Chemistry and Tools: Designing Your Grocery and Food Service Sanitation Program

April 2022

Organized by: Food Hygiene and Sanitation PDG

Moderator: Christopher Jordan, Diversey

Sponsored by the

Please consider making a contribution

This webinar is being recorded and will be available to IAFP members within one week.
Webinar Housekeeping

• It is important to note that all opinions and statements are those of the individual making the presentation and not necessarily the opinion or view of IAFP.

• All attendees are muted. Questions should be submitted to the presenters during the presentation via the Questions section at the right of the screen. Questions will be answered at the end of the presentations.

• This webinar is being recorded and will be available for access by IAFP members at www.foodprotection.org within one week.
Today’s Moderator

Christopher Jordan

Director of Business Development, Food Safety & Technical Consulting
Diversey, Inc.

For 21 years, Chris Jordan has worked in food safety & kitchen hygiene within the retail sector at Diversey, Inc. Chris has led key account sanitation programs, business development, food safety auditing, and food safety training programs. He works to strengthen customers’ cleaning & food safety programs by focusing on actionable, science and data driven results. Chris led the development of several key customer data and reporting plans within Diversey’s customer base, and he continues to work on innovation paths to continuously improve food safety systems. Chris is currently the Director of Business Development and the Food Safety & Technical Consulting Team for Diversey’s North American Retail, Foodservice, and Hospitality sector.
Today’s Presenters

David Buckley, Diversey

David Buckley is the Director of Technical Consulting for the Retail and Food Service sectors in North America at Diversey, Inc. He is responsible for consulting on food safety, sanitation, and infection prevention, and control programs. He liaises with marketing and R&D to help guide sanitation product development, and he leads and conducts independent field research tied to improving customer hygiene and sanitation practices.

Prior to working at Diversey, David earned his Ph.D. in microbiology from Clemson University where he focused on environmental control of noroviruses and improving hygiene outcomes in food settings. David was also a postdoctoral research microbiologist at the USDA-ARS. His focus was on the investigation of novel intervention technologies to improve food safety. David is also active within the IAFP community and currently serves as the secretary for the Food Hygiene and Sanitation PDG.
Debra Smith, Vikan

Deb has over 35 years of food safety & research experience. Before joining Vikan she worked for the UK governments Food Safety Division; and as Food Hygiene Research Manager at Campden BRI. Deb holds qualifications in Applied Microbiology, Nutrition & Food Science, Advanced Food Hygiene and HACCP. She is also a qualified FSSC 22000 Lead Auditor.

Deb has authored & co-authored numerous food safety & hygiene publications, and regularly presents her work at National and International food safety events. Deb is current Chair of the CampdenBRI Microbiology MIG; a Fellow of the IFST, and sits on their Scientific Committee, and Food Processing Special Interest Group.

Deb has been a member of IAFP for nearly 20 years and is Treasurer of the UK IAFP Affiliate. At Vikan Deb provides food safety and hygiene advice, training, and support, both internally and to the food industry.
3 Essentials for Facility Hygiene
Cleaning and Microbial Control

3 Key Reasons for Sanitation

- Safety
- Quality and Shelf Life
- Aesthetics
<table>
<thead>
<tr>
<th>Foodborne agents</th>
<th>Estimated annual number of illnesses</th>
<th>Estimated annual number of hospitalizations</th>
<th>Estimated annual number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (90% credible interval)</td>
<td>Number (90% credible interval)</td>
<td>Number (90% credible interval)</td>
</tr>
<tr>
<td>31 known pathogens</td>
<td>9.4 million (6.6–12.7 million)</td>
<td>55,961 (39,534–75,741)</td>
<td>1,351 (712–2,268)</td>
</tr>
<tr>
<td>Unspecified agents</td>
<td>38.4 million (19.8–61.2 million)</td>
<td>71,878 (9,924–157,340)</td>
<td>1,686 (369–3,338)</td>
</tr>
<tr>
<td>Total</td>
<td>47.8 million (28.7–71.1 million)</td>
<td>127,839 (62,529–215,562)</td>
<td>3,037 (1,492–4,983)</td>
</tr>
</tbody>
</table>

List of Selected Outbreak Investigations, by Year

- **Hard-boiled Eggs** – Listeria monocytogenes
- **Cut Fruit** – Salmonella Javiana
- **Fresh Express Sunflower Crisp Chopped Salad Kits** – E. coli O157:H7
- **Romaine Lettuce** – E. coli O157:H7
- **Ground Beef** – Salmonella Dublin
- **Listeria monocytogenes infections**
- **Fresh Basil from Siga Logistics de SL de CV of Morelos, Mexico** – Cyclospora (2019)
- **Northfork Bison** – E. coli O103 and O121
- **Papayas** – Salmonella Uganda
- **Flour** – E. coli O26
- **Karawan Brand Tahini** – Salmonella Concord
- **Raw Oysters** – Multiple Pathogens
- **Deli-Sliced Meats and Cheeses** – Listeria monocytogenes
- **Frozen Raw Tuna** – Salmonella Newport
- **Pre-Cut Melon** – Salmonella Carrara
- **Ground Beef** – E. coli O103
- **Butterball Brand Ground Turkey** – Salmonella Schwarzengrund

USDA’s Economic Research Service estimates 31% of food loss at the retail and consumer levels. This corresponding to about 133 billion pounds and $161 billion of food.

Aesthetics
• **Rule 1:** Process beats chemistry EVERY time

• **Rule 2:** Cleaning boils down to 4 factors

• **Rule 3:** There are uncontrollable variables that impact cleaning

Cleaning performance = $T_i \times A \times C \times T_e$

Where

$T_i =$ Time
$A =$ Action
$C =$ Chemical
$T_e =$ Temperature
• The longer you clean, the cleaner a surface
• Soil removal may not be linear over time
• May not require user to continually work
Mechanical Action

- Sometimes, the best cleaning chemical is elbow grease.

- There are many ways to increased mechanical action but most are not practical or safe in retail and food service operations.
 - Manual scrubbing
 - Abrasives
 - High pressure spray – not recommended
 - Ice blasting – not recommended

More on mechanical action from Vikan…
Many types of cleaners and active ingredients.
The nature of a cleaning chemical greatly impacts cleaning results.

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
</tr>
<tr>
<td>Caustics</td>
</tr>
<tr>
<td>Free Available Chlorine</td>
</tr>
<tr>
<td>Quaternary Ammonium Compounds</td>
</tr>
<tr>
<td>Peroxides</td>
</tr>
<tr>
<td>Peracids</td>
</tr>
<tr>
<td>Acid Anionics</td>
</tr>
<tr>
<td>Alcohols</td>
</tr>
</tbody>
</table>
In general, higher temperature removes more soil.

However, too much heat can be problematic. Hot water temperatures may inactivate some cleaners –
 - Enzymatic
 - High temperatures can make some soils more tenacious and hard to clean
 - Burn on soils
Percentage of biofilm removed from stainless steel surfaces with circulating water. Flow = 5 ft/sec.

Percentage of biofilm removed from stainless steel surfaces at various flow rates of a chlorinated detergent after 5 minutes in a circulation cleaning system.

Percentage of biofilm removed from stainless steel surfaces with circulating water or detergent. Flow = 5 ft/sec.

Percentage of biofilm removed from stainless steel surfaces at various temperatures of a chlorinated detergent in a circulation cleaning system.
So what is the BEST Cleaning process formula?

Cleaning performance = T_i * A * C * T_e

• Correct answer: it depends!

• Optimizing TACT is about compromise. One TACT approach is likely not the same for another environment.

• That means that there is no BEST TACT equation.
 • It needs to be set empirically
 • It needs to be set for each location
 • It needs to be set for each task
Remember Rule 3:
There are uncontrollable variables that impact cleaning

- Optimum TACT variables need to be established empirically because there are other variables that impact cleaning when you’re **NOT** cleaning
 - Regulatory issues
 - Nature of the soil
 - Nature of the equipment
 - Nature of the product being processed
 - Nature of the production process
 - When the surface was soiled
 - Sustainability issues
 - Safety
 - Compatibility
 - Cost
Let’s Talk Soils

• What is soil?
 • Most soil in grocery and foodservice areas is (oddly enough) food.

• Breaks down into several large categories:
 • **Organic soil**: carbohydrate, protein, lipid
 • **Inorganic**: salts and scales
 • **Miscellaneous**: Stones, machine oils, etc

• How do you remove these soils?
This is usually what we deal with…

- Soils we worry about are **not** water soluble
 - Water soluble soils exist but they do not get a lot of attention because they readily dissolve in water

- Aqueous cleaning solutions
 - Solvent based cleaning systems exist (i.e. dry cleaning) but not in the environments that we are discussing today
We have many ways to address this issue

Modify the solution properties
- Surfactants
- Solvents
- Chelants (note that these are often called “Builders”)
- Alkalinity

Modify the soil properties
- Chelants
- Acidity
- Bleaches
- Enzymes / Microbes

Modify the substrate
- Beyond the scope of this talk
Which chemical do you use to clean?

<table>
<thead>
<tr>
<th>Type of soil</th>
<th>Example</th>
<th>Optimum cleaner chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Sugar, starch, caramel</td>
<td>Surfactant, alkalinity</td>
</tr>
<tr>
<td>Protein</td>
<td>Casein</td>
<td>Chlorine, alkalinity, surfactants</td>
</tr>
<tr>
<td>Fat</td>
<td>Tallow, lard, seed oils, resins</td>
<td>Alkalinity, surfactants</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Greases, oils, lubricants</td>
<td>Solvent</td>
</tr>
<tr>
<td>Inorganic soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monovalent salts</td>
<td>sodium chloride</td>
<td>Acid or high levels of Chelant</td>
</tr>
<tr>
<td>Milk stone</td>
<td>Calcium nitrate</td>
<td>Acid or high levels of Chelant</td>
</tr>
<tr>
<td>Food stone</td>
<td>Beer, milk, and celery stone</td>
<td>Acid or high levels of Chelant</td>
</tr>
<tr>
<td>Metallic deposits</td>
<td>Rust, aluminum oxide</td>
<td>Acid or high levels of Chelant</td>
</tr>
</tbody>
</table>
A Regulatory Pause

- **Cleaning.** Part 4-6
- **Rinsing.** Section 4-603.16
- **Sanitizing.** Part 1-2 (40 C.F.R § 180.940)
- **Detergent-Sanitizer.** Section 4-501.115
- **Nonfood-contact surfaces.** Requirement not addressed
- **Disinfectants.** Annex 3, section 2-501.11 Vomiting and Diarrheal Events
- **Concentration verification.** Subpart 4-302.14

From Fraser et al. 2021
How About Some Practical Advice?
Meat, poultry, seafood leads to high fat, high protein, and large quantity soil.

Dough, batters, pastas usually contain high carbohydrate level and high protein.

Vegetables have high carbohydrate with some stone issues (e.g. celery and spinach stone).

Carbonized or burnt on soil of any sort is usually cleaned with high caustic levels (1-5%).

Milk contains Carbohydrate (milk sugar), protein, fats, minerals, and water.

Some Practical Advice

Cleaner of choice is usually chlorinated alkali.

Chlorinated alkali is a common choice. However, built cleaners with ethoxylated alcohol and acid does well, too.

Any cleaner with surfactant cleaners can work well for these applications, it helps if it is “built”

Potassium hydroxide

www.kitchenviva.com

Use chlorinated alkali cleaners

www.diversey.com
Allergen removal

- Allergens are not bacteria.
 - You cannot sanitize them away.
 - You cannot (practically) degrade, denature, heat, oxidize, or otherwise inactivate allergens.
Cleaning to remove allergens

- Wet cleaning
 - Allergens are almost always proteins so a cleaner that is well suited to cleaning high protein soil is often a good choice.
 - Chlorinated alkali detergent is a standard and effective choice
 - Remember the variables (TACT and others) they apply here too
 - Removal is the most important piece of abatement of allergens
Why do we care about biofilms?

Biofilms are concern because they may act as **sources of contamination** resulting in, product contamination, quality failures, reduced shelf life, organoleptic changes, and corrosion of equipment.
Where will biofilm grow

Slicers, Grinders, Band saws, Dicers, Blenders,
Hand Tools, Gloves, Aprons, Containers, Bins,
Baskets, Equipment Framework, Floors, Sinks, Inside Hoses,
Sponges, Brushes, Green scrubbies, Floor scubbers,
Trolleys, Fork Lifts,
Condensate, Carts, Gaskets, Walls, Ice Makers,
Mops, Tow Motors, Racks
On/Off Switches, Inside Air Lines,
Standing H₂O, Scrapers,
Trash Cans, HVAC………..

Did we say Drains???
Eliminating Biofilms

Exopolysacharide
• Carbohydrates
• Protein
• DNA

Microorganism
• Carbohydrate
• Protein
• Lipid
• Minerals
• Trace compounds

What is soil in a food processor made of?
• Carbohydrates
• Protein
• DNA
• Lipid
• Minerals
• Trace compounds

Biofilms = Soil
Sanitizers

EPA 40 CFR § 158.2203

“a substance, or mixture of substances, that reduces the bacteria population in the inanimate environment by significant numbers, but does not destroy or eliminate all bacteria. Sanitizer meeting Public Health Ordinances are generally used on food contact surfaces and are termed sanitizing rinses”

EPA Product Performance Testing Guidelines

The EPA quantifies this definition through their Product Performance Testing Guidelines. That is, food contact, non-food contact surface, and soft surface sanitizers must meet a 5-log (99.999%), 3-log (99.9%), and 3-log (99.9%) reduction, respectively, of specific Gram positive and negative bacteria.

FDA Food Code Section 1-201.10 (B)

“reduction of 5 logs, which is equal to a 99.999% reduction, of representative disease microorganisms of public health importance”

Sanitizers are critical to sanitation but require adequate cleaning prior to application.
Results of a two step process that combined first a cleaning step and then a sanitizer

Alkali 10 min. followed by Mixed Oxidizing Sanitizer 10 min., glass coupon, measured in triplicate, *B. licheniformis*
Food Hygiene in Grocery & Food Service

Hazards:
- Microbial (Norovirus, *Listeria*, *Salmonella*, *E. coli*, microbial biofilms)
- Allergens
- Foreign material

Risk:
1. CDCs top 5 major risk factors related to food safety practices within the retail food industry includes:
- Food contamination due to unclean facilities, equipment, or utensils

1. Foodborne Illness Outbreaks at Retail Establishments — National Environmental Assessment Reporting System, 16 State and Local Health Departments, 2014–2016. MMWR (cdc.gov)
Minimizing the Risk

Control:
- Selection
- Use
- Maintenance
Vikan Food Safety Webinar Series

Selection
- *Materials of construction*
 - food contact compliance
 - durability
- *Design & construction*
 - cleanability
 - fitness for purpose
 - colored for ease of identification
- People

Use
- preparation for first use
- minimizing spread of contamination

Maintenance
- equipment as a source of contamination
- equipment decontamination
- inspection & replacement
- storage

Hygienic Design
Materials of construction must not allow the,
- migration of harmful substances, or
- impart colors, odors, or tastes to the food under normal conditions.
- Must not be a source of foreign bodies

The FDA Regulation CFR21
Design and construction

Good hygienic design principles

- avoid recesses, nooks & crannies
- no fixings & fastenings
- all areas accessible for easy decontamination
- of one-piece construction, or quick & easy to take apart / re-assembled
- have a smooth surface

*EHEDG Guideline 8 "Hygienic Equipment Design Criteria"
https://www.ehedg.org/guidelines/free-documents/

https://www.vikan.com/uk/services/hygienic-design-of-cleaning-tools
Biofilm build-up under the screw thread handle fixing

Site-made floor scraper contamination traps / difficult to clean
Materials of construction?

UV gel ‘contamination’ trapped in surface defects after cleaning

Selection
Bad Hygienic Design

Poor surface finish
Selection
Bad Hygienic Design
Selection

Good Hygienic Design

One-piece or Fully-molded construction

Drilled and stapled construction

Fully-molded construction

https://www.vikan.com/uk/services/vikan-blog/understanding-bristle-fixation-in-food-industry-brushware/
Selection

Fitness for Purpose

Foam-bladed squeegee
- With easy to remove, replaceable cellular rubber blades
- Effective & efficient removal of liquids in low-risk areas

Fully-molded Squeegee
- With single TPE bladed
- Very good hygienic design
- For high-risk areas & food contact surfaces
Selection
Fitness for Purpose

Soft bristled brush
- Soft bristled for removal of loose dry powders

Stiff bristled brush
- Stiff bristled for removal of dried on soils (can be used wet or dry)

Squeegee
- Sometimes used instead of a broom as more effective on some floor types, doesn’t clog and is easier to clean.
Use of color-coded equipment and zones provides a visual check that only equipment color-coded for use in that area / for that task is used.

Experienced, qualified, competent, conscious people are invaluable.

Invest in training, e.g., ServSafe® Food Handler Certification (administered by National Restaurant Association), & food safety culture.

Did you know? ~60% of foodborne illness outbreaks associated with food retail are linked to staff

1. CDC - U.S. food retail industry - statistics & facts | Statista

Experience, qualified, competent, conscious people are invaluable.
Selection
Health & Safety - Ergonomics

Ergonomic handle
- Rounded top
- Comfortable diameter
- Vertical ridges & matt finish to improve grip

Ergonomic scoop
- Designed with a handle that reduces stress on the wrist.

Ergonomic bucket
- Robust side handles for ergonomic handling and a good grip
- For heavy contents two people can lift the bucket on each side
Use

Equipment Preparation for First Use

- Most cleaning and food handling equipment is not decontaminated before it is sent to the user.

- Equipment may be contaminated with:
 - microorganisms
 - chemical residues (inc. allergens)
 - foreign bodies

- All equipment should be decontaminated, as appropriate to its future use, before use.

Remove all labels!
Use

Minimizing Spread of Contamination

All cleaning activities can spread contamination

Low risk

High risk
Use

Minimizing Spread of Contamination

➢ Choose cleaning equipment and methods that maximize contamination removal and minimize its spread

➢ Clean carefully near open food product, and food preparation surfaces.

➢ If possible, remove equipment to be cleaned to a physically segregated area, to protect food product from splashes, aerosols etc. (separate washing up area / use of screens)
Use

Minimizing Spread of Contamination

Hygiene staff & Food Handlers

Use knowledgeable, competent, conscientious people.

Train in microbiological food safety, control of cross-contamination, allergen control

Use different people for different areas – deli, bakery, meat, fish

Control of cross-contamination

Transfer by clothing

Use disposable aprons, gloves - change between tasks

Transfer by hands

Wash & dry hands between tasks

Transfer by footwear

Clean & sanitise regularly

Contamination transfer by equipment

Keep captive to different areas/tasks, use color-coding, clean & sanitise regularly
Maintenance

Cleaning Equipment as a Source and Vector of Contamination

CampdenBRI¹

➢ Survey of cooked product areas for Listeria monocytogenes - 10,000 samples
➢ Cleaning equipment - 47%
➢ Cleaning equipment as a microbiological ‘collector’

Maintenance

Equipment Decontamination

General principles

Wet cleaning

➢ Rinsing down
➢ Immersion in a ‘sanitizer bath’, with/without agitation or scrubbing
➢ Use of an automated washing system, e.g., commercial dishwasher, or washing machine

Dry cleaning

➢ Brushed, wiped, knocked, shaken to remove debris

Dispose of after use (strictly limited or single use items)

➢ Cloths, sponges, scourers, mop heads
Maintenance
Equipment Decontamination

Generalized process decision tree for brush tool cleaning

Dry and wet cleaning

Brush, shake or knock the brush to remove gross debris

Wet cleaning
- Wash in soapy water

Rinse in clean water

High risk

Low risk

*Sanitize & dry

Dry

Wet cleaning

Low risk end

*Sanitize

**Sterilize

Dry

Wet cleaning

High risk end

* Reduce the level of microbes to an acceptable level

** Kill all microbes
Cleaning tools should be:
- regularly inspected for damage and wear and tear
- replaced as appropriate, based on risk assessment
- Have descriptions/images of what is acceptable and what is not
- Keep records of tool inspection and replacement.
- Don’t make poor quality repairs to damaged equipment as this can increase the safety risk to the food product.
Cleaning tools can be stored on colour-coded wall racks or shadow boards,
help minimise equipment damage and cross-contamination,
improve efficiency - provide a place for tools to be stored and found quickly when needed,
provide a visual check that the right-coloured tools are being used and stored in the right area.
The Hygiene Team, Food Handlers and the resources they use are critical to ensuring food safety and future business.

Recognize them for the food safety heros they are!

Invest in them – Training, resources, reward
Key things to consider

➢ **Selection**
 ➢ Hygienic design – easy to clean, durable, made of food safe compliant materials,
 ➢ Fit for purpose
 ➢ Color-coding
 ➢ Ergonomics

➢ **Use**
 ➢ Preparation for first use
 ➢ Maximize contamination removal, minimize spread – methods, people

➢ **Maintenance**
 ➢ Equipment decontamination
 ➢ Equipment inspection and replacement
 ➢ Equipment storage
 ➢ Food safety culture
Questions?
Further Information and Support

David Buckley, Ph.D.
Director of Technical Consulting
Retail & Food Service
David.Buckley@Diversey.com
Mobile: 803.487.2058

Deb Smith
Global Hygiene Specialist
Vikan UK/Global
dsmith@vikan.com
Mobile: 0044 7500 220139
UPCOMING WEBINARS

April 13 A 360° Review for Food Safety Training—Perspectives From Trainers and Business Owners

April 21 Processing Environment Monitoring in Low Moisture Foods Production: Setting Up a Meaningful Program

April 26 Foundations of Produce Safety in Hydroponic and Aquaponic Operations

May 17 Avoiding Premature Water Activity Testing Results When Meeting Safety Regulations

May 26 Making Your Environmental Monitoring Performance Smarter
UPCOMING MEETINGS

Munich, Germany 4-6 May 2022

IAFP’s European Symposium on Food Safety

Pittsburgh, Pennsylvania July 31–August 3 2022
Be sure to follow us on social media

International Association for Food Protection

@IAFPFOOD

International-association-for-food-protection

IAFP Food
This webinar is being recorded and will be available for access by IAFP members at www.foodprotection.org within one week.

Not a Member? We encourage you to join today.
For more information go to: www.FoodProtection.org/membership/

All IAFP webinars are supported by the IAFP Foundation with no charge to participants.

Please consider making a donation to the IAFP Foundation so we can continue to provide quality information to food safety professionals.