/files/documents/Document/ 2016/ stem-list.pdf. Accessed 5 March 2019.
- Floros, J. D., R. Newsome, W. Fisher, G. V. Barbosa-Cánovas, H. Chen, C. P. Dunne, J. B. German, R. L. Hall, D. R. Heldman, M. V. Karwe, S. J. Knabel, T. P. Labuza, D. B. Lund, M. Newell-McGloughlin, J. L. Robinson, J. G. Sebranek, R. L. Shewfelt, W. F. Tracy, C. M. Weaver, and G. R. Ziegler. 2010. Feeding the world today and tomorrow: The importance of food science and technology. *Compr. Rev. Food Sci. Food Saf.* 10.1111/j.1541-4337.2010.00127.x.

- Freeman, S., S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P. Wenderoth. 2014. Active learning increases student performance in science, engineering, and mathematics. *Proc. Natl. Acad. Sci.* U.S.A.10.1073/pnas. 13190301111.
- Hardy Diagnostics. EMB Agar M317. Available at: https://catalog.hardydiagnostics. com/cp_prod/Content/hugo/EMBAgar. htm. Accessed 23 September 2019.
- Institute of Food Technologists. 2019. IFT Approval of Undergraduate Programs in Food Science and Food Technology. Available at: http://www.ift.org/ community/students/ approved-undergrad-programs.aspx. Accessed 25 August 2019.
- Institute of Food Technologists. Learn About Food Science. Available at: http://www.ift. org/knowledge-center/learn-about-foodscience.aspx. Accessed 23 September 2019.
- Kreber, C. 2001. Learning experientially through case studies? A conceptual analysis. *Teach. High. Educ.* 10.1080/13562510120045203.
- Morris, J., and S. Adkins. The Art of Microbiology: an Agar Art Microbiology Lab CURE. Birmingham, AL. Available at: https:// serc.carleton.edu/curenet/ collection/216123. html. Accessed 25 August 2019.

- National Center for Education Statistics, and U.S. Department of Education. 2019. Undergraduate Enrollment. *Cond. Educ.* 2019. Available at: https://nces.ed.gov/ programs/coe/pdf/coe_cha.pdf. Accessed 25 August 2019.
- National Science Board. 2018. Science & Engineering Indicators 2018. Available at: https://www.nsf.gov/statistics/2018/ nsb20181/assets/nsb20181.pdf. Accessed 28 March 2019.
- Schmidt, S. J., D. M. Bohn, A. J. Rasmussen, and E. A. Sutherland. 2012. Using food science demonstrations to engage students of all ages in science, technology, engineering, and mathematics (STEM). J. Food Sci. Educ. 10.1111/j.1541-4329. 2011.00138.x.
- 14. Zimbro, M. J., D. A. Power, S. M. Miller, G. E. Wilson, and J. A. Johnson. 2009. Difco & BBL manual. Second Edition. Becton, Dickinson and Company, Sparks, MD. Available at: https://legacy.bd.com/ds/technicalCenter/ misc/ difcobblmanual_2nded_lowres.pdf.