Applying Behavioral Economics to Model the Threat of Food Fraud

Presented By: Brian Hawkins

Sponsored By: Battelle

Organized by: IAFP’s Microbial Modelling and Risk Analysis PDG
Webinar Housekeeping

• For best viewing of the presentation material, please click on ‘maximize’ in the upper right corner of the ‘Slide’ window, then ‘restore’ to return to normal view.

• Audio is being transmitted over the computer, so please have your speakers ‘on’ and volume turned up in order to hear. A telephone connection is not available.

• Questions should be submitted to the presenters during the presentation via the Questions section at the right of the screen.
Webinar Housekeeping

• It is important to note that all opinions and statements are those of the individual making the presentation and not necessarily the opinion or view of IAFP.

• This webinar is being recorded and will be available for access by IAFP members at www.foodprotection.org within one week.
About the Speaker (Brian Hawkins)

• From Bristolville, Ohio (population ~3,000)

• Graduated from The Ohio State University and the University of Wisconsin-Madison with degrees in Chemical Engineering
 - Thesis focused on semiconductor growth

• 20 years at Battelle Memorial Institute researching Chemical, Biological, Radiological, Nuclear, and Explosive Defense, mostly focused on probabilistic modeling simulation to quantify and predict the Threat, Vulnerability, and Risk of uncertain events, such as terrorism attacks, food safety, and food defense
Overview

• Presentation Objectives

• Brief Background on The Science of Modeling Decisions

• Modeling the Threat of Food Fraud Using Utility Theory

• Validation of Concept Using Historical Data
Objectives of this Presentation

- Entertain while providing information on an interesting topic

- Broaden the context mathematical modeling in the IAFP MMRPG beyond microbial growth and dose-response by introducing behavioral modeling and discussing an example relevant to food industry

- Generate interesting discussions about other types of mathematical models and/or applications of behavioral modeling
Food Fraud

• Food Fraud is a term used encompass the deliberate and intentional substitution, addition, tampering, or misrepresentation of food, food ingredients, or food packaging; or false or misleading statements made about a product, for economic gain\(^1\)

• Unlike the majority of food safety modeling efforts, the cause is a **Person** instead of a **Pathogen**

• This can be modeled, but requires a different approach because a decision is being modeled instead of growth or dose-response

The Science of Modeling Decisions

April, 2019
Behavioral Economics and Utility Theory

- Behavioral Economics is a field that studies the various effects that drive decisions, typically to understand and/or influence those decisions.
- Utility Theory is a concept within Behavioral Economics that posits decision makers weigh the perceived value of their options and tend to select the option with the highest value.
 - Note: Value can be defined and subsequently quantified in many ways, but is generally correlated to the pleasure or satisfaction derived from the option.
 - Based on Utilitarianism, which was proposed by Jeremy Bentham, a moral philosopher from England in the late 1700s-early 1800s.
 - Foundational component of neoclassical economics, which is often used to explain and/or predict consumer behavior.
 - Key assumptions are that the decision maker is rational and that the utility can be sufficiently approximated.
Multi-Attribute Utility Theory Basics

• A common implementation of Utility Theory is a Multi-Attribute Utility Model, which posits that the likely behavior can be approximated based on multiple attributes that represent

\[P \propto U = f(\text{attributes, weights}) \]

• Attributes typically need to be transformed or scaled to avoid artifacts (e.g., comparing 0-60 acceleration times to sticker prices in $s to expert reviews of 0-4 stars)

The specific choice of mathematical form of the utility equation (there are many), as well as the specific transforms and scales applied to the attributes are typically the ‘trade secret sauce’ of a threat model.
Marginal Utility Example: Thirst in the Desert

- Marginal utility is a concept that focuses on how much additional satisfaction an additional unit of something will provide the decision maker.
Marginal Utility Example: Thirst in the Desert

• Marginal utility is a concept that focuses on how much additional satisfaction an additional unit of something will provide the decision maker.

Under the blazing hot sun in the middle of the desert, that first drink (e.g., bottle of Pepsi) is tremendously satisfying.
Marginal Utility Example: Thirst in the Desert

• Marginal utility is a concept that focuses on how much additional satisfaction an additional unit of something will provide the decision maker.

The next three drinks (e.g., bottle of Pepsi) are satisfying, but not nearly as satisfying (on a per drink basis) as the first drink.
Marginal Utility Example: Thirst in the Desert

- Marginal utility is a concept that focuses on how much additional satisfaction an additional unit of something will provide the decision maker.

Eventually, once your thirst is sated, more drinks are not desirable – perhaps due to feeling full or bloated.
Utility Example: Predicting Car Purchase Trends

- Utility is also commonly used to predict or explain purchasing trends, such as which automobile is likely to be purchased by a subpopulation or demographic.
Utility Example: Predicting Car Purchase Trends

As part of illustrating application of utility modeling for Intelligence Community (IC) Subject Matter Experts (SMEs), an simple Excel® sheet containing a utility model applied to 2013 model automobile data was developed.

If the only factor was **Sticker Price**, low-cost compact models such as a Chevrolet Aveo were likely purchases.
Utility Example: Predicting Car Purchase Trends

As part of illustrating application of utility modeling for Intelligence Community (IC) Subject Matter Experts (SMEs), an simple Excel® sheet containing a utility model applied to 2013 model automobile data was developed.

If **Sticker Price** and **Cargo Capacity** were equal factors, smaller hatchbacks such as a Honda CRV were likely purchases.

<table>
<thead>
<tr>
<th>Value</th>
<th>Finance</th>
<th>Average Fuel Economy</th>
<th>Expert Review</th>
<th>Acceleration 0-60</th>
<th>Resale Value</th>
<th>Performance and Handling</th>
<th>Comfort and Convenience</th>
<th>Safety Features</th>
<th>Passenger Space</th>
<th>Cargo Capacity</th>
<th>Curb Appeal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

PRECEDENCE

<table>
<thead>
<tr>
<th>More Uncertainty</th>
<th>Less Uncertainty</th>
<th>20</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Separation</td>
<td>Less Separation</td>
<td>-0.1</td>
<td>γ</td>
</tr>
</tbody>
</table>

Selection Probability

- Volkswagen Jetta
- Honda CR-V
- Subaru Outback
- Honda Fit
- Volvo XC70
- Jeep Wrangler
- Volkswagen GTI
- Nissan Cube
- Subaru Impreza

Unclassified
Utility Example: Predicting Car Purchase Trends

- As part of illustrating application of utility modeling for Intelligence Community (IC) Subject Matter Experts (SMEs), an simple Excel® sheet containing a utility model applied to 2013 model automobile data was developed.

If Curb Appeal was the driving factor, sports cars and luxury cars, such as a Chevrolet Corvette or Porsche 911 were likely purchases.
Utility Example: Predicting Car Purchase Trends

As part of illustrating application of utility modeling for Intelligence Community (IC) Subject Matter Experts (SMEs), an simple Excel® sheet containing a utility model applied to 2013 model automobile data was developed.

If *Curb Appeal* and *Comfort and Convenience* were equally weighted factors, different sports cars and luxury cars from the segment become likely.
Modeling the Threat of Food Fraud Using Behavioral Modeling

April, 2019
Modeling the Threat of Food Fraud

Automated Live Data for Commodity-Attributes

SME-Based Importance of Attributes

Predictive Model of Fraudster Behavior

Quantitative Threat Results
Numerous attributes (e.g., value, volume, historic occurrence, and supplier reliability) representing key characteristics that drive a fraudster’s decision to adulterate a commodity are continuously updated at defined intervals for each commodity through numerous online websites and databases to support the best possible assessment of threat.

- Automated updating of attribute data for each commodity supports live vulnerability updates without requiring effort from users.
Modeling the Threat of Food Fraud

Automated Live Data for Commodity-Attributes

SME-Based Importance of Attributes

Users (SMEs) weight the attributes based on their expert opinion as to how important each attribute is to a fraudster when deciding which commodities to adulterate for economic reasons:

• Providing attribute weights better aligns with SME intuition, captures the driving forces behind food fraud, and reduces the number of inputs required from a user.
Modeling the Threat of Food Fraud

Automated Live Data for Commodity-Attributes

SME-Based Importance of Attributes

Predictive Model of Fraudster Behavior

The behavioral model translates the factors involved in fraudster decision making (characteristic attributes and their importance) into meaningful mathematical structures for calculation, analysis, and incorporation into decision making.

- Understanding the behavior of fraudsters is an important part of assessing and mitigating food fraud.
- Behavioral modeling approach is based on approaches relied upon by the Department of Homeland Security to predict terrorist behavior.
Quantitative threat results help users effectively rank and prioritize mitigation efforts associated with food fraud in a forward-looking (predictive) manner.

- Analysis of results and driving factors provides improved understanding of threats and potential mitigation.
- Comparative analysis offers insight into whether changes in threat is based on differences in SME opinion, supplier-driven differences, or trends in global markets.
Predictive Modeling Approach

- Multi-attribute utility model
 - Allows for quantitative estimation of fraudster tendencies based on a combination of characteristic attributes and SME-based weightings
 - Similar to approaches used by the U.S. Department of Homeland Security and Domestic Nuclear Detection Office to model CBRNE terrorist tendencies

Driving Attribute Categories
- Economic Drivers
- Ease Drivers
- Historical Drivers
Automated Live Data for Commodity-Attributes

Automated Data Mining from Web-Based Sources

- UN comtrade
- Quandl
- Transparency International
- USP
- FDA

Economic Drivers
- Value
- Volume
- Scarcity/Surplus

Historical Drivers
- Historic Occurrence
- Geopolitical Stability

Ease Drivers
- Frequency of Identity Tests
- Government Regulations
- Ownership
- Repackaging
- Trade Association
- Supplier Reliability
Validation Study using Historical Data
Validation Study Commodities

- **48% (24 of 50)** in one of USP’s Top 25 Lists
- **76% (38 of 50)** have a history of food fraud based on occurring in the Decernis Food Fraud Database
- Comprised of commodities from many categories of foods

<table>
<thead>
<tr>
<th>Spices</th>
<th>Grains</th>
<th>Dairy</th>
<th>Seafood</th>
<th>Meat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumin</td>
<td>Wheat flour</td>
<td>Butter</td>
<td>Shrimp, fresh</td>
<td>Ground Beef</td>
</tr>
<tr>
<td>Basil</td>
<td>Corn flour</td>
<td>Whey</td>
<td>Cod, Frozen</td>
<td>Pork</td>
</tr>
<tr>
<td>Black Pepper</td>
<td>Rice</td>
<td>Milk</td>
<td>Tilapia, Frozen</td>
<td>Chicken, breast</td>
</tr>
<tr>
<td>Cocoa beans</td>
<td>Quinoa</td>
<td>Cheese</td>
<td>Canned Tuna</td>
<td>Turkey</td>
</tr>
<tr>
<td>Cocoa powder</td>
<td>Durum wheat pasta</td>
<td>Non-dairy Beverages</td>
<td>Sweeteners</td>
<td></td>
</tr>
<tr>
<td>Saffron</td>
<td>Wheat gluten</td>
<td>Apple juice</td>
<td>Maple Syrup</td>
<td></td>
</tr>
<tr>
<td>Vanilla</td>
<td>Fruits and Vegetables</td>
<td>Orange juice</td>
<td>Honey</td>
<td></td>
</tr>
<tr>
<td>Oils</td>
<td>Tomatoes</td>
<td>Coffee</td>
<td>Glycerol</td>
<td></td>
</tr>
<tr>
<td>Palm oil</td>
<td>Onions</td>
<td>Food Ingredients</td>
<td>Stevia</td>
<td></td>
</tr>
<tr>
<td>Sesame oil</td>
<td>Apples</td>
<td>Corn starch</td>
<td>Beet Sugar</td>
<td></td>
</tr>
<tr>
<td>Bergamot oil</td>
<td>Peas</td>
<td>Xanthan gum</td>
<td>High fructose corn syrup</td>
<td></td>
</tr>
<tr>
<td>Olive Oil, extra virgin</td>
<td>Avocado</td>
<td>Guat gum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>Strawberry Puree</td>
<td>Beeswax</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart:

- **Spices, 14%**
- **Oils, 10%**
- **Seafood, 8%**
- **Non-dairy Beverages, 6%**
- **Grains, 12%**
- **Meat, 8%**
- **Dairy, 8%**
- **Food Ingredients, 10%**
- **Fruits/Vegetables, 12%**
- **Sugars/Sweeteners, 12%**
Validation Study Concept

Attribute Data (Historical) vs. Top 25 Lists and Incident Databases

Attribute Weights (SME-Based) vs. Threat Estimates (Historical)

EMAlert
Vulnerability Assessment Tool
GMA + Battelle Partnership
Validation Study: Inputs

Attribute Data (Historical)
- Mined from electronic resources (e.g., comtrade) or estimated (e.g., existence of trade associations) for December 31, 2009
- Note: No customization for supplier reliability was incorporated in the validation study data

Attribute Weights (SME-Based)
- Inferred from SME rankings of attributes from interim survey-based research by Lindsay Murphy at the University of Tennessee

EMAlert™ Algorithms
- Vulnerability to EMA (food fraud) estimated quantitatively using EMAlert™ algorithms that predict fraudster preferences
Validation Study: Comparison Sources

• EMAAlert™ quantitatively predicts relative threats
 ▪ Those threats should be observable as incidents over a period of time (or volume of incidents)

• However, direct comparisons are complicated slightly because:
 ▪ Perpetrators of food fraud do not want to be caught
 ▪ Our knowledge of food fraud incidents is imperfect (we don’t know what we don’t know of)

• Comparison metrics selected for this validation study:
 ▪ USP Top 25 List (Scholarly and Media)
 ▪ USP Food Fraud Database
 ▪ FPDI EMA Database
EMAlert™ Results estimate that the most likely commodity to be adulterated (Honey) was approximately 26 times more likely to be adulterated than the least likely commodity (Frozen Cod).

USP Food Fraud Database for the years 2010-2014 contained 139 incidents involving Honey and 6 involving Frozen Cod (a ratio of roughly 23).
Validation Study: Comparison Metrics

- Commodities categorized as *High*, *Medium*, or *Low* vulnerability based on the following criteria:

<table>
<thead>
<tr>
<th>Vulnerability Category</th>
<th>USP Top 25 Lists¹</th>
<th>USP Food Fraud Database²</th>
<th>FPDI EMA Database³</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Appears on both the Scholarly and Media Top 25 List</td>
<td>Constitutes 10% or more of known incidents for next 5 years</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Appears on either the Scholarly or Media Top 25 List</td>
<td>Constitutes less than 10% of known incidents for next 5 years</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Does not appear on the Scholarly or Media Top 25 List</td>
<td>No historical incidents contained in the database for next 5 years</td>
<td></td>
</tr>
</tbody>
</table>

3 - FPDI Food Fraud / EMA Database: https://foodprotection.umn.edu/innovations/food-fraudema/incidents-database
Validation Study: Comparison Metrics

High Threat Category Commodities

USP Top 25
- Honey
- Saffron
- Olive Oil
- Apple Juice
- Rice
- Milk

USP Food Fraud DB
- Honey
- Olive Oil
- Milk

FPDI EMA DB
- Olive Oil
- Milk

<table>
<thead>
<tr>
<th></th>
<th>USP Top 25 List</th>
<th>USP Food Fraud Database</th>
<th>FPDI EMA Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Commodies</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>

Legend: High, Medium, Low
Validation Study: Comparison Results

Mean Threat Scores by Category

USP Top 25
- High: 4.3%
- Med: 2.6%
- Low: 1.0%

USP Food Fraud DB
- High: 4.2%
- Med: 2.3%
- Low: 1.4%

FPDI EMA DB
- High: 3.1%
- Med: 2.1%
- Low: 1.9%

The bar chart illustrates the mean vulnerability for each category across different databases.

- **USP Top 25 List**: High (4%), Medium (3%), Low (2%)
- **USP Food Fraud Database**: High (4%), Medium (2%), Low (1%)
- **FPDI EMA Database**: High (3%), Medium (2%), Low (1%)
Validation Study: Milk Analysis

• **Non-intuitive Result:** At first glance, EMAAlert™ estimates a lower vulnerability for Milk (vulnerability of 1.4%) than would be expected based on historic incidents between 2010-2014

 ▪ *Note:* The vast majority of incidents were in international locations that do not trade milk globally (e.g., adulteration with melamine in China)

• **Customized Input Adjustments:** If the Supplier Reliability attribute for milk is lowered from 5 (default) to 0 (low reliability), reflecting a the potentially reduced reliability of an Asian milk supplier

• **Customized Threat Result:** *The threat to Milk increases significantly to 4.8%*
Validation Study: Milk Analysis

- **Non-intuitive Result**: At first glance, EMAlert™ estimates a lower vulnerability for Milk (vulnerability of 1.4%) than would be expected based on historic incidents between 2010-2014
 - Note: The vast majority of incidents were in international locations that do not trade milk globally (e.g., adulteration with melamine in China)

- **Customized Input Adjustments**: If the Supplier Reliability attribute for milk is lowered from 5 (default) to 0 (low reliability) and the Geopolitical Stability attribute is changed from the global weighted average (0.70) to that of China (0.36)

- **Customized Threat Result**: Milk is then the highest threat commodity with a mean threat of 9.8%
Acknowledgements

• Many thanks to:
 - Battelle team of researchers who developed and support EMAAlert™, especially Ashley Kubatko, Michael Ma, Regina Gallagher, Joseph Casciano, Lucas Rodriguez, and Kevin Wegman
 - Lindsay Murphy at the University of Tennessee for the interim survey results used for generating attribute weights in the validation study
 - GMA staff who supported the development of EMAAlert™, especially Warren Stone, Sam Cooper, and Shana Cooksey
 - EMAAlert™ Steering Group members for providing feedback and perspective during development and beta testing, especially Joseph Scimeca who served as chairperson of the Steering Group and has been involved throughout the entire EMAAlert™ effort
Questions and Subsequent Discussion

Slides and a recording of this webinar will be available for access by IAFP members at www.foodprotection.org within one week.