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ABSTRACT

Salmonella is a significant threat to human health, 
causing an estimated 1.35 million illnesses each year in 
the United States. There is increasing consensus that 
regulatory strategies and industry efforts that target 
serovars of public health concern are essential to reduce 
human salmonellosis, and it is important to understand the 
data available to assess serovar distribution among food 
sources. We analyzed isolate data from 2015 to 2020 for 
21 serovars common in food animals in public data sets 
available through the Food Safety and Inspection Service 
(FSIS) and National Center for Biotechnology Information 
Pathogen Detection database (NCBI PD). Following defined 
criteria, we obtained metadata from 7,812 and 12,248 
Salmonella isolates on the NCBI and FSIS websites, 
respectively. Our analyses found significant differences in 
serovar distribution between (i) FSIS data and NCBI data 
contributed by non-FSIS sources and between (ii) different 
isolation sources for a commodity. Specifically, we found 
isolation patterns of certain serovars (e.g., Salmonella 
Infantis) coincided with reported outbreaks, and more 

serovars were overrepresented in the NCBI PD data set. 
Although our results suggest biases in Salmonella serovar 
distribution sets, we found consistent trends across 
data sets that indicate the value of public data sets for 
informing future subtype-specific Salmonella regulations 
and control efforts.

INTRODUCTION
Salmonella causes an estimated 1.35 million infections 

annually in the United States (38). The species Salmonella 
enterica includes six recognized subspecies, the most clini-
cally relevant of which, subspecies enterica, includes >1,500 
serovars (22). Although Salmonella infections typically 
cause mild illness (e.g., nausea, diarrhea, stomach cramps, 
and vomiting), some illnesses can become severe enough 
that they require hospitalization. Importantly, there is sub-
stantial evidence that not all Salmonella are equally likely to 
cause human disease, and some Salmonella subtypes (e.g., 
Salmonella Kentucky sequence type [ST]152, which is com-
mon in poultry in the United States) are well documented 
to have reduced likelihood to cause human disease (3).
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In an effort to decrease the prevalence of Salmonella, the 
U.S. government set a Healthy People 2020 objective to 
reduce the incidence of salmonellosis to 11.4 laboratory-
confirmed infections per 100,000 people (33). However, the 
United States failed to meet this goal by 2020, and, instead, 
the incidence of human illness due to Salmonella increased 
from the 2006 and 2008 baseline of 15 cases per 100,000 
people to the latest 2016 to 2018 baseline of 15.3 cases per 
100,000 people (34). With a lack of meaningful progress, the 
federal government set the new Healthy People 2030 goal to 
reduce the incidence to 11.5 per 100,000 people. Specifically 
for raw meat and poultry, targeted approaches to decrease the 
prevalence of Salmonella serovars most likely to cause human 
disease represents one proposed strategy that could help 
effectively meet the new 2030 goal.

Although the number of annual outbreaks linked to 
poultry has not decreased, there has been some progress 
in reducing the overall frequency of Salmonella-positive 
poultry product contamination in the United States (39, 
40). Although this apparent discrepancy could be due to a 
number of factors, one important possibility is that certain 
serovars cause a disproportionate number of infections and 
that the prevalence reductions achieved may have focused 
on serovars that were common but represented limited 
public health concern (e.g., Salmonella serovar Kentucky) 
(11). Hence, there is increasing consensus that treating all 
Salmonella serovars as representing an equal public health 
risk may not be successful in decreasing incidence of human 
salmonellosis infections, particularly those linked to raw 
meat and poultry. As an alternative, it has been proposed 
that risk-based U.S. Department of Agriculture Food Safety 
and Inspection Service (FSIS) regulations and standards 
should focus on targeting serovars of greatest public health 
importance (12). Defining serovars of public health concerns 
is also important, as there is some evidence that vaccination 
of live animals may be able to reduce human infection caused 
by those serovars targeted by vaccination. Circumstantial 
evidence supporting this is provided by data that indicate 
that Salmonella Typhimurium human illness and product 
contamination have decreased over the past 20 years after the 
poultry industry began vaccinating flocks against Salmonella 
Typhimurium (1, 14, 16). Although defining Salmonella 
serovars that differ in public health relevance and likelihood 
of causing human disease is clearly important for modern 
risk-based food safety systems, particularly those targeting 
Salmonella in raw meat and poultry, the scientific definition 
of serovars and subtypes that differ in virulence (including 
development of quantitative measures that can be used to 
compare the relative virulence of different subtypes) remains 
a challenge. It is, however, clear that the increasingly large 
whole genome sequencing (WGS) databases for Salmonella 
(e.g., in National Center for Biotechnology Information 
[NCBI] Pathogen Detection [PD]) provide one opportunity 
to better identify, define, and characterize virulence 

differences among Salmonella serovars and strains. Hence, we 
used two major data sources (i.e., NCBI PD and FSIS sampling 
reports) to identify the differences in counts of Salmonella 
serovars among data sources with the goals of (i) identifying 
potential biases and (ii) assessing whether these databases 
identify similar trends in Salmonella serovar prevalence by year 
and isolation source (e.g., feces versus ground chicken). Our 
results highlight how large data sets can help inform tracking of 
serovars prevalent in animal food sources.

MATERIALS AND METHODS
Selection of Salmonella serovars for inclusion in this study

We used FSI’s Salmonella serovar quarterly sampling 
report for the 2020 fiscal year to determine which Salmonella 
serovars to include in our analysis (43). For each food animal 
(i.e., cattle, chicken, turkey, swine), we tallied up the serovar 
isolate counts and chose the six serovars most common for a 
given food animal (Table 1). Because some serovars were in 
the top six for more than one food animal, the final data set 
included 19 Salmonella serovars (Adelaide, Agona, Anatum, 
Cerro, Derby, Dublin, Enteritidis, Hadar, Heidelberg, I 
4,[5],12:i:−, Infantis, Johannesburg, Kentucky, Montevideo, 
Muenchen, Muenster, Reading, Schwarzengrund, and 
Typhimurium). To ensure that the 2020 top serovars were 
not biased due to coronavirus disease 2019 disruptions, we 
repeated this process with FSIS’s Salmonella serovar quarterly 
sampling report for the 2019 fiscal year (Table 2) (41). The 
list based on the 2019 serovar report only differed from the 
list based on the 2020 serovar report by Salmonella serovars 
Cerro, Newport, and Uganda (Salmonella Cerro was the fifth 
most common serovar isolated from cattle in 2020 but was 
not in the top six serovars in 2019, Salmonella Newport was 
the sixth most common serovar isolated from cattle in 2019 
but was not in the top six serovars in 2020, and Salmonella 
Uganda was the second most common serovar isolated from 
turkey in 2019 but was not in the top six turkey serovars in 
2020). Due to a lack of major differences, we used the 2020 
FSIS data to compile a list of serovars. Salmonella Javiana was 
added to our list as a control serovar, as it is not commonly 
found in foods of animal origin and is one of the top five most 
common serovars from human clinical infections (7, 30). 
Salmonella Newport was also added to the list because it is 
a serovar of interest as one of the top five human pathogens; 
this yielded a total of 21 serovars that were analyzed. When 
reporting results, we reported observations on the top 10 
serovars for a given animal host; this is possible as our final 
data set of 21 serovars included the top 10 serovars for each 
animal host.

NCBI data processing
We downloaded metadata from NCBI’s PD database 

which, at the time (24 March 2022), included 429,048 
Salmonella enterica isolates (ncbi.nlm.nih.gov/pathogen) 
(31). We used the “filter” option to narrow our search 
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TABLE 1. Top Salmonella serovars from FSIS 2020 fiscal year

Salmonella serovar No. of isolates (rank) among

Chicken Cattle Turkey Swine Total
Kentucky 1,118a (1) 0 0 0 1,118a

Enteritidis 1,064a (2) 0 0 0 1,064a

Infantis 794a (3) 0 38a (1) 141a (3) 973a

Schwarzengrund 327a (4) 0 0 0 327a

Typhimurium 194a (5) 8 20a (6) 10 232a

I 4,[5],12:i:− 13 2 13 178a (1) 206a

Anatum 0 35a (2) 6 147a (2) 188a

Johannesburg 37 2 0 79a (6) 118a

Derby 0 4 0 112a (4) 116a

Adelaide 0 0 0 105a (5) 105a

Montevideo 9 69a (1) 0 0 78a

Ohio 0 0 0 73 73
London 0 0 0 69 69
Heidelberg 64a (6) 0 0 0 64a

Uganda 0 0 15 44 59
Hadar 30 0 28a (4) 0 58a

Thompson 53 0 0 0 53
Muenchen 5 33 (3)a 9 0 47a

Rissen 0 0 0 44 44
Reading 0 3 38a (1) 0 41a 
Agona 0 2 21a (5) 14 37a

Braenderup 30 0 0 0 30
Schwarzengrund 0 0 30a (3) 0 30a

Dublin 0 26 (4)a 0 0 26a

Cerro 0 23 (5)a 0 0 23a

Muenster 0 19 (6)a 0 0 19a

Senftenberg 0 0 19 0 19
Rough_O:r:1,5 18 0 0 0 18
Meleagridis 0 18 0 0 18
Newport 0 8 8 0 16
Worthington 0 0 0 11 11
Brandenburg 0 7 0 0 7
Mbandaka 0 5 0 0 5
Albany 0 0 4 0 4
Chailey 0 2 0 0 2
Give 0 2 0 0 2
IIIa [1],13,23:g,z51:− 0 0 2 0 2

5,302
aTo limit bias, the top six serovars for each animal source were selected. Duplicate serovars were removed. In each column, a indicate 
serovars that fell in the top six for that animal. In the total column, a indicates the final serovars selected.
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TABLE 2. Top Salmonella serovars from FSIS 2019 fiscal year

Salmonella serovar Chicken Cattle Turkey Swine Total

Kentucky 715a (1) 14 0 0 729a 
Infantis 592a (2) 10 26a (4) 69a (2) 697a 
Enteritidis 442a (3) 0 0 0 442a

Schwarzengrund 164a (4) 0 21a (5) 0 185a 
Typhimurium 145a (5) 13 18 5 181a 
Anatum 0 30a (2) 15 84a (1) 129a 
Reading 0 0 118a (1) 7 125a 
I 4,[5],12:i:− 35 0 2 47a (4) 84a 
Montevideo 6 60a (1) 7 0 73a 
Johannesburg 6 0 0 48a (3) 54a 
Derby 0 4 0 45a (5) 49a

Muenchen 0 17a (4) 16 14 47a

Uganda 0 3 32a (2) 11 46a

Adelaide 0 0 0 40a (6) 40a

Agona 0 4 29a (3) 7 40a

Heidelberg 38a (6) 0 0 0 38a

Braenderup 31 0 0 0 31
Thompson 30 0 0 0 30
London 0 0 2 26 28
Cerro 0 15 0 6 21
Senftenberg 0 2 15 4 21
Dublin 0 19a (3) 0 0 19a

Hadar 0 0 19a (6) 0 19a 
Muenster 0 17a (4) 2 0 19a 
Ohio 0 0 0 17 17
Newport 0 16a (6) 0 0 16a

Rough_O:r:1,5 16 0 0 0 16
Mbandaka 0 11 0 0 11
Worthington 0 0 0 11 11
Litchfield 7 0 0 0 7
Meleagridis 0 7 0 0 7
Berta 0 0 2 4 6
Albany 0 0 5 0 5
4,[5],12:d:− 4 0 0 0 4
Eko 0 0 0 4 4
Give 0 4 0 0 4
6,7:g,m,s:e,n,z15 0 2 0 0 2
Blockley 0 2 0 0 2

3,259
aTo limit bias, the top six serovars for each animal source were selected. Duplicate serovars were removed. In each column, a 
indicates serovars that fell in the top six for that animal. In the total column, a indicates the final serovars selected.
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results by location to only include isolates with “location” 
reported as “USA”. Serovars were chosen based on the 
“computed type” category, which reports serovars predicted 
with SeqSero2 on the basis of the WGS data for a given 
isolate (45). Finally, we filtered data by isolation source (e.g., 
“animal–cattle–dairy cow,” “animal–chicken–young chicken,” 
“bovine feces”). To select isolates from each of the four food 
animal sources included here (i.e., chicken, turkey, cattle, 
pigs), we used multiple search terms to ensure we had broad 
coverage (e.g., Gallus gallus, chicken, egg, hen for chicken) 
(Table S1). After filtering, we exported the isolate metadata 
(organism group, Run #, strain, collection date, location, 
isolation source, isolation type, SNP cluster, computed 
type, serovars). After downloading metadata for the 21 
serovars for each food animal, isolates that were collected 
before 2015 or after 2020 were removed. We removed these 
isolates because WGS became more widely implemented 
in surveillance systems in 2015 (5). We also removed FSIS 
isolates by removing isolates that had the code FSIS within 
the strain name to prevent redundancy, as FSIS submits data 
to NCBI as well. NCBI isolates from feed were removed 
because they are not associated with final food products, and 
FSIS does not collect isolates from these sources. Because 
NCBI isolation sources are entered by individuals and are not 
uniform, we standardized the data by recoding the isolation 
sources (Table S2). Terms that were similar, such as “beef 
feces,” “cattle feces,” and “Bos taurus feces,” were all recoded 
(in this case to “cattle feces”) to have a common name. 
Isolation sources that were vague, such as “cattle” or “dairy 
cow,” were recoded (e.g., as “unspecified, cattle”).

FSIS data processing
FSIS’s laboratory sampling data from 2015 to 2020 were 

downloaded for cattle, chicken, and turkey (44). Laboratory 
sampling data for swine were limited and only available starting 
in 2019; thus, swine data were not included in this study.

Statistical analyses
Statistical analyses were performed in R Studio (36). 

We performed Fisher exact tests to determine over- and 
underrepresentation of serovars between NCBI and 
FSIS data sources using isolate count data from (i) FSIS’s 
laboratory data and (ii) NCBI’s PD data with FSIS 
submissions removed; this analysis was performed for cattle, 
chicken, and turkey. An odds ratio (OR) > 2 and P < 0.05 
indicated overrepresentation in the NCBI database, while an 
OR < 0.5 and P < 0.05 indicated overrepresentation in the 
FSIS data set. Overrepresentation indicates that statistically, 
a serovar is more likely to be found in one database over the 
other (e.g., if an isolate is overrepresented in the NCBI data 
set, it is more likely to find that serovar in the NCBI data set 
than it would be to find it in the FSIS data set). In addition, 
separate chi-square tests were performed on isolation source 
data from FSIS’s laboratory data (for cattle, chicken, and 

turkey) and NCBI’s PD data (for cattle, chicken, swine, and 
turkey); this was followed by post hoc hypothesis testing 
with adjusted Pearson residuals if the chi-square test yielded 
a significant P-value (P < 0.05). For these analyses, samples 
where the isolation source was listed as a specific organ (e.g., 
heart, kidney, lymph node) were combined into a single 
isolation source category named “organs and tissues” (Table 
S2). For NCBI data, isolation sources that were combined 
to create the category organs and tissues varied vastly; we 
thus also separated these data into each individual organ 
category and performed a chi-square test, followed by post 
hoc hypothesis testing with adjusted Pearson residuals, if the 
chi-square test yielded significant results. Analysis of swine 
isolation source data were only performed on the NCBI 
data because the collection time frame for FSIS’s swine data 
(2016 to 2020) was different from the data for the other 
animal sources.

RESULTS
Serovar distribution for cattle isolates

The top 10 Salmonella serovars found in cattle between 
2015 and 2020 were Anatum, Cerro, Dublin, Infantis, 
Kentucky, Montevideo, Muenster, Typhimurium, Newport, 
and Muenchen (Fig. 1A and Table S3). In the FSIS data set, 
the numbers of isolates representing Salmonella serovars 
Cerro, Muenchen, and Newport all increased in 2016 
(increases of 26, 24, and 50% over 2015, respectively) and 
then decreased from 2017 to 2018 (decreases of 88, 76, and 
100%). Similarly, the number of Salmonella Dublin isolates 
decreased by 94% from 2017 to 2018. Though numbers of 
Salmonella Montevideo isolates sharply dropped in 2018 
(a 57% reduction of total isolates relative to 2017) and 
remained lower afterward, Salmonella Montevideo remained 
the most prevalent serovar among the FSIS cattle isolates 
throughout the study period, including from 2018 to 2020.

In the NCBI data set, there was a noticeable increase in 
numbers of isolates representing serovars Anatum (900%), 
Montevideo (374%), and Cerro (200%) between 2015 
and 2016 (Fig. 1B and Table S4). Numbers of isolates 
representing serovars Anatum and Montevideo showed 
patterns that mimicked each other in that both spiked in 
2016 as described above, and then decreased between 2016 
and 2018 and increased in subsequent years. Interestingly, 
the number of Salmonella Cerro isolates on NCBI decreased 
by 91% from 2016 to 2020. Numbers of Salmonella Dublin 
isolates decreased by 48% in 2017 compared with 2016, 
but were consistently high from 2017 to 2019 as Dublin 
increased by 87% from 2017 to 2018 and then only saw 
a 1% decrease from 2018 to 2019. However, numbers of 
Salmonella Dublin isolates did decrease by 55% in 2020.

A comparison of serovar distributions among cattle 
isolates in the NCBI and FSIS database found that three 
and seven serovars are overrepresented in the NCBI and 
FSIS data, respectively, with (i) Salmonella serovars Dublin, 
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Figure 1. Top 10 cattle Salmonella serovars from 2015 to 2020. Line plots of Salmonella serovar  
trends over 6 years in cattle based on isolate counts from A, FSIS data and B, NCBI PD.
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Cerro, and Heidelberg overrepresented in NCBI cattle data 
and (ii) Salmonella serovars Derby, Infantis, Johannesburg, 
Montevideo, Muenchen, Muenster, and Reading 
overrepresented in FSIS cattle data. Salmonella Heidelberg 
(OR = 10.5) was the serovar most highly overrepresented 
among the NCBI data, while Salmonella Johannesburg (OR 
= 0.0752) was the most highly overrepresented among the 
FSIS data (Table 3).

A chi-square test was performed to better understand 
over- and underrepresentation of serovars in relation to 
isolation sources (e.g., feces, ground beef), followed by post 
hoc hypothesis testing with adjusted Pearson residuals for 
the chi-square tests that yielded a significant P-value (Table 
S5). An overall chi-square test on the NCBI cattle data set 
was significant (P < 2e-16), indicating that serovars were 
not randomly distributed among isolation sources. More 
specifically, Salmonella Muenchen was highly overrepresented 
in ground beef (ri = 10.85) (Fig. 4A). Salmonella Cerro was 
highly overrepresented in cattle feces (ri = 13.42) and hide (ri 
= 9.49) but underrepresented in cattle organs and tissues (ri 
= −6.12) and boneless beef (ri = −6.76). Salmonella Dublin 
was overrepresented in cattle organs and tissues (ri = 14.72) 
and boneless beef (ri = 7.01), while underrepresented in cattle 

feces (ri = −15.07) and ground beef (ri = −7.00). Salmonella 
Infantis was highly overrepresented in ground beef (ri = 
9.16). Salmonella Typhimurium was overrepresented among 
unspecified cattle isolates (ri = 6.00).

The associations between cattle serovars and certain 
organs and tissue isolates on the basis of data from NCBI 
are presented in Fig. S1. Our analyses found that Salmonella 
Anatum was most highly overrepresented in cattle lymph 
nodes (ri =11.26) and most highly underrepresented in 
cattle lungs (ri = −4.66). Salmonella Derby was found to be 
overrepresented in stomach samples (ri = 11.95). Salmonella 
Dublin was overrepresented among cattle lung (ri = 13.20) 
and liver samples (ri = 6. 02), while it was underrepresented 
among cattle intestines and lymph nodes (ri = −9.33 and 
−7.55, respectively). Similarly, Salmonella Heidelberg was 
overrepresented among cattle liver samples (ri = 6.27).

Serovar distribution in chicken
In chicken, the top 10 Salmonella serovars were Enteritidis, 

Hadar, Heidelberg, Infantis, Kentucky, Montevideo, Schwarz-
engrund, Typhimurium, Johannesburg, and I 4,[5],12:i:− 
(Fig. 2A and Table S3). Over the inclusion period (2015 to 
2020), Salmonella Kentucky consistently was the most fre-
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quently identified serovar among both NCBI and FSIS data. 
In the FSIS data set, numbers of Salmonella Enteritidis and 
Salmonella Kentucky isolates followed similar patterns until 
2020. Both isolate numbers of serovars increased between 
2015 and 2016 (a 1-year increase of 86 and 61%, respective-
ly), increased further in 2017 (a 1-year increase of 11 and 
4%, respectively), and decreased in 2018 (a decrease of 8 and 
14%, respectively) and 2019 (a decrease of 6 and 5%, respec-
tively). From 2019 to 2020, numbers of Salmonella Kentucky 
isolates in the FSIS data increased by 11%, while numbers 
of Salmonella Enteritidis isolates decreased by 11%. Notably, 
numbers of Salmonella Infantis isolates steadily increased by 
826% from 2015 to 2020, and Salmonella Infantis became the 
second most frequently isolated serovar in chicken in 2020.

In the NCBI data set, numbers of isolates of Salmonella 
serovars Infantis, Typhimurium, and Kentucky followed 

similar patterns in that all three increased between 2016 and 
2017 (400, 170, and 76% respectively), increased between 
2018 and 2019 (449, 128, and 343%, respectively), and then 
decreased from 2019 to 2020 (−82, −78, and −85%, respec-
tively) (Fig. 2B and Table S4). Salmonella Infantis was the 
least frequently identified serovar among the top 10 serovars 
in 2015 but became the second most frequently identified 
serovar in 2020, as also observed in the FSIS data discussed 
in the previous paragraph. Numbers of Salmonella Enteritidis 
isolates remained similar between 2015 and 2018 but in-
creased by 88% between 2018 and 2019. Notably, for nearly 
all serovars, the total numbers of isolates decreased in 2020 
and fell to between 0 and 100 isolates in 2020 (most likely a 
consequence of the coronavirus disease 2019 pandemic).

A comparison of counts of chicken serovars between NCBI 
and FSIS data sets found that seven and two serovars were 

TABLE 3. Overrepresentation of specific serovars among cattle, chicken, and turkey in 
NCBI versus FSIS databasesa 

Cattle Chicken Turkey

Salmonella serovar OR P-value OR P-value OR P-value

Adelaide 0.33 0.207 Inf 0.277 — —
Agona 0.776 0.192 2.84 8.54E-03 0.503 6.34E-05
Anatum 0.841 0.0921 1.96 0.0381 0.676 0.0622
Cerro 2.43 1.30E-11 3.74 6.84E-03 0 0.327
Derby 0.228 7.81E-04 Inf 5.57E-40 7.84 0.0108
Dublin 3.63 6.40E-31 Inf 0.0765 Inf 0.673
Enteritidis 1.49 0.399 0.605 1.13E-25 0.693 0.306
Hadar 0.495 0.404 3.12 2.33E-06 0.102 0.447
Heidelberg 10.5 1.96E-08 1.71 2.63E-09 2.15 2.93E-04
I 4,[5],12:i:− 1.09 0.410 1.04 0.451 1.18 0.177
Infantis 0.5 2.70E-03 0.852 5.77E-04 0.579 4.49E-04
Javiana Inf 0.447 Inf 0.0212 0.729 0.527
Johannesburg 0.0752 2.78E-05 0.348 4.75E-05 0 0.327
Kentucky 0.624 0.0253 0.886 1.37E-03 3.21 2.55E-03
Montevideo 0.432 6.12E-17 1.16 0.289 1.24 0.280
Muenchen 0.337 1.46E-11 47.2 6.55E-123 2.30 3.02E-09
Muenster 0.453 8.01E-05 4.80 1.57E-03 0 1.29E-04
Newport 1.07 0.41 11.0 2.45E-19 0.797 0.307
Reading 0.358 0.0226 19.3 4.66E-10 0.795 5.11E-03
Schwarzengrund 0.628 0.171 0.272 1.43E-41 0.833 0.120
Typhimurium 1.27 0.0574 1.67 4.21E-19 1.32 0.0414
aOn the basis of the results of the Fisher exact test, if P < 0.05. An OR > 2 indicated overrepresentation in the NCBI database, while an 
OR < 0.5 indicated overrepresentation in the FSIS data set for that serovar and animal source. If P > 0.05, the result was recorded as “—.” 
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Figure 2. Top 10 chicken Salmonella serovars from 2015 to 2020. Line plots of Salmonella serovar  
trends over 6 years in chicken on the basis of isolate counts from A, FSIS data and B, NCBI PD. 
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overrepresented in the NCBI and FSIS data sets, respectively, 
with (i) Salmonella serovars Agona, Hadar, Newport, Cerro, 
Muenchen, Muenster, and Reading overrepresented in NCBI 
chicken data set and (ii) Salmonella serovars Johannesburg 
and Schwarzengrund overrepresented in the FSIS chicken 
data set compared with the NCBI chicken data. Salmonella 
Muenchen (OR = 47.2) was the serovar most highly 
overrepresented among the NCBI data, while Salmonella 
Schwarzengrund (OR = 0.272) was the most highly 
overrepresented among the FSIS data (Table 3).

Chi-square results showed that serovar numbers differed 
significantly among isolation sources in both the NCBI (P 
< 2e-16) and FSIS (P < 2e-16) chicken data sets. In NCBI 
chicken data, Salmonella Heidelberg was overrepresented in 
chicken feces (ri = 10.19) (Fig. 4C). Salmonella Muenchen 
was highly overrepresented in ground chicken (ri = 36.43), 
with Salmonella Heidelberg and Salmonella Derby also 
overrepresented in ground chicken (ri = 16.64 and 12.28, 
respectively). Conversely, Salmonella serovars Enteritidis 
(ri = −8.66), Infantis (ri = −9.78), Kentucky (ri = −14.60), 
and Typhimurium (ri = −8.22) were underrepresented in 

ground chicken. Salmonella Muenchen was underrepresented 
in chicken breast (ri = −9.51). On the other hand, in FSIS 
chicken data, Salmonella Enteritidis was overrepresented 
in raw intact chicken (ri = 8.0) and underrepresented in 
young chicken (ri = −11.91) (Fig. 5). In ground chicken, 
Salmonella Infantis was highly overrepresented (ri = 19.17), 
while Salmonella Kentucky was highly underrepresented 
(ri = −14.77). However, Salmonella Kentucky was highly 
overrepresented in young chicken (ri = 20.99). Salmonella 
Schwarzengrund was overrepresented in raw intact chicken 
(ri = 7.86) and underrepresented in ground and young 
chicken (ri = −4.72 and −4.41, respectively). Salmonella 
Infantis was underrepresented in raw intact chicken and 
young chicken (ri = −10.28 and −8.61, respectively). 
To a lesser degree, Salmonella Johannesburg was also 
underrepresented in young chicken (ri = −4.62).

Serovar distribution in turkey
In turkey, the top 10 Salmonella serovars were Agona, 

Hadar, Heidelberg, Infantis, Muenchen, Anatum, Schwarz-
engrund, Typhimurium, Reading, and I 4,[5],12:i:− (Fig. 
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Figure 3. Top 10 turkey Salmonella serovars from 2015 to 2020. Line plots of Salmonella serovar  
trends over 6 years in turkey on the basis of isolate counts from A, FSIS data and B, NCBI PD. 

3A and Table S3). In the FSIS data set, from 2015 to 2019, 
numbers of Salmonella Reading isolates were higher than 
all other serovars. From 2017 to 2018, there was a 247% 
increase in numbers of Salmonella Reading isolates. However, 
numbers of Salmonella Reading isolates decreased slightly by 
10% from 2018 to 2019 and then further decreased by 77% 
between 2019 and 2020. Salmonella Schwarzengrund started 
off with low numbers of isolates at the beginning of the ob-
servation period, but numbers of isolates steadily increased, 
and Schwarzengrund became the most common serovar in 
turkey in 2020. In fact, between 2015 and 2020, Salmonella 
Schwarzengrund isolate numbers increased by 750%.

In the NCBI data set, Salmonella Reading isolate numbers 
were consistently high throughout the years, though there was 
an increase of 99% from 2017 to 2018 and an increase of 42% 
between 2018 and 2019, followed by a notable decrease of 
92% in 2020 (Fig. 3B and Table S4). This drop in 2020 was ob-
served in all turkey serovars. Salmonella Hadar isolate numbers 
increased by 214% between 2017 and 2018 and by 69% be-
tween 2018 and 2019. Salmonella Muenchen isolate numbers 
increased by 467% between 2015 and 2016 but decreased and 
remained in the low 0 to 25 isolate range in the following years.

A comparison of counts of turkey serovars between 
NCBI and FSIS data sets found that four and one serovars 
were overrepresented in the NCBI and FSIS data sets, with 
(i) Salmonella serovars Derby, Kentucky, Muenchen, and 
Heidelberg overrepresented in the NCBI data set and (ii) 
Salmonella Muenster overrepresented in the FSIS data set. 
Salmonella Derby (OR = 7.8) was the most significantly 
overrepresented NCBI turkey serovar when compared with 
FSIS turkey data set (Table 3).

Chi-square results were only significant (P < 0.05) for 
the NCBI data set (P < 2.2e-16). In NCBI turkey data, 
Salmonella Kentucky was highly overrepresented in the 
turkey farm environment (ri = 17.73) and underrepresented 
in ground turkey (ri = −8.51) (Fig. 4B). In addition, 
(i) Salmonella Heidelberg was highly overrepresented 
in turkey feces (ri = 12.68); (ii) Salmonella Agona was 
overrepresented in turkey carcasses (ri = 10.37); (iii) 
Salmonella Montevideo was overrepresented in young 
turkey isolates (ri = 9.32); (iv) Salmonella Anatum was 
overrepresented in the turkey farm environment (ri = 9.02); 
and (v) Salmonella Javiana was overrepresented in turkey 
carcasses (ri = 7.50).
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Serovar distribution in swine
Due to recently implemented FSIS performance standards 

in swine, the collection dates for the FSIS swine data differed 
from the collection dates for FSIS cattle, chicken, and turkey 
data. We thus only analyzed the NCBI swine data set for 

temporal trends and overrepresentation of isolation sources. 
The top 10 swine-associated Salmonella serovars analyzed 
here included Adelaide, Agona, Anatum, Derby, Heidelberg, 
I 4,[5],12:i:−, Infantis, Johannesburg, Newport, and 
Typhimurium (Fig. S2 and Table S4). During the inclusion 
period, Salmonella I 4,[5],12:i:− was the most frequently 
isolated serovar from swine, except in 2016, when numbers 
of Salmonella Typhimurium isolates were higher. There was a 
62 and 72% decrease in numbers of Salmonella Typhimurium 
isolates and Salmonella I 4,[5],12:i:− isolates, respectively, 
between 2015 and 2016. Also, the numbers of Salmonella 
Infantis isolates increased by 680% between 2018 and 2019 
and decreased by 457% between 2019 and 2020.

The overall chi-square test for isolation sources was 
significant for the NCBI swine (P < 2e-16) data set (Table 
S5), indicating differences in serotype distribution among 
sources. Our analysis specifically found that Salmonella 
Cerro was highly overrepresented in pet food containing 
pork (ri = 9.31) (Fig. 4D). To a lesser extent, Salmonella 
Schwarzengrund was also overrepresented in pet food 
containing pork (ri = 5.15). Salmonella Agona was highly 
overrepresented in boneless pork butt (ri = 7.59). In pork 
chops, Salmonella Johannesburg was overrepresented (ri = 
6.99), while Salmonella I 4,[5],12:i:− was underrepresented 
(ri = −4.31).

The associations between swine serovars and specific 
organs and tissue isolates on the basis of the NCBI swine 
data set are presented in Fig. S3. We found that Salmonella 
Enteritidis was highly overrepresented in swine spleens (ri 
= 8.85) and peritoneum (ri = 8.85). Salmonella Infantis was 
slightly underrepresented in swine intestines (ri = −4.13). 
Salmonella Newport was also overrepresented in swine nasal 
samples (ri = 5.47) and swine skin (ri = 5.47). In addition, 
Salmonella Anatum was overrepresented in swine lymph 
nodes (ri = 5.06).

DISCUSSION
Current regulations on Salmonella in raw chicken, 

beef, turkey, and pork products in the United States use 
performance standards to categorize establishments 
on the basis of the percentage of raw products positive 
for Salmonella over a rolling window (42). This current 
approach, de facto, implies that all nontyphoidal Salmonella 
serovars are equally likely to cause human disease, even 
though there are known differences among serovars in the 
likelihoods to cause invasive disease (23) and the ability to 
cause disease in various hosts (21, 26, 32). Although there is 
increasing consensus that risk-based approaches that target 
serovars of concern are more likely to have a positive impact 
on public health than the current approaches used in the 
United States, ready access to data on Salmonella serovar 
distributions and temporal trends in food animals (e.g., 
chicken, cattle) and raw meat and poultry is important to 
facilitate control strategies that target specific serovars. To 
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better understand available data sources, including potential 
biases associated with them, we analyzed serovar distribution 
among data available through FSIS and NCBI. Although our 
analyses identified differences in the serovar representation 
among NCBI and FSIS data, suggesting some potential biases 
in these databases, overall trends are consistent with previous 
data on Salmonella epidemiology, biology, and pathogenesis. 
It thus appears that despite possible limitations of both FSIS 
and NCBI databases, analysis of these data sources can help 
inform risk-based policy options and intervention strategies.

Temporal serovar distribution patterns and 
overrepresentation data show differences in serovars 
representation between NCBI and FSIS databases with 
differences potentially driven by outbreaks, providing 
initial evidence for possible biases in these databases

Our analyses of temporal patterns of serovars found 
among different food animals, often were consistent with 
well-described patterns. For example, among chicken 
isolates in NCBI and FSIS, Salmonella Kentucky was the 
most frequently identified serovar, consistent with the 
well-documented role of Kentucky as predominant serovar 
in chicken in the United States (8). Observed increases in 
the prevalence for some serovars were likely due to well-
documented Salmonella outbreaks. For instance, the spike of 
Salmonella Reading turkey isolates in 2018 in the FSIS data 
set and in 2019 in the NCBI data set likely can be attributed 
to a large outbreak of multidrug-resistant Salmonella Reading 
infections that were linked to various raw turkey products 
(9). Similarly, the spike of Salmonella Infantis chicken isolates 
in the NCBI data set in 2019 is likely due to an outbreak of 
multidrug-resistant Salmonella Infantis infections, which was 
linked to raw chicken products from numerous sources and 
lasted from 2018 to 2019 (10). In addition, the high numbers 
of Salmonella I 4,[5],12:i:− observed in 2015, followed 
by a sharp decrease in 2016, may be partially explained by 
a multistate outbreak of Salmonella I 4,[5],12:i:− linked 
to pork products (6). However, the increased numbers 
of Salmonella Infantis isolates in chickens and Salmonella 
Reading numbers in turkeys may also, more broadly, reflect 
an emergence of these serovars among chicken and turkey 
populations (28, 29). The steadily increasing levels of 
Salmonella Infantis in the FSIS chicken data set from 2016 to 
2020 also are consistent with emergence of a specific strain 
representing this serovar in chicken. Although the numbers 
of all other serovars in the same data set remained relatively 
constant and showed little change on an annual basis over the 
6-year period between 2015 and 2020, Salmonella Infantis 
was the only serovar that steadily increased in frequency in 
the FSIS data set, as well as the NCBI data set. This illustrates 
how these databases can help identify serovar prevalence 
trends that may indicate potential public health concern, 
particularly if the serovars or subtypes that show an increase 
have already been characterized as highly virulent and 

multidrug resistant, as is the case for Salmonella Infantis (24). 
In addition, an increase in prevalence of a given serovar or 
subtype may also indicate emergence or introduction of a 
new more virulent or more transmissible subtype, even if no 
prior data are available for this subtype.

Although our analysis of temporal trends identified 
instances in which NCBI and FSIS data showed similar 
trends (e.g., an increase in Salmonella Infantis), we also 
identified instances in which serovar prevalence trends were 
not consistent between these two databases. For example, 
while Salmonella Montevideo was consistently the most 
frequently identified serovar among cattle isolates in the 
FSIS database, serovar Salmonella Dublin was typically the 
most frequently identified serovar among cattle in NCBI 
(and was always more frequently identified than Salmonella 
Montevideo). As these observations are consistent with the 
fact that the data sources and acquisition approaches for the 
FSIS and NCBI databases differ, we performed statistical 
analyses comparing the serovar distribution, within a given 
category (e.g., chicken). These analyses showed that serovars 
were more frequently overrepresented in the NCBI data 
than the FSIS data. This could be explained by the NCBI 
data depositions being affected by specific scientific studies 
or general research interests (e.g., in host-specific serovars, 
such as Salmonella Dublin or Cerro). Overall, the results 
reveal overrepresentation of different serovars in both the 
NCBI and FSIS data sets, possibly caused by different biases 
associated with data collection. Being aware of these caveats 
will be important, as these data sources are being used in 
research as well as development of risk assessments and 
possibly regulatory policies.

Overrepresentation data among different host isolation 
sources are consistent with previous data on Salmonella 
serovar biology and pathogenesis

Interestingly, our analyses found that certain serovars 
were overrepresented in specific isolation sources, with a 
number of instances where findings of overrepresentation 
were consistent with previous data and studies. In cattle, 
the overrepresentation of specific serovars in NCBI was 
consistent with established findings on the biology and 
pathogenesis of different serovars. For instance, Salmonella 
Dublin was overrepresented among cattle lung isolates, 
consistent with reports that this serovar frequently tends to 
cause pneumonia in calves (35). Similarly, Salmonella Cerro 
was found to be overrepresented among cattle feces and hides 
but underrepresented in organs and beef, consistent with 
previous research, where WGS was not used for serotyping, 
which also found that Salmonella Cerro was more frequently 
isolated from cattle feces than other cattle parts (27). These 
findings are also consistent with numerous studies that 
found genetic and phenotypic evidence that suggests that 
Salmonella Cerro shows reduced virulence and invasiveness 
(13, 25, 37). Similarly, the observed overrepresentation 
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of Salmonella Anatum in cattle lymph nodes is consistent 
with other studies that have reported common isolation of 
Salmonella Anatum from the cattle lymphatic system (2, 4, 
15, 18).

Interestingly, the overrepresentation data among the 
FSIS chicken isolates by source (i.e., ground, raw intact, 
and young chicken) also provided initial insights that (i) 
are consistent with previous data and (ii) may provide 
important insight for future efforts to control targeted 
serovars in chickens (17, 19). Most strikingly, Salmonella 
Kentucky was overrepresented among young chicken and 
underrepresented among ground chicken, which not only 
could be seen as consistent with the reported virulence 
attenuation of the predominant Salmonella Kentucky ST in 
the United States (i.e., ST152) (20) but also could suggest 
that existing interventions or practices may effectively 
control transmission of this serovar from live birds to ground 
chicken. On the other hand, Salmonella Infantis was found 
to be highly overrepresented among ground chicken and 
turkey and underrepresented in raw intact chicken, which 
could indicate efficient transmission, with limited reduction, 
from young chicken to ground chicken, which could indicate 
Salmonella Infantis presence in deeper tissue.

We also find certain overrepresentation patterns that are 
possibly related to biases in data collection. For example, 
most serovars that showed evidence for overrepresentation in 
a given turkey isolation source in NCBI represented serovars 
that are historically less frequently isolated from turkey 
(8). For example, Salmonella Montevideo was significantly 
overrepresented in young turkey compared with other 
serovars, despite its low isolation from turkey sources overall. 
The overrepresentation of these less common turkey serovars 
from these isolation sources in the NCBI data set may be an 
artifact associated with many academic groups submitting 
data to NCBI; these data may be a result of a specific study or 
studies focused on one or more selected serovars.

Despite limitations of FSIS and NCBI databases, 
analysis of them informs risk-based policy options and 
intervention strategies

As detailed previously, possible limitations of the NCBI 
and FSIS data sets include potential biases with biases 
likely more frequent in the NCBI data set. For example, the 
fact that many data in our NCBI data set analyzed (which 
excluded FSIS submissions) are from academic sources may 
lead to bias and associated over- or underrepresentation 
of specific serovars, as certain serovars may be of higher or 
lower interest to academia. For instance, Salmonella Infantis 
has recently become of high interest among researchers, 
which has resulted in numerous studies analyzing the 
serovar. More broadly, academics might have had an 
incentive to isolate certain serovars over others, depending 
on research funding and grants, which may, for example, 
lead to overrepresentation of antibiotic-resistant Salmonella, 

representing a specific research priority. Second, the NCBI 
data set may be biased and contain a moderate degree of 
variability compared with the FSIS data set because samples 
are collected by various researchers who use different 
isolation, enrichment, and testing methodologies.

Although the FSIS data set indicates serovars identified 
from positive samples during routine sampling and isolated 
through standardized methodologies, there still exists a 
potential for differences among samples because multiple 
people are both sampling and handling products. Also, 
these sampling and isolation techniques may select for 
certain serovars and bias identification toward those. 
Finally, the Salmonella serotyping protocol used by FSIS 
does not identify the presence of more than one serovar 
per sample. This means that the true Salmonella serovar 
diversity in collected samples is not captured and that only 
the most prevalent serovar (or the serovar that grows best in 
enrichment media) is identified. It is, however, also likely that 
in many academic studies only a single isolate per sample is 
advanced to WGS. A specific limitation of our study relates 
to the time frame covered by our data sets, which included 
part of the severe acute respiratory syndrome coronavirus 2 
(coronavirus disease 2019) pandemic. This may be why we 
observed notable decreases in Salmonella-positive isolates 
from the NCBI data set in 2020. It is likely that many 
academic researchers were unable to collect samples this year. 
The FSIS data set was likely not affected or at less affected 
because FSIS continued to collect samples in 2020. Finally, 
we found that swine-associated Salmonella data available 
from FSIS are more limited than data available for beef, 
chicken, and turkey.

Despite the limitations detailed in the prior paragraph, 
our data support that the FSIS and NCBI databases, 
particularly if used in combination, can be useful to support 
the implementation of more risk-based control strategies 
for Salmonella in raw meat and poultry. These databases are 
particularly important as the U.S. Department of Agriculture 
FSIS may transition into focusing on control of Salmonella 
with the largest public health significance, with a reduced 
focus on serovars with limited public health impact, even if 
they are found in high frequency in certain animal sources, 
such as Salmonella Kentucky in chicken. Although NCBI 
and FSIS databases can allow for timely tracking of changes 
in serovar prevalences and changes in associations of 
serovars with different sources, it is important to consider 
the various biases of FSIS and NCBI data and to also use 
other foodborne pathogen data sets (e.g., poultry or meat 
industry data), where possible, to minimize confounding 
variables and provide a more comprehensive understanding. 
Future regulatory approaches that will focus on Salmonella 
serovars of public health relevance, as well as risk assessments 
supporting these approaches, however, will also need 
to consider other factors that affect risk and that cannot 
(yet) be easily accessed through these databases, such as 
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differences in dose-response relationships between subtypes 
and differences in human illness severity associated with 
different subtypes. In addition, note that many Salmonella 
serovars are polyphyletic, meaning they can represent two 
or more genetically distinct groups that can differ in ability 
to cause human diseases. This has been well documented 
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that is predominant in the United States and linked to a 

reduced ability to cause human disease, while STs found 
in other regions (e.g., Europe, Africa) mostly represent a 
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and FSIS Salmonella WGS data, with resolution beyond the 
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SUPPLEMENTAL TABLES AND FIGURES

Supplemental TABLE 2. Isolation source standardization methodology

Animal source Term Action

Chicken Ground Combined: finished ground chicken, ground component chicken

Chicken Unspecified Combined: finished product chicken, finished chicken, retail chicken, chicken meat, 
chicken rinse

Chicken Manure Deleted

Chicken Organs and tissues

Combined: liver, tissue pool, organ pool, chicken cecal, chicken cecal tonsils, chicken 
dirty pool tissue, chicken femur, chicken heart, chicken hock, chicken intestine, chicken 
joint, chicken spine, chicken spleen, chicken stifle, chicken pericardium, lung, chicken 
cecum, mixed parts, chicken organs, chicken trachea, chicken cloaca, chicken vertebrae, 
chicken abdomen, chicken bone

Chicken Low ash chicken meal Deleted
Chicken Egg Combined: chicken yolk, chicken yolk sac
Chicken Chicken pet food Combined: raw chicken dog food

Chicken Ready-to-eat chicken
Combined: cooked chicken, chicken salad, chicken dish, chicken product breaded 
nugget, chicken product broccoli and cheese, chicken product broccoli and cheese 
stuffed 

Chicken Farm environment Combined: egg environment, chicken litter, chicken paper, chicken house environment
Chicken Chicken meal Deleted
Chicken Chicken feed Deleted
Chicken Boneless chicken Combined: boneless chicken, chicken product boneless meat
Chicken Carcass Combined: carcass, raw intact chicken, intact chicken, whole chicken
Turkey Ground Combined: ground, ground component, finished ground turkey 
Turkey Unspecified Combined: unspecified, finished turkey
Turkey Pet food Combined: pet food, turkey raw dog food
Turkey Manure Deleted
Turkey Farm environment Combined: environment, hatchery debris

Turkey Organs and tissues
Combined: intestine, lung, turkey liver and yolk sac, trachea, nasal swab, liver, turkey 
bone, caecum, turkey air sac, turkey necks, turkey yolk sac, turkey cloacal, turkey 
abdomen

Turkey Turkey patties Combined: ground turkey patties, turkey patties
Cattle Ground Combined: ground, raw ground beef, finished ground beef, ground beef meat

Cattle Unspecified Combined: unspecified, finished beef, raw processed beef, raw beef, beef meat, beef enrich-
ment, seasoned beef, calf, raw or partially cooked beef with bone, beef product smoked

Supplemental TABLE 1. NCBI search terms for each animal source

Animal Search terms

Chicken Gallus gallus, chicken, egg, hen
Cattle Bos taurus, cattle, beef, bovine, cow
Turkey Meleagris gallopavo, turkey
Swine Sus scrofa, pig, swine, porcine, pork

Continued on the next page
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Supplemental TABLE 3. Top 21 Salmonella Serovars from FSIS 2015 to 2020

Serovar Chicken Cattle Turkey Swine Total

Adelaide 0 0 0 203 203
Agona 0 24 87 46 157
Anatum 0 137 26 506 669
Cerro 0 92 0 6 98
Derby 0 10 0 295 305
Dublin 0 105 0 0 105
Enteritidis 3,082 5 0 0 3,085
Hadar 30 0 126 0 156
Heidelberg 360 97 19 0 476
I 4,[5],12:i:− 112 12 38 364 526
Infantis 2,294 57 88 417 2,856
Javiana (control) 0 0 0 0 0
Johannesburg 73 4 0 250 327
Kentucky 4,048 38 2 0 4,088
Montevideo 28 344 16 3 391
Muenchen 5 100 69 32 206
Muenster 0 69 29 0 98
Newport 0 59 8 0 67
Reading 0 9 321 7 337
Schwarzengrund 1,016 5 92 7 1,120
Typhimurium 952 67 54 50 1,123

Supplemental TABLE 2. Isolation source standardization methodology (cont.)

Animal source Term Action

Cattle Bovine booties Deleted
Cattle Lymph Deleted
Cattle Urine Deleted
Cattle Dairy cow manure Deleted

Cattle Organs and tissues
Combine: lung, pooled tissue, tissue pool, intestine, lymph node, liver, uterus, placenta, 
brain, raw beef stomach, ruminate stomachs, spleen, blood, kidney, bone marrow, 
umbilicus, heart valve, tissue, nasal 

Cattle Fluid Deleted
Cattle Bile fluid Deleted
Cattle Beef suet Deleted
Cattle Intestinal fluid Deleted
Cattle Ready-to-eat beef Combined: roast beef, beef cutlet
Cattle Feces Combined: feces, dairy cow fecal
Cattle Beef patties Combined: ground beef patty, beef patties, beef hamburger, beef product patties
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Supplemental TABLE 4. Top 21 Salmonella serovars from NCBI 2015 to 2020

Serovar Chicken Cattle Turkey Swine Total

Adelaide 1 16 0 370 386
Agona 48 236 285 298 867
Anatum 105 873 135 1,343 2,456
Cerro 36 1,158 2 116 1,312
Derby 74 55 55 1,031 1,215
Dublin 5 1,559 5 7 1,576
Enteritidis 4,517 50 1 41 4,609
Hadar 148 13 17 45 223
Heidelberg 1,327 97 554 158 2,136
I 4,[5],12:i:− 305 187 251 1,101 1,844
Infantis 4,525 264 234 900 5,923
Javiana (control) 6 4 7 9 26
Johannesburg 162 26 3 693 884
Kentucky 7,162 291 85 45 7,583
Montevideo 181 1,635 82 85 1,983
Muenchen 287 408 379 204 1,278
Muenster 20 358 29 58 465
Newport 104 724 71 115 1,014
Reading 32 65 1,049 100 1,246
Schwarzengrund 1,230 62 411 125 1,828
Typhimurium 2,702 624 323 929 4,578

Supplemental TABLE 5. Chi-square resultsa

Animal source Data source Data type χ2 Degrees of 
freedom P value

Chicken FSIS Isolation source 882.21 32 <2.2e-16
Chicken NCBI Isolation source 3,527.00 380 <2.2e-16
Cattle FSIS Isolation source 27.23 19 0.10
Cattle NCBI Isolation source 1,250.40 220 <2.2e-16
Swine NCBI Isolation source 492.5 209 <2.2e-16
Turkey FSIS Isolation source 10.67 18 0.91
Turkey NCBI Isolation source 1,180.80 144 <2.2e-16
Chicken NCBI Organs and tissues 218.21 240 0.84
Cattle NCBI Organs and tissues 815.51 255 <2.2e-16
Swine NCBI Organs and tissues 511.78 252 <2.2e-16
Turkey NCBI Organs and tissues 86.60 81 0.3148
aResidual plots were created if P < 0.05.
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Supplemental Figure 1. NCBI 
organs and tissues post hoc 
hypothesis testing with adjusted 
Pearson residual plot for cattle. 
Bubble plot of varying degrees 
of overrepresentation (blue) 
and underrepresentation (red) 
in the NCBI data of various 
serovars in specific cattle organs 
and tissues. 

Supplemental Figure 2. Top 10 
Salmonella serovars from swine 
(NCBI) from 2015 to 2020. 
Line plot of Salmonella serovar 
trends over 6 years in swine 
from NCBI PD. 
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Supplemental Figure 3. NCBI organs and tissues post hoc hypothesis testing with adjusted Pearson residual plot for swine.  
Bubble plot of varying degrees of overrepresentation (blue) and underrepresentation (red) in the NCBI data of various serovars  

in specific swine organs and tissues. 
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