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ABSTRACT

Controlled Environment Agriculture (CEA) is increasingly 
used to grow food (namely fruits and vegetables) in con-
trolled indoor conditions. While often billed as “eliminating” 
the classical food safety concerns associated with open 
field cultivation of produce, traditional as well as potentially 
novel microbial food safety risks are a concern for CEA, 
as supported by a recent salmonellosis outbreak in the 
U.S. linked to CEA grown produce. In addition, the use of 
diverse technologies and practices in CEA represents a 
challenge in efforts to develop food safety guidance. CEA, 
particularly precision vertical farms, however, have the dis-
tinct advantage of being “data intense” and typically have a 
better data collection and management structure than is 
found in traditional agriculture. This may position at least 
part of the industry to use digital tools digital tools and 
Artificial Intelligence (AI) to manage manage food safety. 
Possible AI approaches may include adaptive sampling and 
interventions depending on the presence of risk factors 
that could be predicted with the routine data generated 
during CEA operations. This article summarizes challenges 

and opportunities for using AI and digital approaches to as-
sure microbial food safety and manage food safety related 
business risks in CEA.

OVERVIEW OF CEA
Controlled Environment Agriculture (CEA) is a rapidly 

growing sector (79) due to its use of agricultural techniques 
to create specific and precisely controlled environments 
directed towards efficient plant production using limited in-
puts (6, 23). CEA encompasses a wide array of technologies 
ranging from “low tech” traditional greenhouses to advanced 
and more automated soilless “high tech” and closed loop 
vertical farms. Currently, CEA production largely focuses on 
specialty crops (e.g., leafy greens, herbs, microgreens, toma-
toes), but the term CEA can also include indoor production 
of mushrooms, fish, and even insects (17, 23, 34). CEA is 
most commonly divided into soilless growing methods (such 
as hydroponics) and traditional growing methods (utilizing 
pots with soil) (35). Both formats use various inputs, includ-
ing growing media, lighting systems, and structural systems 
(55). Most CEA systems are characterized by a wide array 
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of high-tech operations which include common activities 
linked to the production of fruit, vegetable and herbs (FVHs) 
(e.g., seeding, irrigation, harvesting). An increasing num-
ber of CEA facilities also include processing and packaging 
operations. Operations such as cutting, washing and packing, 
which were usually performed in fresh-cut processing plants, 
thus are now performed within the CEA facilities, in the 
same room or adjoining rooms where the crops are grown 
(37).

Hydroponics is the technique of growing plants using a 
water-based nutrient solution and can include an aggregate 
substrate or growing media such as vermiculite, coconut coir, 
perlite or peat moss (46, 54, 56). Hydroponics differ from 
traditional soil cultivation methods in that the water is the 
primary nutrient carrier as opposed to soil; the structural 
support is offered through the aforementioned substrate or 
growing media instead of soil. The most common types of 
FVH commodities cultivated under soilless practices are 
tomatoes, peppers, lettuce, and other leafy greens, including 
microgreens. Hydroponics include many different types of 
cultivation systems such as deep-water culture hydroponics, 
aeroponics, and aquaponics (71). Deep-water culture is 
where seedlings are planted into floating rafts so that the 
roots are immersed in deep, recirculating nutrient rich 
“ponds.” In aeroponics, the roots of the plants are suspended 
in the air, and water and nutrients are supplied to the plant 
through a fine mist activated by a timer. Indoor aquaponic 
systems combine plant production with fish cultivation, using 
treated water from the fish tanks as a source of irrigation 
water to grow plants (51). While hydroponics is inherently 
different from soil-based methods, the overall primary inputs 
for both methods, which are all relevant to food safety, 
remain generally similar. These primary inputs include 
plant seeds, water, nutrients/fertilizers, soil (for traditional 
methods) and substrates (for soilless methods) (18). Other 
food safety relevant factors in CEA production include 
lighting, structural systems and climatic factors (e.g., oxygen, 
humidity, and carbon dioxide levels) (18, 38).

Lighting systems involved in CEA cover a wide range. 
Traditional methods utilize sunlight, as commonly seen in 
greenhouses (10). On the other end of the spectrum are 
vertical farms where layers of crops are stacked on top of 
one another, each layer with its own set of lights (typically 
light emitting diodes [LEDs]) on the bottom of the above 
structure (23). This allows for precise dosing of lights, and 
often very defined amounts of red, blue and white light are 
utilized to increase plant production (42).

Finally, there can be numerous combinations between 
light and cultivation systems, each combination affecting the 
structure within the greenhouse/farm. Both hydroponics 
and traditional soil-based cultivation can be applied into a 
flat, one tier system using sunlight (36). Hydroponics can 
also be applied into a multi-level vertical farm using synthetic 
lights (23). It is unlikely that traditional soil methods will be 

combined with vertical farming as the weight of the soil poses 
a challenge for the structure to support. Two commonly seen 
types of CEA facilities are high tech vertical hydroponic farms 
utilizing LED lights and middle to low tech hydroponic hori-
zontal farms utilizing sunlight. The latter system, which includes 
a hydroponic system, with several automated stages of the 
whole process (e.g., transport of trays/beds from the seeding 
room to the greenhouse and from the greenhouse to the harvest 
area), is becoming increasingly popular (37). While this lower 
tech version may not have full climatic control, it might reduce 
the initial investment, making it attractive for firms (36).

The range of practices in which environmental factors 
such as temperature, light, humidity, oxygen, and carbon 
dioxide are controlled can often be tied with the maturity 
of the data collection infrastructure. On one end of the 
spectrum, some facilities have tight control with constant 
measurements, allowing for precise changes to be made. On 
the other end are greenhouses with no formal data collection. 
In this instance, changes to the environment are based on 
knowledge from a grower. This poises some facilities to be 
more easily adapted to the use of AI technology than others, 
based on their data collection infrastructure.

OVERVIEW OF CEA FOOD SAFETY CHALLENGES
CEA is often framed as reducing or even eliminating 

traditional microbial food safety hazards due to the physical 
protection of the crop from the environment (57), which is 
expected to lead to a lower likelihood of the edible part of 
the produce being in contact with wild animals and animal 
feces (40). Supporting this, several authors have found lower 
total bacterial counts and lower microbiota diversity in crops 
grown in CEA systems compared to those grown in open 
fields (32, 75). However, CEA clearly cannot produce prod-
ucts with “zero risk” of causing microbial or other food safety 
issues (78) and typical foodborne pathogens and perhaps 
unknown or waterborne pathogens are still a possible issue. 
Likely microbial food safety challenges in CEA include (i) 
pathogen contamination of inputs (e.g., seeds, substrates), 
(ii) pathogen contamination and persistence in water and 
water associated infrastructure, (iii) pathogen contamination 
and persistence in the overall facility infrastructure (e.g., 
conveyor belts, harvest equipment, trays/beds, floors), and 
(iv) risk of pathogen transfer throughout the system; due to 
the interconnectivity of hydroponics via water and general 
lack of full system sanitation, there is the regulatory issue of 
lot separation. Food safety risks in CEA are supported by a 
salmonellosis outbreak in the US in 2021, which was linked 
to CEA (specifically hydroponically) grown prepackaged sal-
ads (14). While the outbreak strain was not recovered from 
inside the facility (it was found in an “outdoor storm water 
drainage pond beside the farm” (14), the investigation of this 
outbreak did detect another Salmonella strain (serovar Liver-
pool) in an indoor pond that was used to grow lettuce. This 
illustrates that Salmonella represents a hazard that needs to be 
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controlled and addressed in CEA agriculture. Additionally, 
in January of 2024, a recall of CEA (specifically greenhouse) 
grown prepackaged salads was reported due to possible 
contamination with Listeria monocytogenes (27). A positive 
result for L. monocytogenes was identified during routine 
product testing. At the time in which this paper was written, 
no illnesses have been reported. Another microbial hazard 
that would need to be addressed (due to its presence in a 
wide range of sources, including natural environments), at 
a minimum, is enterohemorrhagic Escherichia coli (EHEC). 
Supporting the range of possible food safety hazards in 
produce, Salmonella, E. coli O157:H7, human noroviruses 
and L. monocytogenes have all been identified on hydroponic 
produce (43, 50, 59). While prevalence studies of food-
borne pathogens have been performed in the production 
environment of open fields, as well as packinghouses and 
the processing environment of fresh-cut facilities (5, 13, 
64), more research to systematically assess food safety risks 
in the growing and harvesting of leafy greens under CEA 
systems is needed.

In addition to known foodborne pathogens, it also needs 
to be considered that pathogens that are not typically con-
sidered foodborne, as well as unknown pathogens, could be 
transmitted through CEA grown crops. Of special concern 
are emerging waterborne hazards (e.g., Legionella) that may 
be present in various water sources, which might be applied 
in CEA systems (40). Particularly relevant is the recircu-
lation of the nutrient solution in the hydroponic system. 
Water sources, such as municipal water, reclaimed water, and 
surface water, present differing levels of associated microbial 
risks, as each source varies in treatments and testing require-
ments, with municipal water typically considered the lowest 
risk (33). Additionally, irrigation distribution networks could 
affect the water’s microbial quality. For example, intermittent 
water supply (akin to the ebb and flow hydroponic tech-
nique) in India was found to have higher total coliform and 
E. coli counts at taps compared to levels taken from taps sup-
plied with constant water (41). Whether the system or equip-
ment is temporarily or permanently assembled, the methods 
by which water storage, delivery, and distribution systems are 
cleaned, maintained, and stored are crucial. Given the range 
of possible microbial contaminants possible in CEA, more 
specific research clearly identifying microbial hazards and 
their frequency is needed for the CEA sector.

While growing media for hydroponics, aeroponics, 
aquaponics or soil-based growing systems vary widely and 
can provide avenues for contamination of final product, 
there is still limited research that would help with an 
assessment of risks associated with different inputs. Nutrient 
solutions, non-synthetic fertilizers (fish emulsion, algal 
extracts, liquid green waste extract), and non-soil growth 
media such as coconut coir or perlite are all examples 
of inputs used in CEA. Different CEA systems typically 
have specific requirements for handling of inputs to avoid 

cross-contamination. Notably, CEA that integrates fish 
(aquaponics) has a potential source of fecal contamination 
built into the production system. While there is some 
research regarding plant pathogens in soilless inputs (12, 
16, 44, 61), there is little research regarding the human 
pathogenic prevalence of CEA inputs. One study (18), 
illustrated the role of substrates as a potential source of 
contamination in hydroponic systems, which can facilitate 
microbial transfer to harvested leaves. Similarly, Işık et al. 
(39) found that growth media used in soilless microgreen 
production can affect the transfer of pathogens to edible 
and inedible portions of microgreens. Due to the lack of 
knowledge surrounding the microbial environment of these 
inputs, combined with the wide range of inputs used and the 
different systems they are used in, there is a large knowledge 
gap regarding human pathogen microbial risks from risks 
from inputs and how inputs inputs facilitate the spread to 
edible or inedible portions of products (37).

While automated systems can control seeding, planting, 
moving plants, irrigation (e.g., timed release and dosing of 
water and nutrients), harvesting, and post-harvest processing 
(e.g., moving growing trays pulled along a series of chains 
and pulleys, packing), these automated systems are often not 
hygienically designed or created with sanitation/disassembly 
in mind. This, combined with year-round production and 
limited sanitation (e.g., once a year), increases the potential 
risk of persistence and spread of pathogens. In addition, 
complex equipment and infrastructure in CEA may require 
extensive and well-managed maintenance to minimize food 
safety risks. In vertical farms, there are permanent structures 
with multiple growing levels. Equipment associated with 
growing includes multiple levels using shelving systems or 
vertically mounted growing systems (e.g., growing troughs 
suspended from the ceiling) and vertical conveyor systems 
(23). Relevant to vertical farms, if any of the top layers 
become contaminated, there is a high likelihood that it could 
disperse via water droplets onto lower levels and onto edible 
portions of plants. Future research and development on 
hygienic design and sanitation in CEA facilities (including 
validation and verification) thus would be valuable (37).

An additional challenge associated with microbial 
food safety in CEA is that there is limited knowledge 
of the microbiome within a CEA facility compared to a 
traditional agriculture microbiome. Plant microbiomes 
have been reported as playing important roles in securing 
food production and reducing microbial food safety risks 
(11). For example, sensitivity to invasion by pathogens can 
be characterized by different states of plant microbiomes, 
i.e., the ones that are in dysbiosis and therefore sensitive to 
pathogen invasion vs. the ones that are in eubiosis and more 
resilient to microbial perturbations (7).

Microbial interconnectivity between ecosystems plays an 
important role in the development of plant microbiomes 
and microorganisms can be transmitted via the internal 
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compartments of seeds to mature plants (58). Also, human 
pathogens can be transmitted via seeds to growing plants, 
although internal contamination with pathogens appears 
to be unlikely to occur (69). A scientific opinion published 
in 2011 (24) hypothesized that the increased proliferation 
of inoculated Shiga-toxin producing E. coli (STEC) on 
hydroponically-grown microgreens could be potentially due 
to a less competitive microbiota. Hence, further research 
of the plant and overall environmental microbiome in CEA 
facilities, and the impact of microbiomes on food safety risks 
in CEA systems, may be valuable.

A specific operational challenge is that production in CEA 
facilities is essentially continuous, which means that it is 
typically difficult for facilities to define and validate a “clean 
break” between production lots. Supporting this, researchers 
hosting a two-day conference regarding food safety in CEA 
titled Strategizing to Advance Future Extension and Research 
(S.A.F.E.R.) in April 2023 identified a lack of clean breaks as 
a challenge that could be potentially mitigated with the use of 
Artificial Intelligence (AI) (37). While there is no clear path 
to defining a clean break without full sanitation, AI-facilitated 
data analytics may be able to use regular (e.g., daily) testing 
data, as well as other data (e.g., sampling effort), to charac-
terize the likely length of a contamination event although it 
is possible this could be underestimated due to the inherent 
rare nature of contamination events. This would be valuable 
as a lack of a break between lots can represent a substantial 
business risk as regulatory agencies (as well as customers) 
may, in case of a single contamination event (e.g., a product 
sample collected on a given day that tested positive for a 
pathogen), request and/or require clean breaks to agree on a 
recall that is limited to one day’s production. Without a san-
itation break to support that contamination would not have 
been carried over to subsequent days and lots (e.g., through 
water), it may be necessary to issue a recall that covers all 
products in the marketplace (15). In some CEA facilities, 
production is only stopped once a year (which is when 
repairs and equipment cleaning occur); even then, full clean 
breaks may not occur, e.g., if water is not completely removed 
in deep water hydroponic systems.

Because CEA is a unique position between both 
primary producer and processer, the regulatory framework 
applicable to CEA is often unclear, leading to gaps in 
regulation and confusion for both regulators and industry. 
There however are already specific guidelines describing 
Good Agricultural Practices (GAPs) and Good Hygiene 
Practices (GHPs) for CEA facilities (26), which include 
general recommendations such as: (i) protected facility 
structures should be located, designed and constructed to 
avoid contamination and harborage of pests; (ii) worker 
training and sanitation practices are necessary in all facilities; 
(iii) proper water management and soil amendment use 
are critical to controlling and reducing risks. Additionally, 
in the US, CEA firms are expected to adhere to the Food 

Safety Modernization Act (FSMA) and the Produce Safety 
Rule (28). That being said, CEA is unique compared to 
the traditional produce supply chain because growing, 
harvesting, processing and packaging often occur in the same 
room or adjoining rooms, leading some firms to additionally 
be governed by the Preventive Controls for Human Food 
Rule (29) depending on their system. This can cause 
confusion from regulatory bodies and industry about what 
recommendations and frameworks apply, potentially leading 
to gaps in food safety and sanitation systems (37). A related 
challenge is that CEA needs more guidance, as well as field-
based assessments and data-based development of corrective 
actions, mitigations, responses to positive findings, including 
standardization of environmental monitoring programs 
(EMPs) for CEA (2, 66). A specific challenge for EMPs 
in CEA is that it may be hard to distinguish between the 
different Zones, which define proximity to food (i.e., Zones 
1, 2, 3, 4) (60), as essentially all surfaces are connected via 
water recirculation. Formal risk assessments or risk ranking 
may thus be needed to rank food safety risks associated with 
CEA of specialty crops and to inform food safety regulations 
for CEA (37).

Finally, in all food processing environments using 
human intervention, microbial and viral contamination via 
employees is a possible source. Personal hygiene and health 
requirements are critical as CEA personnel come directly in 
contact with edible and inedible portions of FVHs during 
seeding, and harvesting/packaging (9). In many CEA 
facilities, Good Manufacturing Practices (GMPs) or GAPs 
are enforced, such as personal protective equipment (PPE) 
wearing and hand washing (46); however, in some CEA 
facilities there may be a need to strengthen these practices.

OPPORTUNITIES FOR DIGITAL AND AI TOOLS 
IN CEA FOOD SAFETY

There have been a number of exciting advances in the 
food safety applications of AI and digital tools, spanning 
both mechanistic (e.g., simulation and agent-based models) 
and data-driven approaches. Some of these tools have taken 
advantage of new real-time data streams, such as social 
media and mobile apps, or have benefited from other large 
scale data streams and technologies, such as next-generation 
sequencing (NGS), smart labels, and blockchain. The 
development of sensors and their integration with Internet 
of Things (IoT) technologies also provides an avenue for 
data streams that could be utilized by AI to manage food 
safety risks (45). The application of these AI and AI-enabling 
technologies has shown promise in different areas, such as 
better pathogen detection and disease control. For example, 
BERTweet extracts foodborne illness-related entities from 
Twitter/X and was shown to identify unreported foodborne 
illness outbreaks (67). A Bayesian hierarchical model was 
developed for real-time monitoring and nowcasting of 
foodborne disease cases from public health surveillance 
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data (72). Using L. monocytogenes in milk as an example, 
Njage at al. (47) demonstrated how machine learning 
(ML) can be used to predict stress phenotype components 
for new unknown pathogen strains given their whole 
genome sequencing (WGS) data, which could improve risk 
assessments for foodborne pathogens. Agent-based models 
(ABMs) developed to recreate a specific food facility, have 
provided facility-specific “personalized” food safety decision 
support for the food production environments (76). A study 
by Nogales at el. (48) demonstrated the utility of neural 
models in optimizing the number of food safety inspections 
using data from the Rapid Alert System for Food and Feed 
(RASFF), which facilitates the exchange of information 
about health threats in European countries. Importantly, 
a number of peer-reviewed studies have developed and 
detailed specific tools that can be applied to CEA, including 
simulation-based and ML tools that can be used to predict 
food safety risks and facilitate improved control. For 
example, a series of papers (3, 4, 65, 76) has detailed how 
ABMs can be developed and used to facilitate improved 
control of environmentally transmitted foodborne pathogens. 
Also, a simulation model was developed to assess the 
listeriosis risk associated with a contaminated production lot 
of frozen vegetables (77) as an example of a decision-support 
tool for food safety and business management that can also 
be applied to CEA. Similarly, a number of different decision 
tree and ML-based methods have been applied to predict 
times and locations with an increased risk of pathogen 
contamination in fields and water sources (62, 63, 73, 74); 
these approaches could also be adapted to CEA, even though 
input data would obviously be very different.

One key opportunity for digital and AI tools in CEA will 
be to integrate AI-based and digital food safety prediction 
and management tools into the overall digital infrastructure 
for CEA (i.e., systems that manage temperature, lighting, 
etc.). The ultimate goals of these efforts would be to (i) 
reduce food safety risks and manage them more effectively, 
(ii) minimize food safety-associated enterprise risks (e.g., 
by developing and implementing systems that can provide 
for validated “clean breaks” between lots), and possibly to 
(iii) provide enhanced transparency of food safety efforts 
to customers and possibly regulatory agencies. While these 
efforts will require (i) robust data acquisition systems and 
(ii) custom-tailored AI and digital tools, as detailed in the 
section above, existing tools that represent a starting point 
for these efforts already exist. Ultimately, proactive food 
safety systems for CEA could benefit from the development 
of comprehensive “digital twins” (20), which would be 
individualized to each facility and be driven by real-time data 
to predict food safety risks. These digital twins could then be 
used to adjust food safety measures (e.g., testing frequencies, 
sanitation procedures, water treatment) to better control 
food safety risks and better manage situations with increased 
risk of pathogen contamination. Additionally, these models 

can also be complemented by various imaging or spectral 
based AI models to identify hot spots for organic build-up 
on diverse surfaces and Zones in CEA facilities (25). A 
connection between AI models and microbial testing results 
can further aid in enhancing the relevance of these models 
for the assessment of food safety risks. This would allow 
CEA facilities to understand how different environmental 
and structural factors interact and affect the probability of 
foodborne pathogen (e.g., Salmonella and L. monocytogenes) 
contamination in different CEA facilities, and potentially 
reduce the cost of microbial sampling. Finally, these digital 
twins could be used to concurrently manage food safety as 
well as other outcomes such as quality, productivity etc., 
which could be used to optimize trade-offs between food 
safety, productivity, and quality. An example of such a 
trade-off is related to the negative impacts of high levels of 
chlorine that may be used, at the cost of quality, for water 
treatment and management of food safety risks. Additionally, 
combining models to manage food safety as well as quality 
and productivity will make it a more attractive product for 
the industry to implement.

More targeted food safety-related applications of AI 
in CEA could address the unique food safety challenges 
posed. Primary inputs (e.g., substrate, water, seeds) present 
a pathway of contamination in CEA, so the development 
of AI approaches based on imaging and spectral analysis of 
primary inputs used in CEA could enable validation of the 
quality and authenticity of them. Furthermore, these tools 
can also enable the evaluation of these primary inputs during 
storage and handling. Developing ML/AI tools based on 
predictive relationships between the imaging or spectral 
features of these primary inputs and microbial analysis could 
provide a potential surrogate marker for assessing microbial 
contamination (52).

Water, as a critical primary input and route of wide-
spread contamination, is an important point for microbial 
monitoring (57). Microbial contamination of water can be 
addressed by developing a robust analysis of water quality 
and treatment of water. AI approaches can aid in automat-
ing the analysis of water quality, and develop predictive 
models of water quality for different seasons based on the 
geographical location and local water sources used for CEA 
operations (30, 49, 68). In addition, AI approaches could 
also be developed to improve and evaluate the efficacy of 
water treatment technologies.

CHALLENGES FOR AI TOOL APPLICATIONS TO 
FOOD SAFETY IN CEA

While there is enthusiasm for the use of digital and AI 
tools to improve food safety (e.g., the US FDA’s "Food Safety 
Initiative") (37), there are limited examples of successful 
practical applications of these tools to CEA food safety. 
Due to the relative newness of the CEA sector, a specific 
challenge faced by many firms is a lack of foundational food 
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safety plans and systems (37), which poses a major challenge 
for the application of AI for food safety. For example, many 
firms have not implemented stringent (or any) cleaning and 
sanitation breaks between growing lots and reuse substrates 
and water without treatments (22). Furthermore, more 
automated systems that utilize moving trays with pulleys 
and motors (i) are rarely cleaned/sanitized and (ii) are 
manufactured in a way that makes equipment challenging 
to effectively clean (i.e., filled with hard to reach nooks and 
crannies, impossible to reach spots, difficult to take apart and 
put together) (37). Lack of separation between growing and 
processing, and inadequate food safety knowledge commonly 
seen among startups and newer food industries also may 
represent a foundational challenge for some facilities. For 
facilities at earlier stages of their food safety maturity, it may 
not be appropriate to implement high tech data intensive AI 
strategies until appropriate foundational food safety practices 
are in place, including basic food safety training programs, 
which can be highly effective at reducing the risk of microbial 
contamination (38). Additionally, creating AI models based 
on data gathered from initial CEA production systems 
that are lacking food safety foundations may create an 
inappropriate starting point for the modelling and AI-based 
data analytics efforts, as AI models would need to be fed new 
data and potentially reprogrammed to accommodate the 
changes that occurred after implementation of foundational 
food safety practices. However, even in the early stages of 
food safety system development, CEA may benefit from 
using existing pre-trained Large Language Models (LLMs), 
such as ChatGPT or Gemini, to support basic food safety 
tasks, such as personnel training and development of SOPs. 
While these models can streamline the tasks, expert reviews 
are recommended to authenticate the generated information.

Food safety data availability and quality are important 
factors for a well-trained and validated AI tool for food safety 
hazards management. In order to acquire the mass of data 
needed, a large amount of high-quality data is required to 
ensure AI’s reliability; the only efficient pathway to this may 
often include data sharing between firms. This poses the 
challenge of data privacy hesitations. Food safety data are 
highly sensitive, due to fears of data abuse, bad publicity, 
reputation, liability, and the need to keep certain data (e.g., 
human illness data) confidential (1, 53). CEA and other 
food companies can increasingly recognize the value of 
data sharing based on successes in other industries (from 
medicine to hospitality industries), where sharing of data 
has allowed scaling of AI applications and learning through 
peer networks (53). Improved data sharing, including the use 
of shared data in AI models, has the potential to (i) provide 
food safety benchmarks for the industry and (ii) facilitate 
better business and food safety decisions. Thus, there is 
a need for research geared toward a better understanding 
of data sharing obstacles and the development of data 
infrastructure and algorithms that secure the privacy of 

users who engage in data sharing. One way of addressing 
this challenge is through Federated Learning (FL), which 
has gained attention in several domains (8, 19, 21, 31, 70). 
In a federated environment, data remains secure within the 
physical location (i.e., data station) of its owners. Instead of 
transferring data, the model moves between these locations, 
effectively updating the model parameters from the data at 
the respective data stations, abiding by privacy principles. 
For example, Gavai et al. (31) developed a Federated 
Bayesian Network (BN) model to predict food fraud, which 
demonstrated the applicability of the federated BN in food 
fraud; they anticipated that such a framework may support 
stakeholders in the food supply chain for better decision-
making regarding food safety control while still preserving 
the privacy and confidentiality nature of these data. In 
addition to the amount of data needed, the quality of data 
is also imperative. To preserve data quality, monitoring data 
needs to be consistent and standardized throughout the data 
collection period and even beyond the project time to enable 
a sustainable data source for further model improvement and 
validation. This can be challenging to apply from firm to firm 
as each company will have different data collection methods, 
data labeling, and different streams of data. This limits AI’s 
applicability to the sector. While there is a growing trend 
of high-tech precision farms, there still remains a number 
of firms that use traditional produce growing and data 
monitoring methods such as pen and paper data collection. 
Some firms simply lack monitoring of growing variables 
altogether. A unique aspect of food safety data, especially 
microbial concentration data, is that contamination, while 
serious, is often rare. Contamination with pathogens would 
be typically detected in only a few samples, and the majority 
of the samples would be non-contaminated or contaminated 
below detection limits. These unbalanced datasets need to be 
handled carefully in the modelling process to reach a desired 
prediction accuracy for the positive samples.

It is important to realize the need to develop human 
resources in parallel with the development of technologies 
for improving the food safety of CEA-grown produce. This 
emphasizes the need for cross-disciplinary training between 
domain knowledge and data science/engineering disciplines. 
Additionally, to be able to leverage the full potential of AI 
technologies in CEA food safety, these technologies will need 
to present users with interpretable and useful information 
through an effective human-machine interface. Not only 
will users need to interpret results, but they will need to 
understand the models to address concerns about false 
positives and business liability as well.

Finally, to drive appropriate adoption of AI, economic 
aspects and costs and benefits of adopting AI systems may 
need to be quantified, including to understand opportunity 
costs that may be associated with implementing AI to 
help assure food safety (as there may be other food safety 
investments that generate a greater risk reduction in return 



Food Protection Trends    November/December406

REFERENCES

for a given investment). Food safety is a unique business 
aspect because, while required, it is often seen as a cost 
center; a reduction in food safety risk rarely leads to a 
quantifiable direct increase in profits, but rather a reduction 
in potential capital lost through a food safety incidence (e.g., 
a recall). Research geared towards identifying a connection 
between reduction in food safety risk or recall risk and profits 
may help with decision making on AI implementation and 
incentivize companies to invest in shifting their food safety 
strategy towards AI and digital tools. At the same time, 
changes in the legal environment are needed to alleviate 
the barriers to adopting these technologies, for example to 
alleviate industry concerns about the potential increase in the 
liability and expense from using food safety predictions and 
knowledge generated by AI and digital tools (1).

CONCLUSIONS
While it is enticing to conclude that AI for microbial 

food safety is a wise application for CEA due to the 
industry’s reputation as being “high-tech,” there are still 
many challenges that need to be overcome prior to the 
adoption of this technology. Namely, there is an effort 
needed from academia and industry to (i) research and 
better understand the contamination sources, routes and 
microbial environment of known and unknown pathogens 
in a variety of CEA facilities, (ii) implement stronger, basic 
facility hygiene and sanitation practices and (iii) generate 
vast amounts of high quality data sources. Additionally, the 
creation of AI models needs to take into account the wide 
range of CEA facilities and data infrastructures and, through 
this, the vast amounts of private data required to be shared. 

While there are opportunities (such as the use of federated 
learning) to circumvent data privacy, the large majority of 
private firms are still reluctant to share confidential data. The 
range of CEA facilities not only makes it challenging to have 
one model fit multiple firms but it also poses the challenges 
of (i) data from different systems “being able to talk to each 
other” and (ii) application of AI models into systems with 
ranges of technological maturity. AI for microbial food safety 
in CEA is most likely utilized best towards specific food 
safety related challenges, such as validating clean breaks 
between lots, and allowing for targeted and specific microbial 
sampling plans to capture rare but serious contamination 
instances. Finally, it is important to remember that while AI 
can be seen as an attractive “fits all solution”, food safety risks 
carry numerous interdisciplinary and intricate consequences 
for both firms and consumers, and ultimate decisions 
regarding such risks should be made by humans.
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