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Sound Science
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ILSI| Europe In a Nutshell
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Microbiological Food Safety
Task Force

* “Provides guidance on microbial food safety issues to
support society in implementing efficient food safety
systems.”




Microbiological Food Safety
Task Force: Objectives and Tools

Ultimate goal is to
investigate microbial

issues in foods that
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ILSI Europe, |AFP and ICFMH ‘Workshop on Participation
Next Generation MRASE# i

(Microbiological Risk Assessment) —

Integration of Omics Data into Assessment

% 13-14 May 2016, Athens, Greece

International Journal of Food Microbiology

Articles in press  Latestissue  Special issues  All issues 4 Sign in to set up alerts

Omics in MRA - the integration of omics in 2 rermapire N omeliem
microbiological risk assessment

Edited by Chris W. Michiels
Volume 287, Editorial + 4 papers (open access)

Pages 1-40 (20 December 2018)

https://www.sciencedirect.com/journal/international-journal-of-food-microbiology/vol/287
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Quantitative Microbial Risk Assessment

From Farm to Fork

4 A
Hazard identification
potential adverse health effect
\_ Y,
4 ) 4 o )
Exposure assessment Hazard characterisation
dose at consumption P(ill) and severity
as function of dose
\_ J \_ J
4 A
Risk Characterisation
P(iI_IZ and severity
S with variability )

WAGENINGEN

UNIVERSITY & RESEARCH

PRINCIPLES AND GUIDELINES FOR THE
CONDUCT OF MICROBIOLOGICAL RISK
ASSESSMENT CAC/GL-30 (1999)
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Omics — extra dimensions

DNA e > /[ Who is there and what can ]\

! happen?
RNA What appears to be
€------mmmemmme—————m > )
! ! happening?
proteins <---mmmmommsmmoom-oooo > [ What makes it happen? ]
metabolites e s S { What has happened and is ]
happening?

single strain - microbial cons@
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How will my troublemaker(s) behave?

storage

/ Exposure assessment \

Levels and kinetics

Quantification of growth, inactivation, survival,
contamination

\_ /
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How could omics makes a difference?

>

v storage processing storage

" Predicting pathogen behaviour variability
" Understanding dynamics in complex food eco-systems

WAGENINGEN
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Strain variability
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Strain variability
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Strain variability and biomarker

" Genetic element only present
in heat resistant group 2 - .

B Genetic biomarker for
robustness
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Mechanistic insight to fine-tune EA

" Biomarkers for robustness can be used to make subgroups
" Fine tune EA taking into account phenotypes of the subgroups

WAGENINGEN
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Mechanistic insight to fine-tune EA

" B. cereus group: seven major phylogenetic groups
" Differences in Temp growth ranges between groups

% strains with growth at:
Group 4°C 5°C 7°C 8°C 10°C 15°C 20°C 37°C 40°C 43°C 45°C 50°C 55°C

VII 0 0 0 0 0 0 100 100 100 100 100 100 0
ITI 0 0 0 0 0 100 100 100 100 100 85 0 0
IV 0 0 0 0 100 100 100 100 100 83 58 0 0
I 0 0 0 0 75 100 100 100 100 25 0 0 0
V 0 0 0 14 100 100 100 100 100 0 0 0 0
II 0 0 73 87 100 100 100 100 100 0 0 0 0
VI 0 40 100 100 100 100 100 86 0 0 0 0 0

WAGENINGEN

UNIWERSITY & RESEARCH

Guinebretiére et al., 2008



Mechanistic insight to fine-tune EA

® Also clear difference in heat robustness

group I group IV smmmm group VI
e group II smsm  group V s croup VII
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Mechanistic insight to fine-tune EA

® Also clear difference in heat robustness

Group Tiogp=0.8 (°C) + SD  z-value (°C) = SD

III 96.6 £ 3.5 8.4+1.9
VII 94.3 £0.9 5.7 0.9
V 94.1+1.4 11.0 £ 3.8
IV 93.3+2.6 10.5 £ 3.1
II 91.4 2.7 10.2 £2.2
VI 88.5+2.4 12.0£2.9

" Subgrouping based on mechanistic insight provides more precision in EA
than when taking the group as a whole

WAGENINGEN
UNIVERSITY & RESEARCH LUU Th| et al_, 2013




Food ecosystem dynamics

" Microbial communities affect dynamics of pathogens

" Metagenomics to understand ecosystem dynamics
® Characterise communities
® Elucidate transmission routes

WAGENINGEN
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Food ecosystem dynamics

" Meta data collection

e Food (pH, aw)

e Chain (Temp)
" Metagenomics

e relative abundance
" Enumeration

® counts

WAGENINGEN

UNIVERSITY & RESEARCH
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Food ecosystem dynamics

" Meta data collection

e Food (pH, aw)

e Chain (Temp)
" Metagenomics

e relative abundance
" Enumeration

® counts

" Database of kinetics of species or
relevant subgroups

Food sample analysis over time
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1. Building the knowledge

Database and model

UNIVERSITY & RESEARCH
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Food ecosystem dynamics

Food and environmental
characteristics

Food sample at time t0

il @2

Temperature

e Based on database and genomics | P12t courts e
m Od e I S ;S;Lgfﬂ?éfgg Enumeration

™ |

Database and models

" Challenges: low prevalence of
pathogens

Log CFU/g
»

. time

Prediction of the pathogen and
background flora with time

2. Predicting
WAGENINGEN

UNIVERSITY & RESEARCH
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Potential of omic data in EA

" Better understanding of biology: behaviour of pathogens, food
ecosystems and its dynamics

" Biomarkers help to quantify strain variability
" Help to fine tune EA
" Reducing uncertainty in EA

WAGENINGEN
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Joined efforts

Contents lists available at ScienceDirect

International Journal of Food Microbiology

journal homepage: www.elsevier.com/locate/ijfoodmicro

Next generation of microbiological risk assessment: Potential of omics data
for exposure assessment

Heidy M.W. den Besten?, Alejandro Amézquita®, Sara Bover-Cid¢, Stéphane Dagnas®,
Mariem Ellouze®, Sandrine Guillou, George Nychas®, Cian O'Mahony"”,
Fernando Pérez-Rodriguez’, Jeanne-Marie Membré"+

at]
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Potential of omics data for Hazard Characterization

Annemarie Pielaat

Nabila Haddad, Nick Johnson, Sophia Kathariou,
Aline Métris, Trevor Phister, Chrysoula Tassou,
Marjon H.J. Wells-Bennik, Marcel H. Zwietering

Annemarie.Pielaat@Unilever.com Unileaser



Introduction Hazard Characterization in QMRA

Dose: 10° Salmonella Typhimurium

Dose Response Models: + -

e.g. Exponential
P=(a/(a+p))-D

.. Susceptible cases
B (Teunis et al. 2010)

» Biological variability

» Experimental uncertamty
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Introduction Hazard Characterization in QMRA

Output: Number of ill cases

FOKKE & SUKKE
2.5, 50 and 97.5% confidence levels make an instant
and mean cases of illness ) )
_ diagnosis

Mix_ID Pathogen 2.5% 50% 97.5% Mean
1 Salmonella Typhimurium DT104 0 14 10,016 1,242
2 Salmonella Typhimurium DT104 0 20 9,728 1,200
3 Salmonella Typhimurium DT104 0 24 10,865 | 1,365
4 Salmonella Typhimurium DT104 0 191 45,241 7,317
5 Salmonella Typhimurium DT104 0 135 31,893 | 5,176
6 Salmonella Typhimurium DT104 0 99 53,206 | 6,459 .
7 Salmonella Typhimurium DT104 0 268 | 66,276 | 10,266 | think you have
8 Salmonella Typhimurium DT104 0 128 29,284 | 4,709 ;
9 Salmonella Typhimurium DT104 0 116 26,533 | 4,263 dlarrhea 7
10 Salmonella Typhimurium DT104 0 37 15,571 | 1,962 \
11 Salmonella Typhimurium DT104 0 20 8,566 1,087
12 Salmonella Typhimurium DT104 0 69 29,008 | 3,691
13 Campylobacter spp 0 214 5,147 782
14 Campylobacter spp 0 2,247 | 34,223 | 6,010
15 Campylobacter spp 0 3,256 | 47,937 | 8,513
16 E. coli 0157 0 1 195 31

Salmonella Montevideo 0.70 2,510 17,280 4,091

Number of ill cases per year in The Netherlands from the consumption of a
portion of mixed salad. Pielaat et al. (2014) J. Food Protection




NG-Omics challenge “The Mapping Problem”

Sequence data Hazard Identification
Typing data Exposure Assessment
Data = = Risk
SNP data Dose Response
Expression data Risk Characterization
Single cell data

multidim. genotypic info —> reduced phenotypicinfo =2  single risk

10"3 genes 10" characteristics 10"
10"4 SNPs survival in GIT No. ill
etc growth rate

etc



NG-Omics challenge “support decision making”

Risk assessment is intended to support decision making ...
Difficult for new data sets to influence risk assessments directly

Data I Risk

There are many questions and even more answers ...

— Does a ‘new’ genotype identify a new hazard? — change policy?

— How does presence/absence of a virulence gene characterise a
hazard/non-hazard?

— How does a ‘differential’ expression characterise a risk?

— How do we use molecular data analysis for probabilistic
calculations in QMRA?




NG-Omics challenge “support decision making”

* Traditionally viewed/ regulated by serotype

— Dutch guideline of 2014

 for high risk ready to eat (RTE) foods, all STEC with (stx1 OR stx2) are considered unacceptable,
while for low risk food products (to be cooked), only STEC’s that have (stx1 AND/OR stx2) AND

[(eae) OR (aaiC AND aggR)] AND belonging to serotypes (026, 0103, 0111, 0145, 0157, 0104,
045, 0121 en 0174) are considered unacceptable.

* Potential issues of biomarker focused regulation

Table 2: Example of sequence of a more and more stricter definition of pathogenic
potential

STEC = (stx1 OR stx2)

STEC = (stx1l OR stx2) AND an attachment factor like genetic element
STEC = (stx1l OR stx2) AND known attachment factor

STEC = (stx1l OR stx2) AND (Eae OR (aaiC and aggR))

STEC = (stx1 OR stx2) AND (Eae)

(Haddad et al. 2018, I/FM)
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=
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NG-Omics challenge “The industry”

* The incorporation of omics data that often has little biological
meaning into the risk models will require input from the risk
manager and will make the decision making process more
complex

* There are concerns around the lack of standardization and
reproduciblility of current methods

« Paucity of relevant data sets



NG-Omics “The potentials™

« Can provide greater detail on pathogens
— Pathogenicity
- Virulence
— Stress responses
— Interaction with other systems (both humans and microbes)

* May be used to identify biomarkers

* How do we translate the biomarkers from human and cell culture or
animal model responses into the dose-response models?



Omic methods

Genomics

Transcriptomic

Proteomic

Metabolomic

Biomarkers, Haddad et al. (2018) IJFM

Type of biomarker

Gene (CDS)

SNP

Multiple copies

MRNA

protein

metabolite

Example

(from literature)

stx of Escherichia coli

stx of E. coli

Neurotoxin genes of
Clostridium
botulinum

SPI-1 genes or hil1A
of Salmonella
enterica

TypA of Cronobacter
sakazakii

Cereulide toxin of
Bacillus cereus

Type of response:

- quantitative
value (fold)
qualitative response
(detection/identifica
tion)

Qualitative

Qualitative

Qualitative

Quantitative

Quantitative

Quantitative

Reproducibility

2 biological
replicates

3 technical
replicates, but no
biological replicate

Remarks and
references

Lindsey et al., 2016

Pielaat et al., 2015

Peck and van Vliet,
2016

Comparison
between two
different serotypes.
Elhadad et al., 2016

Comparison
between virulent
and non-virulent
strains. Du et al.,
2015

Biesta-Peters et al.
2010 ; Marxen et al.,
2015



Biomarkers: Network analysis

The main regulators in this data are

ssrB, hilA, phoP,

ompR and csgD

(Haddad et al. 2018, 1JFM) e



Biomarkers and dose response

 How do we correlate biomakers to responses and illness conditions

 How do we quantify these correlations

P(ill)
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Uncertainty in the dose-response relationship used in the WHO-FAO report, 2002
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NG Omics “Ways forward”

» Link with other data (eg epidemiological, process) T
NG Omics .
0> /3

Dose- =
./ Respons =
LoOK, WALF THE WORK & Dok ! Epi Process
ALLNoU NEED To Do 15 FILL IN THE
TP PART 40 WE CAN LEGALLY ~
AN TUE BoTToM PART © Origina [ AHist |
Reproduction rights obtainable from

www. CartoonStock.com

» Systems biology

The presence of a biomarker (gene, metabolome, protein)
may by itself not always be a good predictor, since the
expression is influenced by a large variety of (biological)
factors & biomarkers are dependent.

@ Wiley Ink, inc./Distributed by Universal Uclick via Cartoonstack




Concluding remarks

* Omicsis already changing the food industry

* In the next few years it is going to impact industry's ingredient and products
specifications, surveillance programs and detection methodologies

* May also increase the challenges for companies distributing products across different
regulatory environment

e Ultimately though if we collaborate effectively between academics, regulatory
agencies and Industry the impact of Omics on MRA will improve the quality and
accuracy of our hazard characterizations

* Finally

* The views expressed in this presentation are those of the authors and do not
necessarily represent positions or policies of IAFP, ICFMH, ILSI, Nestlé, PepsiCo Inc.,
Unilever, NIZO or any authors affiliation.
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Current Opinion in

Current Opinion in Food Science 2015, 2:43-50 FOOd
Science

Zooming into food-associated microbial consortia:
a ‘cultural’ evolution
Luca Cocolin' and Danilo Ercolini®

A Functional based ecology
studies (e.g. metagenomics)

SR,
® CrossMark

Sequence based ecology studies

“With the adveﬁt fthe g (e.g. metagenetics) it is a “cultural”
evolution Weg'n ve [ ause we have
technically Iearn@l to , but also because
our mental appro'acjh 2d. We have evolved
to think at food r&i¢ tor their occurrence,

Technolo

Time



Opport hities and challenges
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Dynamics and Biodiversity of Bacterial and Yeast Communities
during Fermentation of Cocoa Beans

Jatziri Mota-Gutierrez,@ Cristian Botta, llario Ferrocino,® Manuela Giordano,® Marta Bertolino,® Paola Dolci,»

Applied and Environmental
Microbiology®

Marcella Cannoni,? Luca Cocolin®
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Shotgun Metagenomics and Volatilome Profile of the
Microbiota of Fermented Sausages
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Benefits for risk assessment: food pathogens monitoring
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Conclusions

“The application of multi-omics in food safety and quality has the
potential to answer questions traditional microbiological methods
could not address. Approaching the food ecosystem from different
angles (metagenomics, metatranscriptomics, metaproteomics and
metametabolomics) allows for a “holistic” representation of which
microorganisms are present, how they behave, how they interact
and which are the phenotypic manifestations in this complex arena.
The expected outcome may have an invaluable impact in food safety,
in order to reduce the risk associated to foodborne pathogens, but
also to better control spoilage processes. However, before this
becomes reality a number of obstacles and hurdles have to be
overcome. More specifically we have to learn how to translate
molecular events into practical applications, which will give the food
industries concrete solution on how to make food products more
safe and stable.”




Upcoming activity: Roundtable Discussion on Foodborne Viruses

@ ILSI 'éﬁs %ﬁlszeﬂs,ex
=7 Ewope  NANTES

International Life
: ; *FRANCE »
Sciences Institute 2376 APTRL 2610

IAFP’s European Symposium on Food Safety
Roundtable Discussion on Foodborne Viruses:
Detection, Risk Assessment, and Control Options
in Food Processmg

25 April 2019 - Nantes, France

15.30-17.30 CET, La Cité des Congrés de Nantes - Room 1

i ll gaps in knowledge and understanding of viral detection and control Str2 te ‘
getio the effectiveness of these controls and how to properly valndate their perf

. table wnll discuss th
assessment for viruses in food p
control as well future perspectiv
implement effective control str
discussed. More informatior

ion, along suggestions on how the food i
nagement optic r viruses in foods will be intr
n be found o? our website,




Questions?

Questions should be submitted to the presenters via the Questions section at
the right of the screen.

Slides and a recording of this webinar will be available for access by IAFP members at
within one week.

International Association for
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