3-A Holders List

Laboratory Control of Infra-Red Instruments Used in Analysis of Raw Milk Components

Comparison of Two Stains for Use in Making Direct Microscopic Somatic Cell Counts

IAMFES Secretary Candidate Profiles

American Institute for Cancer Research Offers Free Breast Self-Exam Kits

Guidelines for Controlling Environmental Contamination In Dairy Plants

75th IAMFES Annual Meeting
July 31-August 4, 1988
Tampa, Florida
Registration Forms in this issue
Hyatt Regency® Westshore

Meeting & Hotel Registration Forms
on page 62 & 63.

AT TAMPA INTERNATIONAL

Fact Sheet

Location:
- On the shores of Old Tampa Bay
- Four minutes, door to door, from Tampa International Airport
- Adjacent to the Westshore Business District
- 6 miles to downtown Tampa
- In close proximity to the best of area shopping, nightlife and attractions
- Nestled amidst a 35-acre nature preserve

Guest Rooms:
- 448 Luxuriously appointed rooms
- 16 Tower suites with wetbar
- 8 Waterside suites in our Casita Conference Villas
- 40 Guest rooms are available on our bi-level Regency Club. Special amenities are available for the executive traveler.
- All guest rooms feature honor bars

Casitas:
- Located waterside, on the southern tip of the property
- Casita Conference Villas house 48 guest rooms in a relaxed atmosphere
- 8 Conference/hospitality parlors provide a unique setting for social and business functions

Personalized Guest Services:
- Complimentary airport shuttle
- Complimentary golf course shuttle for individual players
- Complimentary shuttle to the Westshore business district
- Full-time Concierge department
- Limousine service available

Meeting Facilities:
- 10,500 Square foot Audubon Ballroom, divisible into 6 sections
- 13 Additional breakout rooms
- Second largest ballroom in Tampa and the largest amount of meeting space in the Westshore area.
- The West end of the Audubon Ballroom and 6 breakout rooms offer superb water views.

Recreational Activities:
- Private beach with watersports
- 2 Freeform pools and whirlpools
- Tennis and racquetball courts
- Complete fitness center with aerobics, weight room, sauna and massage therapy
- Deep water channel with boat dock
- Golf privileges at nearby courses

Restaurant/Lounges:
3 Restaurants, 4 Lounges offer a variety of dining and entertainment options
- Seychelles, our rooftop restaurant, offers Northern Italian cuisine and seats 105.
- Oystercatchers, our freestanding seafood restaurant provides seating for 140.
- Le Cafe, located on the lobby level, serves breakfast, lunch and dinner and seats 140.

(800) 228-9000
Hotel (813) 874-1234
WHICH OF THE THREE NSF SERVICES CAN BEST HELP YOU?

If your product, system, service, or job responsibility is in any way related to public health and the environment, there's a strong possibility NSF can help you.

We offer a distinct trio of service areas: Listing, Certification and Assessment. And our totally professional staff can, and does, provide you with straight answers, laboratory testing, on-site inspections, in-depth research, and ongoing education to help meet your public responsibilities.

Listing Services. This is the Foundation's long-standing and traditional service area. Here are developed national voluntary consensus standards relating to public health and the environment. Products evaluated and meeting the standard may display the NSF round blue seal or logo and appear in an annual Listing.

Certification Services. This service area offers evaluation against other non-NSF consensus standards and official (state, Federal, international) regulations and requirements. Products, systems, and services which meet the regulations or standards may display the square, green NSF Certified mark and appear in an annual Registry.

Assessment Services. This group undertakes special testing, research, demonstration projects, and studies for industry, service companies, government, and individuals with health and environmental concerns. A report is published but no seal or logo is issued. Take advantage of NSF's unique expertise and capabilities, group problem solving approach and reputation for objectivity.

In all three service areas we are known and respected as an objective third party, and we are committed to preserve this identity. We invite your further inquiry.

National Sanitation Foundation, Office and Laboratories, P.O. Box 1468, Ann Arbor, MI 48106 USA. Or call (313) 769-8010; Telex: 753215

NATIONAL SANITATION FOUNDATION
IAMFES Sustaining Members

ABC Research, P.O. Box 1557, Gainesville, FL 32602
Accurate Metering Systems, Inc., 1651 Willkening Court, Schaumburg, IL 60173
Alfa-Laval, Inc., Agri-Group, 11100 North Congress Avenue, Kansas City, MO 64153
Alpha Chemical Services, Inc., R.O. Box 431, Stoughton, MA 02072
Anderson Chemical Co., Box 1041, Litchfield, MN 55355
Anderson Instrument Co., Inc., RD 1, Fultonville, NY 12072
Angenica, Inc., 100 Inman St., Cambridge, MA 02139
Aquafine, 25230 W. Ave., Stanford, Valencia, CA 91355
Aquafine, 25230 W. Ave, Stanford, Valencia, CA 91355
Artek Systems Corp., 170 Finn Court, Farmingdale, NY 11735
Associated Milk Producers, Inc., 830 N. Meacham Rd., Schaumburg, IL 60195
Babeon Bros. Co., 1354 Enterprise Dr., Ramseyville, IL 60441
BBL Microbiology Systems, P.O. Box 243, Cockeysville, MD 21030
Belmonte Park Laboratories, 1415 Salem Ave., Dayton, OH 45406
Borden, Inc., Dairy & Services Div., 16855 Northchase, Houston, TX 77060
Canada Packers, 5100 Timbelea Blvd., Mississauga, Ontario L4W 2S5 Canada
Capital Vial Corp., P.O. Box 611, Fonda, NY 12068
Chem Bio Laboratories, 5723 West Fullerton Ave., Chicago, IL 60639
Dairilab Services, 2415 Western Ave., Manhaw, WA 54220
Dairy & Food Labs Mostelo, Inc., 1581 Cummings Dr., Suite 155, Megado, CA 95363
Dairy Quality Control Inst., 2353 No. Rice St., St. Paul, MN 55113
Dairymen, Inc., 11040 Linn Station Road, Louisville, KY 40223
Darigold, 635 Elliott Ave. W., Seattle, WA 98109
Dean Foods, 1126 Kilburn Ave., Rockford, IL 61011
Dilco Laboratories, P.O. Box 1058, Detroit, MI 48232
Diversar/Wyandotte, 1532 Biddle Ave., Wyandotte, MI 48192
Domino's Pizza, Inc., 30 Frank Lloyd Wright, Ann Arbor, MI 48198
Dynezco Inc., 10 Oceana Way, Norwood, MA 02062
Eastern Crown, Inc., P.O. Box 216, Vernon, NY 13476
Environmental Test Systems, Inc., P.O. Box 4659, Elkhart, IN 46514
Foss Food Technology Corporation, 13055 West 70th St., Eden Prairie, MN 55344
FRM Chem, Inc., P.O. Box 207, Washington, MO 63090
GAF, 1361 Alps Road, Wayne, NJ 07470
GENE-TRAK Systems, 31 New York Ave., Framingham, MA 01701
Gerber Products Co., 445 State St., Fremont, MI 49412
Glest-Brodrick USA, P.O. Box 241068, Charlotte, NC 28224
Haasel Corp., 300 Brookside Ave., Amblen, PA 19002
H. B. Fuller Co., Monarch Chemicals Div., 3900 Jackson St. NE, Minneapolis, MN 55421
IBA Inc., 27 Providence Rd., Millbury, MA 01527
Kendall Co., One Federal St., Boston, MA 02101
Klenzade Division, Economics Laboratory, Inc., 3050 Metro Drive, Suite 208, Bloomington, MN 55420
Maryland & Virginia Milk Prod. Assn., Inc., P.O. Box 9154 Roslyn Station, Arlington, VA 22209
Mez Sales, Inc., 522 West First St., Williamsburg, VA 23185
Michelson Labs, 4555 Produce Plaza, Los Angeles, CA 90056
Mld America Dairymen, Inc., P.O. Box 1837 SSS, 800 W. Tampa, Springfield, MO 65805
Milk Marketing, Inc., P.O. Box 36050, Strongsville, OH 44136
Minnesota Valley Testing Laboratories, 326 Center St., New Ulm, MN 56073
Nalge Co., P.O. Box 365, Rochester, NY 14602
Nasco International, 901 Janesville Ave., Fort Atkinson, WI 53538
National Mastitis Council, 1840 Wilson Blvd., Arlington, VA 22201
National Milk Producers Federation, 1840 Wilson Blvd., Arlington, VA 22201
National Sanitation Foundation, P.O. Box 1468, Ann Arbor, MI 48106
Norton Company Tranflow Tubing, P.O. Box 350, Akron, OH 44309
Oregon Digital Systems Inc., 885 N.W. Grant Ave., Corvallis, OR 97330
Oxoid USA, Inc., 9017 Red Branch Rd., Columbia, MD 21045
Penicillin Assays, Inc., 36 Franklin St., Maiden, MA 02148
The Pillsbury Company, 311 Second St., S.E., Minneapolis, MN 55414
Ross Laboratories, 625 Cleveland Ave., Columbus, OH 43216
Seiberling Associates, Inc., 11415 Main St., Roscoe, IL 61073
Smucker Labs, 1304 Halsted St., Chicago Heights, IL 60411
SmithKline Animal Health Products, P.O. Box 2650, West Chester, PA 19380
Sparta Brush Co. Inc., P.O. Box 317, Sparta, WI 54656
Swagelock Co., 29500 Solon Rd., Solon, OH 44139
Tekmar Co., 10 Knollcreek Dr., Cincinnati, OH 45222
Time Products, Inc., 3780 Browns Mill Rd SE, Atlanta, GA 30354
The Stearns Textile Co., 100 Williams St., Cincinnati, OH 45215
3M/Medical-Surgical Div., 225-55-01, 3M Center, St. Paul, MN 55144-1000
Universal Milking Machine Div., Universal Coops, Inc., Dairy Equipment Dept., P.O. Box 460, Minneapolis, MN 55440
Vitek Systems, 719 Alexander Rd., P.O. Box 3103, Princeton, NJ 08540
Walker Stainless Equipment Co., 601 State St., New Ulm, MN 56073
West Agro Inc., 11100 N. Congress Ave., Kansas City, MO 64153

Dairy and Food Sanitation (ISSN 0273-2866) is published monthly by the International Association of Milk, Food and Environmental Sanitarians, Inc., executive offices at P.O. Box 701, 502 E. Lincoln Way, Ames, IA 50010. Published by Heuss Printing, Inc., 911 Second St., Ames, IA 50010. Second-class postage paid at Ames, IA. Postmaster: Send address changes to IAMFES, 502 E. Lincoln Way, Ames, IA 50010-0701.

Manuscripts: Correspondence regarding manuscripts and other reading material should be addressed to Kathy Hathaway, PO Box 701, Ames, IA 50010-0701. 515-232-6699.

Instructions to Contributors can be obtained from the editor.

Orders for Reprints: All orders should be sent to IAMFES, Inc., P.O. Box 701, Ames, IA 50010-0701.

Note: Single copies of reprints are not available from this address; address reprint requests to principal author.

Membership Dues: Membership in the Association is available to individuals only. Direct dues are $33 per year and include a subscription to Dairy and Food Sanitation. Direct dues and student status, and includes Dairy and Food Sanitation journals for $58, plus affiliate dues. Student membership is available to individuals only. Direct dues are $58. Affiliate and International Membership include both journals for $58, plus affiliate dues. Student membership is $17.00 per year, with verification of student status, and includes Dairy and Food Sanitation Journal of Food Protection. No cancellation accepted.

Claims: Notice of failure to receive copies must be reported within 30 days domestic, 90 days foreign. All correspondence regarding changes of address and dues must be sent to IAMFES, Inc., P.O. Box 701, Ames, IA 50010-0701, 515-232-6699.
<table>
<thead>
<tr>
<th>Service Tectonics Instrument</th>
<th>Pennsylvania Scale Company</th>
<th>Aquafine Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 North River Road</td>
<td>Leola, PA 17540</td>
<td>Valencia, CA</td>
</tr>
<tr>
<td>Mt. Clemens, MI 48043-9990</td>
<td>717-656-2653</td>
<td>800-423-3015</td>
</tr>
<tr>
<td>313-465-8400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portable Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Protection Systems</td>
<td>** SANITATION **</td>
<td>Lumaco, Inc.</td>
</tr>
<tr>
<td>160 Upton Drive</td>
<td>** PROCESS ** ** CONTROL **</td>
<td>Sanitary Valves</td>
</tr>
<tr>
<td>Jackson, MS 39209</td>
<td>Loop, logic, DAQ, compliance documentation. One data base MICROMAX Process Management Center.</td>
<td>Hackensack, NJ 201-342-5119</td>
</tr>
<tr>
<td>800-523-0659</td>
<td>Leeds & Northrup North Wales, PA 215-643-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbiological and Q.A./Q.C. Testing.</td>
<td></td>
</tr>
</tbody>
</table>
ARTICLES:
- Recommended Guidelines for Controlling Environmental Contamination in Dairy Plants. 52
 USFDA and Milk Industry Foundation
 International Ice Cream Association
- Comparison of Two Stains For Use in Making Direct Microscopic Somatic Cell Counts 57
 Charlotte W. Hinz
- A Survey of Laboratory Control of Infra-Red Instruments Used in Analysis of Raw Milk Components 58
 Vernal Packard and Roy Ginn

IAMFES SECRETARY CANDIDATES 61
ANNUAL MEETING REGISTRATION FORM 62
ANNUAL MEETING HOTEL REGISTRATION FORM . 63
NEW AND EVENTS 64
- American Institute for Cancer Research Offers Free Breast Self Examinatin Kits
- If It’s Frozen, It’s Hot, Anderson Tells Wisconsin Group

*** and more ***

NEW PRODUCT NEWS 70
FOOD AND ENVIRONMENTAL HAZARDS TO HEALTH 72
AFFILIATE NEWSLETTER 76
NEW MEMBERS 79
BOOK REVIEWS 82
IAMFES AFFILIATE OFFICERS 84
BUSINESS EXCHANGE 86
3-A HOLDERS LIST 91
JFP ABSTRACTS 101
CALENDAR 105
MEMBERSHIP APPLICATION FORM 108
Recommended Guidelines for Controlling Environmental Contamination In Dairy Plants

Introduction

As a result of an intensive review of the dairy industry over the past several years, "Recommended Guidelines" were developed to assist state milk agencies and the dairy industry in controlling environmental contamination in dairy plants. These recommended guidelines were first issued in September, 1986 and widely disseminated throughout the United States. In an effort to keep states and the dairy industry informed about new information being derived from the Dairy Safety Initiatives and industry programs, these guidelines have been updated.

The Food and Drug Administration (FDA) and the Milk Industry Foundation and International Ice Cream Association are continuing to work cooperatively, exchanging findings and experiences derived from a review of check ratings, FDA inspections and industry programs. Updated guidelines to strengthen control of environmental contamination in dairy plants continue to be developed. These guidelines do not stand alone but must be combined with strict adherence to basic sanitation principles found in the Pasteurized Milk Ordinance (PMO) and all applicable sections of the Code of Federal Regulations, Title 21, e.g. 21 CFR 110, the Current Good Manufacturing Practice (GMP) regulations. All should serve to enhance existing programs and should not be considered or used as the sole element in providing safe plant conditions. These guidelines are primarily directed at controlling environmental, post-pasteurization contamination of product by such organisms as Listeria and Yersinia, but are applicable for all other contaminants.

1. Pasteurization

Every plant should have reassessed the adequacy of their pasteurization equipment to determine if it can consistently satisfy the basic principles of pasteurization. Pasteurization is assurance that every particle of milk or milk product is heated to at least a minimum temperature and held a that temperature for at least he specified time in properly designed, installed, and operated equipment. Dairy products which contain higher fat and/or added sugars require an additional 5°F above minimum pasteurization temperatures. More viscous products such as frozen dessert mixes, eggnog, etc., require even higher pasteurization temperatures and/or longer time (see Table 1).

It is recommended that the minimum pasteurization time/temperature combinations found in Table 1 be exceeded where possible.

Table 1. Minimum Pasteurization Temperatures and Times.

<table>
<thead>
<tr>
<th>Product</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>145°F</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>161°F</td>
<td>15 sec</td>
</tr>
<tr>
<td></td>
<td>191°F</td>
<td>1 sec</td>
</tr>
<tr>
<td></td>
<td>194°F</td>
<td>0.5 sec</td>
</tr>
<tr>
<td></td>
<td>201°F</td>
<td>0.1 sec</td>
</tr>
<tr>
<td></td>
<td>204°F</td>
<td>0.05 sec</td>
</tr>
<tr>
<td></td>
<td>212°F</td>
<td>0.01 sec</td>
</tr>
<tr>
<td>Milk Products</td>
<td>150°F</td>
<td>30 min</td>
</tr>
<tr>
<td>of 10% fat or more or added sugar</td>
<td>166°F</td>
<td>15 sec</td>
</tr>
<tr>
<td></td>
<td>191°F</td>
<td>1 sec</td>
</tr>
<tr>
<td></td>
<td>194°F</td>
<td>0.5 sec</td>
</tr>
<tr>
<td>(1/2 & 1/2, cream, chocolate milk, etc.)</td>
<td>201°F</td>
<td>0.1 sec</td>
</tr>
<tr>
<td></td>
<td>204°F</td>
<td>0.05 sec</td>
</tr>
<tr>
<td></td>
<td>212°F</td>
<td>0.01 sec</td>
</tr>
<tr>
<td>Eggnog and Frozen dessert mixes</td>
<td>155°F</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>175°F</td>
<td>25 sec</td>
</tr>
<tr>
<td></td>
<td>180°F</td>
<td>15 sec</td>
</tr>
</tbody>
</table>

All pasteurization equipment must be properly designed, installed and operated. A properly designed, installed and operated flow diversion device, and properly operating pressure controls for regenerator systems must be an integral part of all HTST pasteurizing systems. FDA’s dairy initiatives have shown that problems may occur when ice cream mix, or other dairy ingredients are pasteurized at one location and transported to another plant for further processing without being repasteurized at the plant of final packaging. This product is more susceptible since the product is handled and exposed to potential contamination conditions and is not repasteurized.

It should be emphasized that all Grade “A” milk and milk products must be pasteurized in the plant of final processing and packaging. It is recommended that this
practice also be followed for other products such as frozen dessert mixes.

Heat exchangers (presses) of all HTST pasteurizer units need to be routinely opened and closely evaluated for stress cracks, pin holes, gasketing problems, inadequate cleaning, etc. Inspections have revealed numerous problems in these areas.

Vat Pasteurization

Many problems have recently been observed with vat pasteurization systems. These include: improper equipment design, lack of proper outlet valves, lack of proper airspace thermometers, improperly operated airspace heaters and other serious defects.

All vat pasteurizing equipment must meet the basic requirements for pasteurization. Pasteurization must be performed in equipment which is properly designed, installed, and operated, and which insures that every particle of milk or milk product has been held continuously at or above the proper temperature for at least the specified period of time. Valves and connections must be properly designed to prevent pockets of cold milk within the system. Foam which is an excellent insulator must be minimized in the vat during filling, heating and holding. Covers must remain in place at all times while the product is in the vat.

The following items are critical if proper vat pasteurization is to be assured. Reliable and accurate recording, indicating and airspace thermometers must be present and functioning properly. The airspace between the product and the top of vat must be maintained at 5°F above minimum pasteurization temperatures. This is necessary to assure that any product, including foam, reaches proper pasteurization temperatures. It may be necessary to utilize airspace heaters in order to achieve this 5°F differential. Outlet valves should be inspected regularly to detect leaking, and must be of a leak detection type.

2. **Post-pasteurization Contamination**

By now all dairy plants should have completed a review of the adequacy of cleaning and sanitizing procedures for all processing and filling equipment, pipelines and storage tanks. Potential areas of post-pasteurization contamination should be determined and corrective action taken when necessary.

A thorough check should have been made of sweetwater and glycol cooling systems. A scheduled review program should be initiated to assure that they are properly protected and do not contain any pathogenic organisms. Any equipment such as storage tanks, jacketed vessels, cooling plates, etc., that utilize sweetwater or glycol solutions should continually be monitored for leaks and cracks. Contamination of product has been caused by *Listeria* contaminated sweetwater as a result of leaking plates.

Cracks and crevices in storage tanks, leaking valves, agitator shafts, shielding and venting are all areas where pathogenic organisms have been found.

Improper welds and similar irregular surfaces, which may cause ineffective cleaning and sanitizing, should have been eliminated. These areas should be monitored on a scheduled basis.

Cleaning and sanitizing regimens should have been reviewed for proper times, temperatures, pressures and flow rates. It is important to determine that proper sanitizers are being used at the appropriate strength and contact time. This review should be accomplished by routinely verifying recording charts and records to insure that the established cleaning and sanitizing regimen is being followed. It has been demonstrated that commonly used dairy and food plant sanitizers are effective against organisms such as *Listeria* when applied to clean surfaces for recommended times. Consultation with suppliers of sanitizing compounds is highly recommended to assure that the compound applied is effective against the organisms of concern. Chlorine based sanitizers at 100 ppm, acid anionics at 200 ppm, quaternary ammonium compounds at 100 ppm and iodophors at 25 ppm are recommended. It must be stressed that sanitizers are not effective unless all product surfaces are clean.

It is important that all pipeline circuits are designed to eliminate trapping of washing or sanitizing solutions or allowing product to collect during the operating day. The lines must be free draining or have provisions to be kept free of solution or product except during use. All piping circuits should have been reviewed by now. It is equally important to continue to monitor for any possible cross-connections.

Processors should attempt to minimize the amount of product handling, product exposure to the plant environment, and time or temperature abuse of the product after pasteurization. This can be accomplished by minimizing post-pasteurization handling and storage time prior to final packaging.

The use of absorbent items, such as rags and sponges, should be eliminated to reduce potential harborage and spreading of microorganisms in the plant environment. Separate brushes should be used for product and nonproduct surfaces. Brushes should be maintained in good repair, cleaned, sanitized and stored between uses. Use of impervious materials, (i.e., plastic or metal) is recommended. Porous equipment such as wooden handled brushes, tools, paddles, sponges, cloth, etc., should not be used in production areas.

Frozen dessert novelty lines tend to expose product to both potential airborne and condensate contamination more than many other product lines. Exposure to these hazards may be minimized by providing additional shielding.

Filling/packaging operations are areas where product contamination has occurred. Mandrels, drip shields, bottom and top breakers, prefilling coding equipment, deflector bars, cutting blades and extruder heads are critical areas where environmental contamination may occur. Overhead shielding, conveyors, conveyor belts, chain rollers, supports, and lubricants should be constantly...
monitored. It is important to incorporate a routine cleaning and sanitizing regimen for all conveyors. Blow molding operations and handling of packaging materials should be examined on a routine basis, particularly where open containers/jugs are conveyed through nonprocessing areas.

Any product recovered from defoamer systems should be protected from contamination, maintained at or below 45°F at all times, and should be repasteurized. A thorough review of the procedures for handling of imperfectly capped or filled containers/packages is suggested. Particular emphasis should be directed at eliminating manual handling, filling and capping of containers.

3. Cross-connections

Cross-connections have been found in a number of the dairy plants. Inspections have revealed direct piping connections between pasteurized milk and raw milk lines, product lines to CIP circuit lines or pasteurized product lines to other potentially hazardous circuits. Blueprints should be reviewed on a periodic basis and updated to reflect existing piping arrangements. This can be accomplished only by “walking” the blueprints through the plant and physically insuring the blueprints are accurate. Internal plant controls are needed to prevent any piping changes without prior review by qualified authorities.

4. Use of Returned Product and Reclaiming Operations

All returned packaged milk and milk products which have physically left the premises of the processing plant should not be repasteurized for Grade A use. You should check with your state regulatory agency concerning specific isolated problems relating to this area.

Salvage operations, by their very nature, are high risk enterprises which can put the whole company in jeopardy if not carried out in a sanitary manner. Recent experience has revealed salvage product being inadvertently pumped through the same lines as pasteurized product without cleaning and sanitizing the lines between uses.

Other aspects of salvage operations which pose potential contamination problems are:
• Failure to pasteurize salvages or reworked product before reuse.
• Reuse of product which has been in distribution channels and may have been temperature-abused, tampered with, or exposed to chemical or biological contamination.
• Use of product in damaged containers where container integrity may have been compromised, or when the outside of the container may be contaminated.
• Reworked product which is handled differently from normal production such as start up and change over product, underweights, package/wrapper problems, product involved in line jam-ups and that which is held in barrels or buckets then reworked back into the product.

Any product that has been mishandled, not adequately protected from contamination or which has not been maintained at a temperature of 45°F or less should be discarded. External carton contamination with _Listeria_ and _Yersinia_ has occurred and may lead to product contamination. Breaking or splashing containers over a vat or horn for reprocessing may introduce contamination into product. The reclaiming operation should be reviewed to eliminate potential hazards. It is essential that if product is to be reclaimed that proper holding temperatures and sanitary practices, including careful container handling, be exercised. Repasteurization of all reclaimed product is necessary and higher temperatures and/or longer holding times should be used. Products returned from stores and outdated products which are being returned to the dairy plant for disposal should be isolated from all other plant operations. Precautions should be taken to prevent these areas from serving as a source of contamination. All equipment including tanks, pumps, pipelines, used in the reclaiming operation should be constructed so they can be cleaned and sanitized daily.

All salvaged and/or reworked product, such as ice cream, which is retained in buckets during start-up while overrun is stabilized, should be kept to a minimum. Ideally, this material should be discarded. If this product is to be recycled back into product, it should be repasteurized.

The practice of reclaiming product should be seriously evaluated, in view of the potential for environmental and product contamination.

5. Airborne Contamination

Airborne contamination is strongly suspected as a vehicle for allowing pathogenic organisms to enter product. A comprehensive assessment of both processing and ventilating air utilized within the plant should have been conducted. Heating, ventilating and air conditioning (HVAC) systems should be designed for easy cleaning and should be periodically cleaned. Condensate drip pans and drain lines should be periodically checked and cleansed to assure they are not providing favorable environments for the growth of pathogenic organisms. It is highly recommended that frozen dessert novelty plants and other facilities immediately evaluate the adequacy of all protective shielding. This review should include all product contact surfaces as well as exposed product areas to assure they are not subject to possible contamination by condensate, aerosols, dust or other airborne contaminates. Air systems in refrigerated areas should also be designed for ease of cleaning and should be routinely cleaned.

HVAC systems should be properly designed and adjusted to maintain positive pressure in areas where product is exposed such as batching, freezing, filling and packaging operations. Air transfer from potentially contaminated areas, such as raw product receiving, ingredient and supply storage to processing or packaging areas should be minimized.

Outside air should be filtered and free of condensate. Air flow should be determined and controlled to eliminate...
direct air movement blowing onto product, product contact surfaces or filling and packaging areas. Air filters should be of the type effective in removing particulate matter and condensate thus reducing the potential for dispersion of microorganisms. Filters should be kept clean and replaced according to an established maintenance schedule.

Processing systems which incorporate air directly into the product, such as freezers, airblows, and air agitation systems must be designed to reduce potential contamination and should be easily cleanable. Process air systems should contain appropriate filters to remove undesirable particulate matter. Sanitary check valves should be provided as necessary to prevent product backup into air lines. Air blow and agitation equipment should be routinely checked for proper assembly and cleanliness. Most air blow and agitation equipment is not satisfactorily cleaned by usual CIP methods and should, therefore, be dismantled and manually cleaned and sanitized routinely.

6. Plant Environment (General)

The general plant environment should be recognized as having a significant impact on the safety of finished product. Particular emphasis is required for general plant conditions. Special consideration of refrigerated areas is necessary, in light of the growth potential of certain organisms (i.e., *Listeria, Yersinia*) at refrigerated temperatures. Keeping floors, walls and ceilings clean, relatively dry and free from condensate buildup is imperative in order to minimize product contamination.

Special attention should be given to the cleaning and sanitization of all conveyor track and belt systems throughout the plant. These areas are difficult to keep clean, and equipment should not take place during production runs when product and/or product contact surfaces are exposed to the cleanup.

For chemical sanitizers to be effective, the surfaces to be sanitized must be clean. The proper concentration of the sanitizers must be in contact with all surfaces to be sanitized for at least the minimum recommended contact time. Some CIP systems may contain air agitators, or valves that do not pulsate (open and close) during the CIP cycle. These should be redesigned to eliminate this condition. Caution is advised when significantly exceeding the recommended strengths of sanitizers to avoid creating a chemical hazard to either the product or plant employees.

The pooling of milk, water or other processing wastes, such as in ducts, floor plating, grouting, cracks, holes and other areas should be minimized. Pits for conveyor drive motors need to be routinely cleaned. Protection of product and containers from splash during cleaning while in storage rooms and coolers should be examined and any necessary corrective action taken. Returned goods should be isolated in a properly identified holding area.

Practices which may lead to aerosolization (formation of microscopic water droplets) such a condensate formation, the use of high pressure hoses, unshielded pumps etc., should be minimized. These aerosols may act as vehicles in which pathogenic organisms such as *Listeria* and *Yersinia* may contaminate exposed product and product contact surfaces.

Listeria has been frequently isolated from floor drains in processing and other areas. Because of this potential, floor drains should not be located under or in close proximity to filling and packaging equipment. Floors and drains should be constructed and maintained to insure proper drainage. Brushes used for cleaning floor drains should not be used for any other purpose and should be cleaned and stored in proper strength sanitizing solution between uses. Floor drains should be frequently cleaned and periodically flushed with a sanitizing solution. Floor drain covers and baskets should be cleaned and sanitized after each production run. Under no circumstances should high pressure hoses be used to clean drains.

A routine cleaning, sanitizing and inspection program should be established for casers, cappers, stackers, underside of equipment, undersides and brackets for packaging guiderails, and utility equipment such as parts tables, can dolly, etc. Use of hot water in processing areas during production should be minimized to prevent the formation of condensate while product is exposed. Condensate forms on cold surfaces in the presence of high humidity, which is created by wide temperature variations found in many dairy processing areas.

It has recently been demonstrated that porous materials such as wood, when used for construction of floors, walls, ceilings, etc., can harbor *Listeria*. Impervious materials such as tile, metal, cement, etc., should be used whenever possible to minimize harborage for such microorganisms. Stationary and moveable platforms and steps especially with hard to reach, open grid-patterned materials, need regular cleaning.

7. Plant Traffic

Employees should be trained to recognize the importance of cross contamination problems within the plant. Special emphasis in training employees in avoiding the spread of pathogens within the plant environment from outside the plant (home/farm, etc.) or from areas such as the machine shop, raw milk receiving area (manure from farms carried in on trucks, raw milk) is needed. Employees should understand that organisms can be carried on their clothing, boots, tools, etc.

A traffic pattern of restricting access to processing areas should be in place. Milk haulers and all other non-processing operations people should be restricted from entering the processing areas. The use of footbaths should be encouraged and monitored routinely for proper disinfectant strength and cleanliness. A continuing review and restriction of the movement of pallets, forklifts and other similar equipment from raw milk, case wash, dock or other such areas into processing/packaging areas is needed. Wooden pallets have been shown to be contami-
nated with pathogenic organisms such as *Listeria* and *Yersinia*.

8. **Personnel Cleanliness**

Employees with obvious illnesses, infected cuts, or abrasions, etc., should be excluded from working in processing areas or performing other functions which can contaminate product, product-contact surfaces or packaging material. The use of tobacco products, chewing gum, or other food for employee consumption should be permitted in any production area. Employees should not be allowed to wear hairpins, rings, watches, etc., in production areas. Special attention is needed to assure that street clothes are not allowed in the processing area and that plant clothing (including rubber boots) do not leave the plant. It is recommended that the laundering of all work clothing should be the plant’s responsibility, and proper procedures for storing and issuing clean clothing need to be developed. Of equal concern is a potential problem associated with plant maintenance personnel working in raw milk areas and then working on pasteurized milk equipment without adequate cleanup of hands, tools, clothing, etc.

It is recommended that uniforms be color coded by department to control movement of employees into restricted areas. When the use of disposable single service gloves are necessary to handle exposed product contact surfaces during a production run, they must be maintained in an intact, clean and sanitary condition. Single service gloves should be thrown away whenever they become torn, contaminated or if removed for any reason.

Handwashing facilities must be properly designed and conveniently located near work station. Employees should be encouraged to use them frequently.

9. **Sampling and Testing**

It is recommended that particular emphasis be given to environmental sampling to detect any problems. Testing conducted by industry laboratories can plan an important role in successful management of sanitary practices. This testing should be a part of routine plant quality control operations. Testing is an additional tool that can be used to detect various conditions of plant sanitation as well as to monitor for unusual increases of bacterial counts during refrigerated storage.

Coliform testing can be used as an index for post-pasteurization contamination. Any coliform level detected should generate a review of plant practices. However, the presence or absence of coliform organisms may not always correlate with the presence of some pathogenic organisms, such as *Listeria*.

Actual analysis for pathogenic organisms should be done in a separate, isolated laboratory away from the dairy plant.

Control food industry enemy No. 1 with a Number 2 pencil.

Ignorance is the biggest cause of foodborne illness.

Which is why ETS has developed the Food Protection Certification Program. And why more and more companies depend on it to evaluate their employees’ knowledge of food protection techniques.

It gives independent confirmation that in-house training efforts work. It helps managers meet their customers' expectations. And it helps minimize exposure to the liabilities of food-borne illness, too.

Find out more—and receive your very own box of official ETS #2 pencils—by calling toll-free 1-800-FOR-INFO. Or write Educational Testing Service, Box 830, Devon, PA 19333.

Educational Testing Service

DAIRY AND FOOD SANITATION/FEBRUARY 1988
Comparison of Two Stains For Use in Making Direct Microscopic Somatic Cell Counts

by Charlotte W. Hinz

Director of Laboratory Services
Upstate Milk Cooperatives, Inc.
7115 West Main Street
LeRoy, New York 14482

Introduction

Recently a modification of the Levowitz-Weber stain, called the Canadian Formula, became available.

A study was performed by five laboratories to compare the Levowitz-Weber modification of the Newman-Lampert stain with the Canadian Formula stain for Direct Microscopic Somatic Cell Counts.

Methods:

Thirty samples of farm bulk tank milk, ranging from 210,000 to 1,600,000 DMSCC/ml were compared. Duplicate smears were counted for each sample. The null hypothesis that the means for the two stains do not differ significantly at the \(\alpha = 0.05 \) level was tested.

An analysis of variance was computed using the log10 count to assure normality of the somatic cell counts. The results are shown in Table I. Since the stains are fixed variables and the samples are random variables, only B and AB effects are significant (1) at the \(\alpha = 0.05 \) level.

Thus, the stain means of 740,000 and 760,000 count/ml cannot be shown to differ at the \(\alpha = 0.05 \) level.

Conclusion:

The variance of 0.00080 and 0.00034 are well below the 0.00200 sometimes observed for the DMSCC.

Therefore, the Canadian Formula stain can be a satisfactory substitute for the current Levowitz-Weber stain.

Acknowledgements:

Dairylea Cooperative, Inc. Lab. - Syracuse, NY
Eastern Milk Producers, Inc. Lab. - Waverly, NY
Friends Laboratory - Waverly, NY
McAndrews Laboratory - Hamburg, NY
Upstate Milk Cooperatives, Inc. Lab. - LeRoy, NY

Table 1 — Summary of the Analysis of Variance.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
<th>F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Stain</td>
<td>0.00253</td>
<td>1</td>
<td>0.00253</td>
<td>2.39</td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Sample</td>
<td>8.59548</td>
<td>29</td>
<td>0.029640</td>
<td>279.62*</td>
</tr>
<tr>
<td>AB</td>
<td>0.03074</td>
<td>29</td>
<td>0.00106</td>
<td>1.86*</td>
</tr>
<tr>
<td>Error</td>
<td>0.03423</td>
<td>60</td>
<td>0.00057</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>8.66298</td>
<td>119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significant at the \(\alpha = 0.05 \) level

<table>
<thead>
<tr>
<th>Count/ml</th>
<th>Geometric Mean</th>
<th>% Difference</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-W Stain</td>
<td>740,000</td>
<td>2.7%</td>
<td>0.00080(30)a</td>
</tr>
<tr>
<td>Canadian Stain</td>
<td>760,000</td>
<td>0.00034(30)a</td>
<td></td>
</tr>
</tbody>
</table>

\(a = \text{Degrees of Freedom} \)
A Survey of Laboratory Control of Infra-Red Instruments Used in Analysis of Raw Milk Components

by Vernal Packard(1) and Roy Ginn(2)

(1) Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108. (2) Dairy Quality Control Institute, Inc., 2353 Rice St., St. Paul, MN 55113.

INTRODUCTION

Infra-red instruments provide an efficient method of measuring the level of raw milk components used in various pricing programs. Their extensive use in this regard has come about only recently in the United States. For this reason, little is known about their general level of precision (repeatability) and accuracy (agreement with reference test results) on a practical basis. Rather, it is understood that such instruments must be calibrated and monitored for calibration status by regular comparison of test results against control samples tested by reference methods. In addition, standards of precision and accuracy have been established by the Association of Official Analytical Chemists (1). These latter require a mean difference and standard deviation of the difference of duplicate analyses and analyses against reference samples to fall within prescribed limits. Such limits have been set for four components: fat, protein, lactose and total solids. Although no standards have been established for solids-not-fat (SNF), some payment plans make use of this group of components, and some examination of SNF variability seems appropriate.

The present survey purports to do not more than to provide a kind of overview of the progress made in infra-red control of milk analyses in several laboratories over the initial three years of control effort. The survey considers only the accuracy of the instruments, and does not distinguish between adjusted or unadjusted test results.

Methods

Nine laboratories using a total of ten infra-red milk analysis instruments were selected for this survey. These laboratories were purposely selected from among a larger number of laboratories participating in the DQCI control program for two reasons: (1) all were testing milk for five components (fat, protein, lactose, solids-not-fat and total solids) and (2) all had more or less regularly reported back the results of infra-red analyses done on control samples of milk. Although these reports were not solicited and represent both adjusted and unadjusted infra-red analytical results, the data nonetheless reflect general trends in analytical accuracy over the first three years (Jan. 1984 - Dec. 1986) of a fairly extensive control effort.

For the first one and one-half years of the time period, ten reference control samples were made available. During the last one and one-half years, twelve-sample control batches were provided.

It should be understood that “unadjusted” values of infra-red analyses reflect the status of the instrument before adjustments are made to improve overall calibration status. In a sense, these values indicate the extent of drift away from appropriate calibration between any two sets of control analyses. Some reports from the laboratories selected for this survey distinguished between adjusted and unadjusted results; others did not. Where such was known, unadjusted data were used. Although samples were made available on a weekly basis, not all laboratories assessed the status of infra-red units that frequently. Or some may have monitored the status more frequently than results were reported. In any event, the survey was undertaken as a way of obtaining a general overview of trends in infra-red analysis of raw milk, and are presented solely in that light.

Results and Discussion

Association of Official Analytical Chemists (AOAC) standards of accuracy (i.e., instrument vs. reference test results) are shown in Table 1. These data provide a basis for interpreting the information presented in this survey. Please note that standards exist for four components only (fat, protein, lactose, and total solids), and that values reflect a statistical comparison between infra-red and reference method analyses of a minimum of an 8-sample...
set of comparative results. In other words, a minimum of eight samples ranging widely in component level(s) are tested by both reference and infra-red methods. The difference in results is recorded and averaged. A standard deviation of this difference is also determined. Results of such testing should be equal to or less than the value shown in the table.

Table 2 summarizes by year the grand average mean difference and grand average standard deviation of the difference of the ten instruments (nine laboratories) surveyed.

As an overall observation, it appears that instrument control generally improved over time. The values for 1986 for the most part are lower (the instruments more accurate) than those found in earlier years. This is true of both grand average mean difference and standard deviation of the difference of the ten instruments (nine laboratories) surveyed.

As an overall observation, it appears that instrument control generally improved over time. The values for 1986 for the most part are lower (the instruments more accurate) than those found in earlier years. This is true of both grand average mean difference and standard deviation of the difference. However, the grand average values do not always meet the AOAC standards shown in Table 1 (which, it must be made clear, are imposed upon adjusted infra-red test results). In fact, it is quite apparent that mean difference standards are much easier to meet than standard deviation standards. Or perhaps it is better stated to suggest that on either adjusted or unadjusted basis, infra-red units appear to maintain greater stability in terms of mean difference than standard deviation of the difference. In fact, only two of the grand average mean differences fail to meet AOAC standards. One of these fails the lactose standard (lab 8, 1984), the other, the total solids standard (lab 2, 1985). Most of the mean difference yearly averages fall well below the suggested standards, and for all four components. As a general rule, therefore, laboratory technicians/managers should expect little difficulty in this respect and should perhaps expect values to fall well below AOAC standards.

Standard deviation standards are obviously another matter. Here, most laboratories fail the test at least in terms of overall yearly averages. Improvements are apparent, but nonetheless often in excess of standard values. And it is interesting to note that the failure rate is about the same for fat, protein and total solids, but more frequent for lactose. Again, it is important to emphasize that the results reflect both adjusted and unadjusted values and might well -- and likely would -- be lower and even possibly within limits if adjusted values only had been considered. The lesson to be learned, it appears, is that instruments do drift -- they do vary from realistic operating standards -- and do require very regular monitoring in order to achieve their potential for accuracy. The grand averages for 1986 indicate that most of the laboratory workers represented in this survey came to understand that fact. Far more frequently do later values meet or come close to meeting the standards than those obtained during earlier years.

To focus more closely on present capabilities, the last report submitted by each laboratory over the three-year period was identified and the results collated. Table 3 shows these data.

It is readily apparent that most labs were within AOAC standards for most components. Only two labs each fall outside the mean difference requirements for fat and lactose. Two labs each also fail the standard deviation standards for lactose and total solids. Stating the situation
positively, eight of ten laboratories were meeting the AOAC standards for essentially all components.

It is also apparent that laboratories generally do better -- maintain somewhat tighter control -- in protein than fat analysis. Data in both Tables 2 and 3 generally indicate that fact. Quite possibly this is due to the somewhat more stable composition of protein than fat, thereby minimizing seasonal differences. As a matter of interest, however, a review of the data of this 3-year survey on a quarter-year basis indicated few, if any, differences in calibration status over the four quarters of any one given year. Seasonal influences may occur and may have some effect, but the differences appear to be small in comparison to other potential causes of variation in test result.

One last observation seems in order, and that relates to mean and standard deviation of the difference values for SNF. Although standards do not exist, data in Tables 2 and 3 suggest that values at least as low or lower than those for total solids should be reasonable expectations. Certainly a mean difference less than 0.09% and a standard deviation of the differences of less than 0.12% seem readily attainable, and laboratories might do well to use these or lower standards where milk payment is based on SNF as such.

Data from this survey seems to suggest that desirability of monitoring infra-red instruments in representative laboratories using identical sets of control samples. This can and should be done on a sample by sample basis, not only to validate reference test results on individual control samples, but to uncover any idiosyncratic behavior of instruments due either to some failure in maintenance or to specific compositional factors associated with a given producer's supply of control milk. Routine monitoring of this sort should also lend credibility to a control program by providing assurance that instruments are indeed in reasonable adjustment as compared to others or that deviations from the norm are a legitimate cause for undertaking corrective action. Such a program has now been undertaken by Dairy Quality Control Institute, Inc., and initial results appear most promising. A report of the effort will be forthcoming at a future date.

References

Control Rats and Mice at Minimum Cost
With
Solvit Rat Cafeterias

Solvit Inc.'s all Metal Rat Cafeterias now feature slide-on covers for all three sizes of cafeterias. These covers give the operator easier access into the station. Tamper-proof baffle kits are also available for the large, junior and mini cafeterias. Contact: Solvit Inc., 7001 Raywood Rd., Madison, Wis. 53713, (608) 222-8624.

Diet and Cancer Risk
YOU CAN CHANGE THE ODDS
Dietary Fat

American Institute for Cancer Research

High levels of fat in your diet are a health risk. That's a fact.
But reducing fat in your diet can be simple. Choose leaner cuts of meat and lower fat dairy products, avoid too many baked goods and learn to recognize hidden fats in food.
Want to learn more? For your free copy of "All About Fat and Cancer Risk" write:
American Institute for Cancer Research
Dept. FC2
Washington, D.C. 20069

Please circle No. 211 on your Reader Service Card
IAMFES Secretary Candidates

Austin D. Olinger

Austin is employed by Milligan Sales, Inc., City of Industry, California. Prior to joining Mulligan Sales, Inc. in 1984, Austin was associated with Jerseymaid Milk Products Company in Los Angeles for approximately 20 years in various capacities as Field Representative, Production Superintendent, and Manager of Milk Procurement and Quality Control. He was previously employed for four years by Safeway Stores, Milk Department, Portland, Oregon, as Quality Control Supervisor.

Austin is a graduate of California State Polytechnic University at San Luis Obispo, California, with a B.S. in Dairy Manufacturing.

Some of Austin’s other accomplishments include:
- Local Arrangements Chairman - 74th Annual IAMFES Meeting at Disneyland Hotel; Past President - California Association of Milk and Dairy Sanitarians; Past Section Director - California Dairy Industry Association; and, 32° Mason and is a Shriner.

Austin is married to Maureen and they reside in Upland, California. The have two children. A son, Captain Mark A. Olinger, U.S. Army, Fort Bragg, North Carolina and a daughter, Kristine M. Olinger, Fayetteville, North Carolina.

Damien Gabis

Damien Gabis is presently the President of Silliker Laboratories, Inc. in Chicago Heights, Illinois. In adjunction with Silliker Labs. Damien is an associate professor working in the Biology Department with the Illinois Institute of Technology in Chicago, Illinois. Prior to his work in Chicago, he was a bacteriologist on the Board of Health in Steubenville, Ohio. Damien received his Bachelor’s degree from the College of Steubenville, Ohio in Biology and his Master’s degree from the University of Kentucky in Dairy Science-Bacteriology. He continued on to receive his Doctorate from North Carolina State University in Food Science-Microbiology.

Damien has a long list of publications and presentations. He is a member of several committees and others professional public service groups such as: the American Assoc. of Cereal Chemists Committee on Microbiological Methods, American Council of Independent Lab. Food and Drug and Agriculture Committee, a member of IFT, and a Graduate Student Adviser with the Biology Dept. at Illinois Inst. of Technology. Among other memberships he has been a member of IAMFES since 1974.
MEETING REGISTRATION FORM
75th IAMFES Annual Conference
July 31 - August 4, 1988
Hyatt Regency Westshore
Tampa, Florida

REGISTRATION AND FUNCTIONS AFTER JUNE 15 ARE $5.00 HIGHER FOR EACH REGISTRATION AND EACH FUNCTION

NAME __________________________ COMPANY NAME __________________________
ADDRESS __________________________ CITY ______________ STATE/PROVINCE ______________
COUNTRY __________________________ ZIP __________________________ JOB TITLE __________________________
OFFICE PHONE # __________________________ IF STUDENT, COLLEGE OR UNIV. __________________________
COMPANIONS (spouse/children) __________________________

PLEASE CHECK where applicable
IAMFES MEMBER __________ NON-MEMBER __________ AFFILIATE MEMBER ONLY __________
STUDENT __________ 30 or 50 Year Member __________ EXECUTIVE BOARD __________
PAST PRESIDENT __________ AFFILIATE DELEGATE __________ SPEAKER __________

PRICES GOOD WHEN POSTMARKED BY JUNE 15, 1988
Prices after June 15 are $5.00 higher for each registration and each function. Registrations postmarked after June 15 must include higher prices.

<table>
<thead>
<tr>
<th>EVENT</th>
<th>IAMFES MEMBER</th>
<th>SPouse/Guest (not company representative)</th>
<th>STUDENT</th>
<th>NON-MEMBER</th>
<th>*Registration & IAMFES Membership for 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>$45</td>
<td>$15</td>
<td>$10</td>
<td>$75</td>
<td>$83</td>
</tr>
<tr>
<td>Early Bird Reception</td>
<td>FREE</td>
<td>FREE</td>
<td>FREE</td>
<td>FREE</td>
<td>FREE</td>
</tr>
<tr>
<td>Gasparilla Celebration</td>
<td>$29</td>
<td>$29</td>
<td>$29</td>
<td>$29</td>
<td>$29</td>
</tr>
<tr>
<td>Banquet & Reception</td>
<td>$23</td>
<td>$23</td>
<td>$23</td>
<td>$23</td>
<td>$23</td>
</tr>
</tbody>
</table>

— SPECIAL EVENTS —
Choose the events you wish to attend and include with your registration form above - see next page

<table>
<thead>
<tr>
<th>DAY/DATE</th>
<th>ADULTS</th>
<th>CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampa by the Bay Tour</td>
<td>$25.00</td>
<td>$12.50 (12 and under)</td>
</tr>
<tr>
<td>Adventure at Busch Gardens</td>
<td>$25.00</td>
<td>$4.00 (2 and under)</td>
</tr>
<tr>
<td>Disney World Package</td>
<td>$0 (FREE)</td>
<td>$0 (FREE)</td>
</tr>
</tbody>
</table>

Total of Section 1 $ __________
Total of Section 2 $ __________
Overall Total $ __________

Make Checks Payable to: IAMFES 1988 Meeting Fund U.S. FUNDS ONLY

Mail by June 15, 1988 to:
James L. Strange
Fl. Dept. of Agr. & Cons. Serv.
3125 Conner Blvd.
Tallahassee, FL 32399-1650
Phone: 904-487-1480

62 DAIRY AND FOOD SANITATION/FEBRUARY 1988
The Florida Association of Milk, Food and Environmental Sanitarians (FAMFES) will be hosting the 75th IAMFES Meeting, July 31 - August 4, 1988. They cordially invite you to participate in the educational sessions as well as in social functions and special events with old or new colleagues and friends, view the table top exhibits, and enjoy Florida hospitality at the Hyatt Regency Westshore, uniquely located in a 35 acre nature preserve on beautiful Tampa Bay.

MAIL THIS FORM DIRECTLY TO:

HYATT REGENCY WESTSHORE
IAMFES MEETING
6200 Courtney Campbell Causeway
Tampa, FL 33607

QUESTIONS? CALL THE
HYATT REGENCY WESTSHORE AT:
813-874-1234

NAME(s) __

ADDRESS __

CITY __

STATE/PROVINCE __________________ COUNTRY _______ ZIP _______

OFFICE PHONE NUMBER ________________________

SHARING ROOM WITH ____________________________ NUMBER OF PERSONS ________

ARRIVAL ___________________________ DEPARTURE ___________________________

SPECIAL REQUESTS ___________________________

Accommodations will be confirmed only with a check for the first night's deposit, or use your credit card to guarantee your reservations. You will be charged for the first night if your reservation is not cancelled prior to 6 p.m.

CREDIT CARD # ___________________________ CREDIT CARD ___________

EXPIRATION DATE ___________________________

CARD HOLDERS SIGNATURE ___________________________

SPECIAL ROOM RATES for this convention are $65 plus tax ... up to 4 persons in a room.

Clearwater Travel Park
2946 Gulf to Bay Blvd.
Clearwater, FL
813-791-0550
*just across the CCC bridge
American Institute for Cancer Research Offers Free Breast Self Examination Kit

More than 75 percent of breast cancers are first discovered by women themselves. "That fact is one reason why learning proper breast self-examination and performing it on a regular basis is so important," stressed Marilyn Gentry, Executive Director of the American Institute for Cancer Research.

The Institute is now making available to women a free breast self-examination kit which includes instructions on the correct methods for self-exams, and reminder stickers to help a woman make such an examination a regular activity.

"A frightening fact is that so few women practice regular breast self-examination," noted Ms. Gentry, "yet all the research shows that early detection of breast cancer can be an important factor in saving lives."

Ms. Gentry also stressed the need for lowering cancer risk. "High incidence rates for breast cancer have been associated in many studies with high fat diets," she pointed out. This is why the Institute's Dietary Guidelines for Lower Cancer Risk emphasize lowering dietary fat intake from the current national average of 40 percent of calories to 30 percent or less.

"I urge women to practice regular breast self-examination and to change their diets for lower cancer risk. It can really make a difference," said Ms. Gentry.

If It's Frozen, It's Hot, Anderson Tells Wisconsin Group

If it's frozen, it's hot, Steven C. Anderson, executive vice president and chief operating officer of the American Frozen Food Institute (AFFI) told members of the Wisconsin Food Processors Association in a Nov. 17 presentation.

Anderson, speaking at the group's annual convention, described the reasons behind the frozen food industry's recent success story and provided an overview of AFFI's public and trade relations program. He also described a number of legislative and regulatory issues facing the industry.

The retail public and trade relations program has been very active in interfacing with consumers of frozen food and informing the retail trade of the benefits, from a sales and profitability standpoint, of frozen foods, he said.

"This year, AFFI conducted a workshop entitled, "The New Wave of Frozen Food Sales" at the Food Marketing Institute Convention in Chicago. Not only did we stress the demographics that are leading to an increase in frozen food sales, Donovan Jon Fandre, host of the popular Public Broadcasting Service television show "Microwaves are for Cooking," stressed the natural, very positive tie-in between microwave ovens and frozen foods," he said.

Anderson outlined AFFI's highly successful America's New Traditional Homemaker Program for the group. "At first, this (the phrase New Traditional Homemaker) may seem to be a contradiction in terms, but let me explain. The New Traditional Homemaker is a consumer who lives a lifestyle that will make your head spin -- busy with career, family and outside interests. Yet in the middle of this whirlwind of activity, this consumer absolutely insists on providing good, nutritious meals for her or his family."

"The New Traditional Homemaker program has been very successful, and its growth from year to year indicates that success. This year, we selected 51 winners in new Traditional Homemaker contests in all 50 states and the District of Columbia. These winners were successful in conveying to the contest's judges the role frozen foods play in their busy lifestyles. Out of the 51 state winners, five regional winners were selected. And from the five regional winners, one national winner was selected. The national winner for 1987 is Barbara Brier of Bethel Park, Pennsylvania.

"The 1988 search for the New Traditional homemakers will be bigger and better than ever. There will be an expanded number of winners, more prizes, tie-ins with retailers in conducting the search, and greater publicity. We are truly excited about this program and the role it plays in taking the positive message of frozen foods to the consumer," Anderson said.

"AFFI also had an exciting year with our foodservice public and trade relations program. The biggest battle our members are fighting in the foodservice market is the frozen versus the so-called fresh. We've all been reading and hearing about patrons' demand for "fresh" foods, but we also know that frozen foods are vital to maintain a healthy foodservice industry."

"This year, AFFI completed a first step to encourage operators and distributors to reach into their freezers for the good food their patrons demand -- a comprehensive marketing brochure detailing the benefits of frozen foods," Anderson told the group.

"In this brochure, we have addressed the concerns of foodservice marketing decision-makers: menu
trends, pricing and, above all, satisfying the patron. Last month, the brochure was featured in a mailing targeted at 15,000 multi-unit and high-volume individual foodservice operations. Our members are also distributing the brochure to their distributors and operators."

"The 1988 foodservice program has already been developed and it will continue to confront the pressure from so-called fresh produce and meats. The foodservice brochure will be distributed to foodservice menu decision-makers in 1988. The brochure will be offered through direct mail to targeted foodservice operators, publicity placements and advertisements in trade magazines," he said.

Placements on frozen food within the foodservice trade media will support the use of frozen foods in contemporary menus and spotlight their value. A celebrity chef spokesperson will reach key operators and distributors through workshops at regional industry trade shows. A follow-up direct mail piece will continue to generate interest among key decision-makers.

"A videotape will be produced focusing on the marketing of frozen foods in the front-of-the-house. The video will be a companion piece to the foodservice brochure. Also in 1988, we will conduct research to substantiate claims that frozen food's quality is comparable to that of so-called fresh food. The study will be designed to determine whether consumers can tell the difference between fresh and frozen vegetables," he noted.

Effective Government Relations

Another one of AFFI's strengths is in the area of government relations, Anderson told the group.

"The 100th Congress, which began its first session in January of this year, has been one of the most active in recent years on numerous issues affecting the frozen food industry. With the Democrats in control of the Senate and the House of Representatives for the first time since the election of Ronald Reagan as President, the focus on many issues in Congress has changed considerably."

"The Democrats have targeted as top priorities trade measures, plant closing proposals, new taxes on chlorofluorocarbons, restrictions on the use of pesticides, mandated employee benefits, food labeling initiatives, clean water legislation, country-of-origin markings on food products, user fees for meat and poultry inspection and other issues."

AFFI has been actively involved in all of these issues, and many more, he said, outlining the Institute's work on major issues.

He praised the Wisconsin Food Processors Association and other association for excellent work in monitoring state legislative and regulatory activity.

"Those of us in Washington are glad there is an organization in Wisconsin such as the Wisconsin Food Processors Association to keep a keen eye out on behalf of not only Wisconsin processors, but for all of our other members who distribute and sell product here."

"The Wisconsin Food Processors Association is a leader in the very valuable work of state and regional associations working in behalf of food processors. The American Frozen Food Institute has benefitted from a long standing working relationship with your group, especially in matters of legislation, regulation, and food technology," Anderson said.

For more information, contact: Scott Ramminger, American Frozen Food Institute, 1764 Old Meadow Lane, Suite 350, McLean, VA 22102-4399. Telephone: 703-821-0770.

Rapid Methods and Automation in Microbiology

The Eighth International Workshop on Rapid Methods and Automation in Microbiology will be held from July 8 to 15, 1988 at Kansas State University. The workshop is certified by the American Society for Microbiology for Continuing Education Credits.

Some lectures on the agenda include: Introduction to conventional and miniaturized methods Multi-media Diagnostic Kits; Comparative Analysis of Diagnostic Kits; Salmonella Detection-Conventional vs Rapid Methods; Emerging Pathogens-Campylobacter, Listeria, Yersinia, Hemorrhagic E. coli.; Rapid Detection of Microbial Toxins, and a look into the future.

For more information, contact: Dr. Daniel Y.C. Fung, Director, Food Science Graduate Program, Call Hall, Kansas State University, Manhattan, KS 66506. Telephone: 913-532-5654.

Ashland Chemical Company now has available a new bulletin describing its line of high-purity additives and specialties for the production of food and beverages.

Ashland Chemical's Food and Beverage Products Group represents many leading producers and carries a full line of food grade ingredients and additives to meet the needs of the food processing industry. The bulletin contains a representative listing of commonly sold products. Ashland also stocks a wide variety of additional items locally to meet specific market needs.

The bulletin lists the more than 70 warehouses and distribution locations Ashland uses to provide customers with just-in-time delivery service, and describes additional customer support services.

Ashland Chemical Company, a division of Ashland Oil, Inc., is a leading producers and distributor of chemicals and specialty chemicals for industry.

To secure a copy of the new bulletin, write Ashland Chemical Company, PO Box 219, Columbus, OH 43216. Request bulletin #1677. Telephone: 614-889-333.
Record 26,241 Attend Dairy & Food EXPO '87

Food & Dairy EXPO '87 attracted 26,241 attendees to Chicago's McCormick Place North September 26-30, making it the largest show ever produced by Dairy & Food Industries Supply Association (DFISA).

The total controlled attendance record, combined with the record 531 exhibitors on a record 297,185 net sq. ft., helped Food and Dairy EXPO edge Germany's DLG-FoodTec and France's SIEL to become the world's largest exhibition for dairy and pumpable foods.

Food & Dairy EXPO '87, the 45th exposition sponsored by DFISA, has a long and successful history of bringing together Food & Dairy processors and suppliers and "this EXPO was no exception," said DFISA President Robert C. Anderson, Jr. of Anderson Instrument Co. "The show was excellent from every standpoint."

"The exhibitors were extremely happy, and the processors were pleasantly overwhelmed with the scope and array of new ingredients, packaging technology, processing and transportation equipment and services offered to them on the show floor," Anderson said.

Total Processor attendance for the 5-day show was 10,852, compared to 12,065 exhibitors. Included in the total are more than 2,000 international food and dairy processors from 92 countries.

Anderson stated that anyone walking the crowded aisles at the show would have been impressed with the number and variety of exhibits. "Virtually every aspect of the dairy and pumpable food industries was on display at the show," Anderson said.

An on-site survey of processors at EXPO by Robert E. Pitts Ph.D. of DePaul University disclosed that 62% of the processors interviewed reported that Food & Dairy EXPO was the most valuable show available for their needs. Seventy five percent of dairy processors consider EXPO to be the most valuable they attend.

DFISA's Food & Dairy EXPO '89 will be held September 30 through October 4, 1989 at the Anaheim Convention Center, Anaheim, California, U.S.A. For more information, contact: DFISA, 6256 Executive Blvd, Rockville, MD 20852. Telephone: 301-984-1444; Telex: 908706 DFISA ROVE.

MIF/IICA Call FDA Policy "Unwarranted," Urge Adoption of USDA Listeria Testing Program

Calling the U.S. Food and Drug Administration's (FDA) insistence on Class I recalls whenever Listeria monocytogenes is found in dairy products "unwarranted," the Milk Industry Foundation (MIF) and the International Ice Cream Association (IICA) have urged the agency to adopt a testing and enforcement program more similar to that used by the U.S. Department of Agriculture (USDA).

"FDA's listeria policy is clearly unwarranted," says MIF/IICA Executive Vice President E. Linwood Tipton. "It's creating an undue hardship on the dairy industry, a hardship not being faced by other food industries."

"We think the USDA approach is much more reasonable and encourages companies to implement long-term solutions to prevent future listeria problems," says Tipton. "FDA should undertake a review of its current program and adopt the USDA testing and enforcement approach for its monitoring of the dairy industry."

The two government agencies have implemented vastly different testing and enforcement programs for listeria, according to MIF/IICA. FDA monitors the dairy industry; USDA has jurisdiction over the meat industry.

Significant among the differences, says MIF/IICA, is at least a 50-fold size difference in sample quantities tested by the two agencies for the same microorganism. USDA uses a one gram sample of product when testing for listeria, while FDA tests at least 50 grams of product. The larger the quantity of product tested, the greater the probability of testing positive for the microorganism.

MIF/IICA have also taken issue with what it calls FDA's "one bug mentality." FDA has insisted on a Class I recall whenever a positive sample is found, regardless of the extent or level of listeria present in the product.

USDA's listeria testing and enforcement program, on the other hand, calls for the testing of a single monitoring sample. If this sample is positive, USDA does not initiate a recall but, rather, notifies the company and allows it time to correct the problem before six follow-up samples are tested. If the follow-up samples test positive, USDA then initiates regulatory action.

Dairy processing companies have undergone more than 20 Class I recalls, costing over $70 million, since the stringent FDA testing and enforcement program was begun in April 1986. Yet there have been no documented cases of listeriosis traceable to beverage milk or ice cream products.

MIF/IICA requests a review of FDA's program and urged the adoption of the USDA approach in a recent letter to Health and Human Services Secretary Otis R. Bowen and Agriculture Secretary Richard E. Lyng.

For more information, contact: Glenn Witte, MIF/IICA, 888 Sixteenth St., NW, Washington, DC 20006. Telephone: 202-296-4250.
Genetic Engineering Enables Mice to Secrete Human Protein in Milk

By applying the latest techniques of genetic engineering, investigators have induced laboratory mice to secrete in their milk a human protein called tissue plasminogen activator (TPA). The protein, found naturally in human blood, is an experimental anti-clotting agent that shows promise as a treatment for heart attacks and various clotting disorders. The study shows the feasibility of using animal milk as a source for large quantities of certain therapeutic proteins, which are now difficult and expensive to produce. Scientists from the National Institutes of Health, the biomedical research arm of the Federal government, and from Integrated Genetics Inc., a biotechnology company, described the advance in the November 1987 issue of the journal BioTechnology.

This is the first published report in which a research team has, by introducing into mice a combination of human and mouse genetic material, induced the animals to produce a biologically active human therapeutic protein in the milk. By using genetic material that regulates protein production in the mammary glands of mice, the researchers were able to confine the tissue plasminogen activator almost entirely to the milk, causing no harm to the animals or their offspring.

The success with transgenic mice brings scientists one step closer to applying the same technology in animals that produce larger quantities of milk, such as sheep, cows and goats. It is expected that genetic engineering techniques may enable these animals to secrete in their milk large quantities of medically important proteins, such as cardiovascular proteins used in the treatment of heart disease and blood clotting factors used in the treatment of hemophilia. These proteins are now produced by bioengineering methods that are generally more expensive and less efficient, relying on cell cultures or on isolation and purification from animal and human sources.

Integrated Genetics (NASDAQ: INGN) utilizes proprietary techniques based on recombinant DNA technology in the research, development, manufacture and marketing of products for the health and industry. The National Institute of Diabetes & Digestive & Kidney Diseases and the National Institute of Child Health and Human Development are part of the National Institutes of Health, a agency of the Public Health Service under the U.S. Department of Health and Human Services. The mission of the National Institutes of Health is to improve human health care through biomedical research. For more information, contact: Nan DuCharme, Integrated Genetics, Inc., telephone: 617-872-8400.

International Conference on Mastitis to be held in St. Georgen/Langsee, Carinthia, Austria from May 29 - June 2, 1989.

The scientific program of the International Conference on Mastitis will cover the following areas:
1. General aspects of mastitis
2. Current knowledge of cytological aspects of mastitis
3. General view of machine milking
4. Chemotherapy of mastitis
5. Immunology regarding mammary gland
6. Pathogenesis of mastitis
7. Diagnostic methods of mastitis
8. Residues associated with mastitis treatment

Scientists are invited to contribute to the scientific program by presenting a paper or poster respectively on one of the subject mentioned above. Short communication will be preferred.

Participation, paper or poster presentations should be addressed to: Congress Secretariat, Prof. Dr. E. Glawischnig, International Conference on Mastitis, II. Medizinische Universitätsklinik für Klaustiere, der Veterinärmedizinischen Universität in Wien, Linke Bahngasse 11, A-1030 Vienna, Austria. Telephone: 0222/73 55 81 ext. 500, 501.

New Bulletin Describes Food and Beverage Products Available from Ashland Chemical Company

Ashland Chemical Company now has available a new bulletin describing its line of high-purity additives and specialities for the production of food and beverages.

Ashland Chemical's Food and Beverage Products Group represents many leading producers and carries a full line of food grade ingredients and additives to meet the needs of the food processing industry. The bulletin contains a representative listing of commonly sold products. Ashland also stocks a wide variety of additional items locally to meet specific market needs.

The bulletin lists the more than 70 warehouses and distribution locations Ashland uses to provide customers with just-in-time delivery service, and describes additional customer support services. Ashland Chemical Company, a division of Ashland Oil, Inc., is a leading producers and distributor of chemicals and specialty chemicals for industry.

To secure a copy of the new bulletin, write Ashland Chemical Company, PO Box 219, Columbus, OH 43216. Request bulletin #1677. Telephone: 614-889-333.

The American Dairy Products Institute will hold its 2nd Annual Meeting in conjunction with a Dairy Products Technical Conference during the period April 18-21, 1988, at the Chicago O’Hare Marriott Hotel, Chicago, Illinois. The Annual Meeting portion of this program will be held on Monday and Tuesday, April 18 and 19, 1988, and the Technical Conference will take place Wednesday and Thursday, April 20 and 21, 1988. A wide range of subjects will be addressed by knowledgeable industry, state and national government and university speakers.

All evaporated and dry milk and whey products manufacturers, allied industry representatives interested in the processing, marketing, and utilization of these products, government and university representatives and end-products users are invited to attend the meeting.

Additional information about the meeting can be obtained by contacting: Dr. Warren S. Clark, Jr., Executive Director of the American Dairy Products Institute, 130 North Franklin St., Chicago, IL 60606. Telephone: 312-782-4888.

Sonoco Signs Licensing Agreement to Market and Manufacture Versatile Tritello® Food Package

Sonoco Products Company has signed a licensing agreement with Akerlund & Rausing of Lund, Sweden, to manufacture and market the Tritello® food container in Canada, Mexico and the U.S. Production is expected to begin Spring 1988.

Tritello, a popular European food package, is a versatile, value-added paper/plastic container with a wide variety of single and multiple serving applications. Appropriate end uses include frozen and chilled foods, dairy products and deli foods. It is available in a wide range of shapes and sizes, is tamper-resistant and brings attractive, table-ready convenience to the consumer.

The package consists of a thermoformed plastic liner heat sealed to a preprinted paperboard exterior. The printable paperboard exterior adds rigidity to the container and provides excellent graphic possibilities on a six surfaces, a key marketing advantage in today’s competitive product environment.

The Tritello container can be hot or cold filled and will be developed to withstand cooking in both microwave and conventional ovens.

For more information, contact: Charles Coker, Jr., TablePac Group™, Sonoco Products Company, North Second Street, Hartsville, SC 29550. Telephone: 803-383-7000.

A Visit to Ames by Chief Sanitarian of the Sanitarian Professional Advisory Committee

Dr. Greswaldo A. Verrone visited the Ames office in November and met with Kathy Hathaway, Executive Manager of IAMFES. He would like to convey to other sanitarians the importance of belonging to an association such as IAMFES and feels the benefits are endless.

Food Labels and Food Safety

Most products in food stores have dates and handling directions on them, even though manufacturers are not required to put this information on packaging.

"The date stamped on product packages can indicate product freshness and serve as a guide to safe storage time, if you know how to use it," says Marilyn Haggard, a Texas A&M University Agricultural Extension Service nutrition specialist.

She explains that the "sell-by" date is the last day the product should be sold, the "use-by" date indicates how long the product will retain top eating quality after purchase, and the "expiration date" tells the last day the food should be eaten or used.

"Reading handling directions can also help you make sure food remains safe to eat," says the specialist.

All perishable products must give handling instructions, such as "keep frozen" or "keep refrigerated," notes Haggard. Some meat and poultry products may be labeled "ready-to-eat" or "fully cooked," which means no further cooking is necessary.

The specialist advises checking the labels of aseptically packaged products, since many will require refrigeration after opening.

"Although some product labels carry directions on how long and at what temperature to cook a product, the directions are not required or verified by the U.S. Department of Agriculture," she remarks.

"When cooking instructions are not included on the label or you have some doubts about them, the safest course is to cook the product thoroughly," Haggard adds.

For more information, contact: Marilyn Haggard, Texas A&M University, College Station, TX. Telephone: 409-845-1735.
Salmonella Testing

It's a step you routinely take to assure the safety of your product. And waiting for test results is costly. That's why using a 2-day test can save you time and money.

Minnesota Valley Testing Laboratory will identify routine negative Salmonella samples in just 2 days with an AOAC (Association of Official Analytical Chemists) approved testing method.

Rapid analysis means you can ship product 3 days sooner. So, there's increased shelf life, distribution flexibility and lower warehousing costs. MVTL's fast, accurate results help you respond to your customers' needs — quickly.

So why wait 5 days for the other guy to identify routine negatives when MVTL can give you an answer in just 2 days?

Call MVTL (507) 354-8517 or (800) 782-3557 in Minnesota, for more information.

Copyright © 1986 Minnesota Valley Testing Laboratory
New Product News

The products included herein are not necessarily endorsed by Dairy and Food Sanitation.

Pre-Washed VOA Vials Available

- Scientific Specialties, Inc. is offering its line of pre-washed VOA Vials for use in water determination and similar work, and other glass vials, bottles, jars, and culture tubes in its new catalog/price list #887.

The new catalog/price list which will be sent on request to interested readers, covers the complete line of Sci/Spec Teflon® Capliners which range in size from 5/16" thru 7" in standard (non-adhesive, pressure-fit) Teflon®, A-B (adhesive-backed) Teflon®, and Septraseal (Silicone/Teflon®) Septa; as well as glass vials, bottles, jars, and culture tubes with various closures (Teflon® lined caps, Teflon® Silicone Septa with closed-top or open-top caps, regular pulp and saran lined caps, etc.).

The new catalog also includes Teflon® Sealing tapes in roll widths from 3/8" up to 7" and Teflon® Pressure Sensitive Tapes in roll widths from 1/4" up to 12" for laboratory and industrial uses.

Scientific Specialties Service, Inc. is a manufacturer and distributor of plastic and glass containment products to the health research and environmental control areas.

For additional information, contact: S. Leonard Grebow, Product Manager, Scientific Specialties Service, Inc., PO Box 352, Randallstown, MD 21133. Telephone: 301-964-9666.

Please circle No. 280 on your Reader Service Card

Roper Sanitary Rotary Lobe Pump

- Responding to the needs of today's growing food and pharmaceutical industries, Roper Pump Company is introducing a sanitary rotary lobe pump designed to meet their exacting demands.

This Roper sanitary positive displacement pump incorporates the elements critical to food and drug applications and is the first rotary lobe pump available with the choice of manually cleaned, CIP (cleaned-in-place) or aseptic liquid ends.

Available in 17 models, the Roper sanitary rotary lobe pump is 3A-approved and meets all FDA specifications.

All the wearing parts of the pump are in a single-assembly cartridge, allowing easy onsite repairs.

The first stainless steel rotary lobe pump was introduced in England by the Howard Pump Company in 1932 and models over the years have been successful in European and Japanese sanitary pump markets.

Roper Pump Company has identified the Howard Pump Company as the manufacturer of the highest quality line of fully sanitary rotary lobe pumps to offer the United States market.

FEATURES

- Seventeen 3A-approved models
- Meets all FDA specifications
- Handles viscosities from 1 to 1,000,000 cps
- Handles temperatures from -40°F to 400°F
- Handles pressures up to 300 psi for maximum capacities of 1,000 GPM
- Hygienic fully swept AISI 1316 stainless steel pumping chamber
- Vacuum extraction down to 720 mm Hg
- Delivers capacity to 3,700 litres/minute

The Roper Pump Company, located in Commerce, GA, has provided a wide range of pumps for more than 135 years. Jeff Markham, Roper's vice president of sales and marketing said, "The addition of the sanitary rotary lobe pump allows Roper to provide a time-tested product of unmatched quality to industries who rightfully demand reliability, durability, and quality." He added, "This is a new product on the U.S. market but it is backed, as all Roper pumps are, by our nationwide network of distributors and the Roper team of application engineers."

For further information, contact: Pat Kerley, Sawyer Riley Compton, Inc., PO Box "0", Gainesville, GA 30503. Telephone: 404-532-6285.

Please circle No. 281 on your Reader Service Card

Tectron Engineering

- Tectron Engineering, recognized for years as a leader in metal detection for the mining and aggregate industries, is pleased to introduce its small particle detector, the Model 5500.

The Model 5500 is a high sensitivity metal detector specifically designed for use in any process flow where the detection of small pieces of metal is required. Tectron Engineering has successfully applied its pulsed eddy current technology, previously used only in heavy industry, to small particle detection. With this unique capability, the Model 5500 detects magnetic, non-magnetic, ferrous and non-ferrous metals without the need to continually adjust for conductive product content such as salt or moisture. Special features also include the detection of metal contaminant in metalized mylar film packages.

No belt cutting is required for installation, therefore Tectron detectors conveniently mount on existing conveyor systems. The Model 5500 also features field replaceable electronics for reliability and ease of maintenance. Each detector is fabricated and calibrated to suit the user's particular application. U.S.D.A. approved detector and conveyor combinations are available.

For more information, contact: Tectron Engineering, PO Box 19629, Irvine, CA 92713. Telephone: 714-855-9867.

Please circle No. 283 on your Reader Service Card
New Concept in Air Filters

• A new type extended surface air filter being introduced by Airguard Industries, Inc. is designed to increase dust retention by 15% and provide a commensurate longer life cycle. Type DP is the name of the new 2" disposable air filter which features individual die cut fingers, separating and reinforcing each pleat. The fingers, which are an integral part of the frame, enhance overall filter rigidity and maintain pleat alignment under extreme velocity, turbulence or other demanding application conditions.

Airguard Industries’ new DP pleat reinforcing finger design allows reduction of the filter edge flange, thereby offering maximum utilization of the entire filter’s cellular surface area. Type DP extended surface filters have been tested under ASHRAE STANDARD 52-76 to deliver up to 2500 CFM. The new product is offered for use in areas requiring a higher degree of air cleanliness, but, where cost or space limitations prevent system modifications.

Airguard Industries’ new DP pleat reinforcing finger design allows reduction of the filter edge flange, thereby offering maximum utilization of the entire filter’s cellular surface area. Type DP extended surface filters have been tested under ASHRAE STANDARD 52-76 to deliver up to 2500 CFM. The new product is offered for use in areas requiring a higher degree of air cleanliness, but, where cost or space limitations prevent system modifications. Type DP filters are available in two efficiency ranges and a wide range of standard sizes from Airguard distributors.

Airguard Industries, Inc., with corporate headquarters located in Louisville, Kentucky, is a major producer of after market air filtration supplies. Continuing product development at Airguard Research Center has evolved an air filter replacement supply line to meet customer needs regardless of the original equipment installed. Product distribution is worldwide.

For further information, contact: Jim French, Manager, Marketing Systems, Airguard Industries, Inc., PO Box 32578, 3807 Bishop Lane, Louisville, KY 40232. Telephone: 502-969-2304.

Please circle No. 284 on your Reader Service Card

Jilson Heavy Duty Stainless Steel Casters

• Jilson, Casters, Inc. has just introduced a new line of heavy duty stainless steel casters. Every single metal part - housing, top plate, swivel balls, raceways, axle, bushing, stem, kingpin - is made of corrosion resistant stainless steel.

Wheels have corrosion proof plastic hubs. Standard tire materials include black cushion rubber, solid white nylon or durable resilient polyurethane. Other tire materials are available and include grey cushion rubber, SuperSoft shock absorbing rubber and phenolic.

Jilson heavy duty stainless steel casters are available in free swiveling or stationary designs. The swivel caster can also be supplied with our patented Maxi-Lok brake mechanism. The Maxi-Lok simultaneously brakes the wheel and locks the swivel head in any position, thus holding the equipment firmly in place.

Jilson stainless steel casters are available in wheel diameters of from 3" to 8" and in capacities up to 550 lbs. Jilson also offers a complete line of carbon steel casters with capacities up to 20,000 lb. For more information, please contact: Lloyd Astmann, Jilson Casters, Inc., 20 Industrial Road, Lodi, NJ 07644-2608. Telephone: 201-471-2400.

Please circle No. 241 on your Reader Service Card

FUNCTIONAL COLORS: The Rhapsody Color Collection Provides New Options for Interiors

• When Stark Ceramics decided to introduce a new line of structural glazed facing tile (SGFT), we wanted the product to meet functional, aesthetic, FDA, and human response considerations.

Called the Rhapsody Color Collection, Stark’s new SGFT line was introduced in June at the American Institute of Architects annual convention in Orlando, Florida. The new line is designed for food processing plants, including canneries, meat packers, dairies, commissaries, and similar facilities where durability sanitation and very low maintenance are requirements.

Integrity of design is ensured because the Rhapsody colors remain true for the life of the structure. The ceramic glazes won’t peel, fade or discolor. In addition, the extremely hard, impervious glazed finish stands up to lactic acid and repeated steam cleaning. Hard-to-remove stains wipe clean with soap and water.

The finish hardness prevents keys, common knives and other ordinary wear from scratching the SGFT surface. Also, cigarettes, matches and lighter flame cannot mar the finishes, which are fired at temperatures in excess of 2,000 degrees F.

Stark’s SGFT product is UL-listed at zero flame spread and zero smoke development. The finishes and their clay bodies are completely fire safe and won’t produce toxic smoke.

Located in Canton, Ohio, Stark Ceramics is the country’s largest manufacturer of structural glazed facing tile. The company’s three automated kilns also produce the Millennium Collection exterior masonry units and large-scale brick.

For more information, contact: Stark Ceramics, Inc., PO Box 8880, Canton, OH 44711. Telephone: 216-488-1211.

Please circle No. 242 on your Reader Service Card
Another Hazard in Undercooked Pork

For decades, the concern with undercooked pork has been the potential development of trichinosis. As a result of such caution, this disease is relatively rare in the United States today. Moreover, U.S. pork producers - through more stringent inspection and improved animal breeding - are working toward meat certified as trichina-free, notes Veterinarian Jitender P. Dubey of the Agriculture Department’s Animal Parasitology Institute in Beltsville, MD.

These trends worry him because they may lead to complacency, and this is especially dangerous, he suggests, because a study he and his colleagues recently completed indicates that undercooked pork can harbor a far more serious potential health hazard than trichinosis.

The researchers recently reported the first finding of the protozoa Toxoplasma gondii in commercial cuts of pork. Like the parasitic trichinia worm, T. gondii can be killed by cooking meat or edible organs (like brain and heart) to an internal temperature of 158 degrees F. However, with trichinosis scares on the move, Dubey worries that consumers may be tempted to serve rarer pork - a practice that has been advocated in some areas of the world, including France.

Humans ingesting the live T. gondii parasite may contact toxoplasmosis. In a developing fetus or an immunocompromised individual, including those with AIDS or undergoing cancer therapy, this disease can eventually lead to blindness, mental retardation, even death. Of the estimated 3,300 U.S. infants born each year with this infection (contracted through the mother), about 6 percent soon die, according to National Institute of Health sponsored research. How many of the rest develop related problems later in life is not known.

Implications of the new pork findings are described in a related report by Dubey in the July 15 Journal of the American Veterinary Medical Association (in the May 1 issue of the journal, Dubey’s group reported the initial discovery of T. gondii in pork). According to Dubey, an estimated one in three pigs may be infected with the parasite. Though cat feces have long been considered the leading source of human infection, Dubey notes in the new report that French pork may be the main meat source of T. gondii infection in the United States. However, he says, because an estimated 6 percent of all hamburger may also be contaminated with pork during grinding, many people who eat rare or raw ground beef may also risk picking up the T. gondii infection.

NYSMFS Newsletter 3/87.

Microbiological Standards of Imported Foods

John P. Schrade
Supervisory Microbiologist - FDA
NY Regional Laboratory
840 Third Avenue
Brooklyn, NY

The New York District of the Food & Drug Administration has concentrated efforts to more closely focus on imported commodities coming into this country. More than 30% of the nation’s imported commodities are entered through the ports of New York and Newark including JFK & Newark International Airports. These areas handle more than 45 billion dollars worth of goods yearly, of which approximately 5 billion dollars are of food products. The greatest volume of food products include cheeses, tea, seafood, spices, nutmeats and fresh fruits and vegetables.

Since FDA receives more than 1500 entries per day, several factors are taken into consideration for sample collection and examination. These include the history of the commodity, the shipper and the importer; import alerts which are headquarters’ generated notices identifying current or emerging problems; blocklists which are lists of products identified for automatic detention based upon a violative history; detention lists which show products that were detained by other FDA Districts. Samples of imported commodities are examined for pesticides, filth, aflatoxins, heavy metals, phosphatase, decomposition and a diversity of microbiological tests.

Recent problems with imported cheese necessitated FDA to undertake an extensive survey of all soft and semi-soft cheeses. During the past 8 months, more than 1000 samples were examined for Listeria monocytogenes. E. coli, and Enteropathogenic E. coli of which 23 were found to be in violation. The testing of seafood products for Salmonella sp. is also a high priority. Violative analytical findings have resulted in a blocklisting of certain shrimp packers in India, Pakistan, Japan, Taiwan, Thailand, Bangladesh and Indonesia. Black pepper from Brazil has also been blocklisted because of Salmonella sp. contamination. Imported canned foods are routinely examined for Clostridium botulinum and its toxin. Analysis includes gas chromatograph testing of any headspace gases and a thorough examination of the can seams. The Microbiology for Pseudomonas sp. and drugs and devices for sterility.

Outbreak of Occupational Hepatitis—Connecticut

On September 28, 1986, a previously healthy, 40-year-old male factory worker who had experienced several days of abdominal pain and nausea was seen at the emergency room at Yale-New Haven Hospital, New Haven, Connecticut. Liver function tests revealed an elevated aspartate aminotransferase (AST) level of 949 U/L (normal = <35 U/L). Alkaline phosphatase and bilirubin assays were all normal. Hepatitis A IgM antibody and hepatitis B surface antigen and antibody were negative, as was an abdominal ultrasound.

Further history revealed that the patient had become ill after working for <2 weeks at a plant where fabrics are coated with a polyurethane polymer. He had no history of significant alcohol use or blood transfusions. When the patient was removed from the workplace, his symptoms resolved. Subsequent liver function tests have revealed partial resolution of his hepatitis. However, 2 months later, his alanine aminotransferase (ALT) level was still elevated at 207 U/L (normal = <32 U/L), and his AST level was 49 U/L. Within 1 month, three other co-workers were seen with similar symptoms and liver enzyme abnormalities.

Inspection of the patients’ workplace showed that large quantities of dimethylformamide (DMF), a solvent which is widely used in manufacturing acrylic fibers and polyurethanes, were being used in poorly ventilated areas. DMF and smaller quantities of other solvents including toluene; methyl ethyl ketone; and 1,1,1 trichloroethylene were mixed with polyurethane polymer, coated onto the fabric, and then evaporated from the polyurethane-coated fabric as it dried. The company has 66 employees, most of whom work directly in the production of polyurethane-coated materials. The employees are generally young (mean age = 35 years) and healthy.

Forty-five of the employees agreed to have liver screening tests, including AST, ALT, bilirubin, Y-glutamyl transpeptidase (GGT), alkaline phosphatase, and lactate dehydrogenase. Thirty of the 45 employees screened had elevated levels of AST, ALT, or GGT. Eleven had elevations that were more than twice the normal level for one or more of these liver enzymes. In all but one employee, the ALT level was greater than the AST level. In addition, workers directly involved with producing the polyurethane-coated material had higher liver enzyme elevations than did nonproduction workers.

Based on these findings, the professional staff at the Yale Occupational Medicine Program urged immediate termination of the production process until protective engineering controls had been adequately installed. These instructions have been followed. This cohort of workers will be followed to help ascertain whether DMF causes chronic liver damage.

Editorial Note: Although the hepatotoxic effects of industrial chemicals such as carbon tetrachloride (CCl₄), chlordane (kepone), and monovinyl chloride are widely known, occupationally induced liver disease is regarded by some as a historic problem. However, there is continuing evidence that chemically induced hepatic disease is an important occupational health problem for selected U.S. workers. This outbreak of subacute hepatic disease, occurring during routine workplace exposure to DMF, without evidence of a chemical spill or accidental release, further, emphasizes the importance of this problem.

Because of its excellent solvent properties and lack of volatility, DMF, is widely used in manufacturing polymerized films, fibers, and coatings, particularly in acrylic and spandex fabrics. It is readily absorbed through the skin and lungs, metabolized by the liver, and excreted in urine. In several earlier toxicologic assays, chronic exposure to DMF produced liver abnormalities in cats, rats, mice, and dogs. When these occurred, air concentrations were above the current federally permissible exposure limit (PEL) of 10 parts per million. There have been several reported cases of human liver injury accompanied by abdominal pain and elevated hepatic transaminases, but these have been attributed to accidental overexposures. An antabuse-like reaction of flushing and dizziness, caused by coincident ethanol ingestion, has also been described among DMF workers, but without measurable liver injury.
Since two-thirds of the tested employees had elevated liver enzymes even though there was no documentation of recent or chronic liver infection for any of them, this outbreak raises concerns about whether DMF poses a significant and overlooked human health hazard or whether other agents or factors could be responsible. When introduced independently, the other solvents used (methyl ethyl ketone; toluene; and 1,1,1 trichloroethane) have been only minimally associated with human or animal liver toxicity. A potentiating effect is indeed possible, however. Liver damage, induced by the well-known hepatotoxin carbon tetrachloride, can be aggravated by simultaneous exposure to a variety of organic chemicals of lesser or immeasurable hepatotoxicity.

There are precedents that reinforce the possibility that serious human hepatotoxins may not have yet been recognized. For some of the most severe occupational hepatotoxins, such as trinitrotoluene, dimethylnitrosamine, polychlorinated biphenyls, and tetrachloroethane, the epidemiologic identification of human liver disease preceded an adequate exploration of animal hepatotoxicity. On the other hand, human liver disease from the organochloride insecticide, kepone, reached national attention through reports in the lay press in the mid-1970s, although parallel animal toxicities had been demonstrated a decade earlier.

Adverse human effects from DMF and other dimethylamides merit a much closer look. Perhaps this review should also include the classes of halogenated hydrocarbons and nitroaromatics from which the most damaging identified hepatotoxins have emerged.

MMWR 2-27-87.

Update: Salmonella enteritidis infections in the Northeastern United States

New England and the Middle Atlantic region experienced a fivefold increase in the reported isolation rate of Salmonella enteritidis between 1976 and 1985. Consequently, a regional S. enteritis Working Group was established in 1986 to coordinate investigations of recent outbreaks and related studies suggest that many S. enteritidis infections in the Northeast are associated with eggs.

Fourteen S. enteritidis outbreaks have been reported to CDC from the Northeast since October 1, 1986. The vehicles of transmission have been identified for 10 of the outbreaks. At least six of these vehicles were either eggs or foods which contained raw or undercooked eggs (homemade eggnog prepared with store-bought eggs, Monte Cristo sandwiches made of sliced cooked meat and cheese on bread dipped in raw egg and grilled, and Caesar salad dressing made with raw eggs). The outbreak-associated eggs were all USDA grade A shell eggs, and, in each instance, the food preparation history suggested the eggs were eaten raw or undercooked. The outbreak-associated eggs were not available for culture. However, in an outbreak associated with riceballs (made with eggs) in September 1986, S. enteritidis was cultured from an egg-breaking machine in the restaurant involved.

Editorial Note: Salmonellosis associated with eggs is not a new problem. Large outbreaks of salmonellosis associated with bulk egg products and cracked shell eggs led to the passage of the Egg Products Inspection Act in 1970. This law required pasteurization of all bulk egg products and federally-supervised inspection of shell eggs for "checks" or cracks. Since enactment of this legislation, there have been fewer egg-associated outbreaks of salmonellosis and CDC has not received any reports of outbreaks associated with bulk egg products.

These recent outbreaks suggest that egg-associated S. enteritidis is an emerging public health problem and show the importance of routine serotype-specific surveillance. Eggs can become contaminated with Salmonella in several ways. Fecal soiling may contaminate egg shells, and the internal contents of the egg may occasionally be contaminated by organisms entering through hairline cracks in the shell. In addition, if there is an ovarian infection in the hen, an egg yolk may become infected by certain serotypes of Salmonella before the shell is formed. It is not known whether S. enteritidis is one such serotype.

As is true for meat, poultry, raw milk, and other raw foods of animal origin, proper handling and cooking of eggs can minimize the risk of salmonellosis. Thorough cooking kills Salmonella. Consumers concerned about the proper handling of egg-containing foods should contact their county extension home economist or call the USDA Meat and Poultry Hotline (800-535-4555). Further research is needed to understand the ecology of Salmonella colonization in poultry and other food-animal species and to determine ways to further reduce the contamination of eggs and other foods derived from animals.

Clinicians are encouraged to report cases of salmonellosis to their state health department. Isolates of Salmonella can be submitted to state laboratories for serotyping to support epidemiologic investigations.

MMWR 4-10-87.
International Association of Milk, Food & Environmental Sanitarians, Inc.
Exhibit Information

75th Annual Meeting
Hyatt Regency Westshore, Tampa, FL
July 31-Aug. 4, 1988

Tabletop Display Hours

<table>
<thead>
<tr>
<th>Set-up</th>
<th>June 31</th>
<th>Noon-5 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Sunday</td>
<td>8-10 p.m.</td>
</tr>
<tr>
<td>Monday, Aug. 1</td>
<td>8-9 a.m.; 11:30 a.m.-1:30 p.m. and during a.m. & p.m. refreshment breaks</td>
<td></td>
</tr>
<tr>
<td>Tuesday, Aug. 2</td>
<td>11:30 a.m.-1:30 p.m. and during a.m. & p.m. refreshment breaks</td>
<td></td>
</tr>
<tr>
<td>Wednesday, Aug. 3</td>
<td>11:30 a.m.-1:30 p.m. and during a.m. refreshment break</td>
<td></td>
</tr>
</tbody>
</table>

| Tear-Down | Wednesday, Aug. 3 | 1:30 p.m. (not before) |

Call and Reserve Your Tabletop Display Space Now

$400 each IAMFES Sustaining Members (current for 1988)
$475 each IAMFES Members (current for 1988)
$600 each Non-IAMFES Members

Closing Dates:

May 1 Deadline for payment in full to guarantee listing in the July Convention Issue of Dairy and Food Sanitation and Journal of Food Protection. (Orders after this date are not guaranteed preconvention publicity.)

June 1 Deadline for listing in Program.

A full refund will be made for all space cancelled on or before April 1, 1988. A fifty percent refund will be made for space on or before May 1, 1988. No refund after June 1, 1988.

For More Information Contact IAMFES, P.O. Box 701, Ames, IA 50010 or call Kate Wachtel at 515-232-6699, outside Iowa 800-525-5223.
GAFES Sponsors Salmonella Meeting

Recently, the Georgia Association of Food and Environmental Sanitarians co-sponsored a symposium with Georgia State University entitled: "Salmonella Control in the Food Industry -- Poultry Industry Experience". The meeting was held on September 18, 1987 at Georgia State University in Atlanta. Ninety-four persons attended the meeting which featured a number of renowned speakers presenting various aspects of the Salmonella problem in the poultry industry. Topics included: the role of USDA in inspecting processing plants, research projects for controlling Salmonella, processing in developing countries, radiation methods for Salmonella control and other topics.

This was the second symposium sponsored by the GAFES organization during its charter year. During the meeting, 22 new members joined the ranks of this up and coming Georgia organization bringing the total membership to over one-hundred individuals. During a brief business meeting, David Fry presented to Stan Skelskie, GAFES President, the IAMFES affiliate charter thereby proclaiming GAFES as a sanctioned affiliate of the International Association of Milk, Food and Environmental Sanitarians.

During a November 10, 1987 executive meeting, the second GAFES annual meeting was planned for February 19, 1988 at the Russell Research Center in Athens. The theme of the meeting will be "Current Sanitation Problems in the Food Industry."

In the presence of the GAFES Executive Committee members, David Fry of the organization presents the IAMFES affiliate charter to GAFES President Stan Skelskie.

Dr. George Giddings (2nd from left) of Isomedix, Inc., fields a question during the panel discussion segment of the GAFES Salmonella Control symposium. Also pictured are: L. C. Blankenship (far left), GAFES President Stan Skelskie (2nd from right) and Stan Bailey (far right).

Affiliate Calendar

1988

February 16-17, KAMFES 1988 ANNUAL CONFERENCE to be held at the Ramada Convention Center, 9700 Bluegrass Pkwy, Louisville, KY. For more information, contact: Dale Marcum, 108-A Sunset Ave, Richmond, KY 40475.

February 19, GEORGIA ASSOCIATION OF FOOD AND ENVIRONMENTAL SANITARIANS 2ND ANNUAL MEETING, for more information contact Dr. Robert E. Brackett, GAFES secretary, Department of Food Science/University of Georgia Experiment Station/Experiment, Georgia 30212/404-228-7284.

February 24-26, MICHIGAN ENVIRONMENTAL HEALTH ASSOCIATION 44TH ANNUAL EDUCATIONAL CONFERENCE to be held at the Grand Traverse Inn, Acme, MI. For more information, contact: Ike Volkers, R.S., Michigan Dept. of Public Health, Bureau of Environmental and Occupational Health, PO Box 30035, Lansing, MI 48909. Telephone: 517-335-8268.

March 1-2, VIRGINIA ASSOCIATION OF SANITARIANS AND DAIRY FIELDMAN'S ANNUAL MEETING AND DAIRY INDUSTRY WORKSHOP will be held at Virginia Polytechnic Institute and State University, Blacksburg, VA. For more information, contact: W. J. Farley, Rt. 1, box 247, Staunton, VA 24401.

April 6-8, MISSOURI MILK, FOOD AND ENVIRONMENTAL HEALTH CONFERENCE will be held at the Holiday Inn Executive Center, Columbia, Missouri. For more information, contact: Grace Steinke, 9713 Fall Ridge Trail, Sunset Hills, MO 63127-1508.

April 14-15, THE FIRST ORGANIZATIONAL ANNUAL MEETING OF THE PROPOSED NEBRASKA AFFILIATE will be held in Lincoln, Nebraska. Sessions will begin at noon on the 14th and end at noon on the 15th. For more information, contact: Nancy Bremer, State Dept. of Agric., 3703 So. 14th St., Lincoln, NE 68502. Telephone: 402-471-2176.

May 16-18, THE PA DAIRY SANITARIANS & LABORATORY DIRECTORS ANNUAL MEETING, to be held at Penn State University. For more information, contact: Sidney Barnard, Food Science Extension Specialist-Dairy, 8 Borland Laboratory, Penn State Univ., University Park, PA 16801. Telephone: 814-863-3915.

September 27-29, NEW YORK STATE ASSOCIATION OF MILK AND FOOD SANITARIANS annual meeting will be held in Binghamton, NY. For more information, contact: Paul Dersam, telephone: 716-937-3432.

September 29-30, SOUTH DAKOTA STATE DAIRY ASSOCIATION will hold its annual convention at the Holiday Inn, Brookings, SD. For additional information, contact: Shirley W. Sears, Dairy Science Dept., SD State University, Brookings, SD 57007. Telephone: 605-688-5480.

Dr. L. C. Blankenship of the USDA, Athens, Georgia discusses research towards Salmonella Control at the GAFES sponsored symposium.
Tennessee Association of Milk, Water and Food Protection Holds Annual Meeting

The Tennessee Association of Milk, Water and Food Protection met at the Garden Plaza Hotel, Johnson City, on November 4 and 5. Some of the topics presented at the conference included: Dairy Plant Quality Assurance Programs, Animal Products - Are They Healthy?, USDA Manufacturing Milk Program, and Mastitis Prevention Programs. The second day of the conference included a tour of Valleybrook Farm.
From a member of the Florida Association of Milk, Food and Environmental Sanitarians, Inc.

ODE TO EMERGING PATHOGENS*

by R.H. Schmidt, Poet Lariat

Our dairy industry was naive in the year '83.
At least we thought we were fairly pathogen-free.
Then salmonella in midwest
Gave us a real test.
But, we were still unaware of the future to be.

Then sudden movement from the land primed for the quake.
Movement to cause our whole food industry to shake.
They were not dancing calipso
In this cheese, Jalisco
Using raw milk may have been their first mistake.

Now the feds have come swabbing so tedious;
Using the most exotic of medias.
Taking great pains
They are checking those drains.
And publishing recalls in news medias.

Next came concern for salmonella in chickens.
Should we be careful with our finger lickin.
What we saw on the telly
Turned everyone's belly.
And now USDA samples they're pickin.

So let's turn to foods from the sea.
What problems could there possibly be.
Raw oysters; So macho;
With tabasco and a nacho.
From now on they'll steam 'em for me.

Are they really just emerging?
All those bacteria we hope to be sparging?
Their actual number remain low.
At least we think so!!??
From that standpoint, life is encouraging.

*Presented as part of talk on emerging pathogens at Florida Sect. IFT meeting.
New Members

Alabama

Robert T. Ferguson
Jefferson Co. Hlth Dept.
Birmingham

Lee Jeter
Univ. of Alabama
Tuscaloosa

Arizona

Gary M. Reed
Scientific Growth, Inc.
Tempe

California

Barbara Baker
Carriage House Foods
San Jose

Maryknoll Bloss
Taco Bell
Irvine

Dina Barros-Ellorin
County of San Diego
San Diego

Steven Cooper
Calif. Milk Producers
Artesia

Richard M. Grigsby
Calif. Milk Producers
El Toro

Jon D. Huber
The National Food Lab
Dublin

Richard Wickenheiser
Tehama Co. Envir. Hlth
Red Bluff

Colorado

Timothy McConnell
Longmont Foods
Longmont

Rick E. Tangans
U.S. Air Force
Colorado Springs

D.C.

Geraldine Allen
FDA
Washington

Florida

Chet England
Burger King Corp.
Miami

Georgia

Alberto Bazan
MURZAN, Inc.
Norcross

Illinois

Meitzu Chen
Ludwig Dairy
Dixon

Peter Futris
Dove International
Burr Ridge

Indiana

Ranga Jayasiri Premaratne
Purdue Univ.
West Lafayette

Wei-Tsyi E. Ting
Purdue Univ.
Highland

Iowa

Gitanjali Prabhu
Iowa State Univ.
Ames

Larry E. Erickson
Kansas State Univ.
Manhattan

Ben Kleinpeter
Kleinpeter Farms Dairy
Baton Rouge

Russell F. Hanson
US Army
Edgewood

Michael Kasnia
Marriott In-Flite
Baltimore

Massachusetts

Annette D’Antoni
Baader North America Corp.
New Bedford

August R. Peters
Garelick Farms, Inc.
Franklin

Michigan

Cheng-Hsiung Chen
Michigan State Univ.
East Lansing

Glen Davis
Everfresh Juice Co.
Warren
Richard McDaniels
Northville Labs, Inc.
Northville

Debra Tanouge
Pure Pak, Inc.
Walled Lake

Mark Uebersax
Michigan State Univ.
East Lansing

New Jersey

Kuen Ho Lee
T.J. Lipton
Englewood Cliffs

Catherine Ramsay
Bactomatic, Inc.
Princeton

New York

Sid Harrison
Canton ATC
Canton

Donald J. Lynch
Cornell Univ.
Ithaca

Cary P. Tremble
Crowley Foods, Inc.
Binghamton

Carol Zamojcin
Alcide Corp.
Farmingdale

Pennsylvania

Bob Bailey
Greens Dairy
York

Sandy Erickson
Klondike Hanover
Hanover

William Garfield
H.J. Heinz
Pittsburgh

Robert L. Schmieder
Weis Markets, Inc.
Sunbury

Minnesota

Pat Garrett
Pearson Candy Co.
St. Paul

Forest Kenworthy
Spring Valley Cheese
Rochester

Vicki Schueller
MN Valley Testing Lab
New Ulm

Missouri

James R. Cloud
Pevely Dairy Co.
St. Louis

Karla Degginger
Star Blends, Inc.
St. Joseph

Ohio

Robert Aleshire
Columbus

Kathy A. Rebensdorf
Pierre Frozen Foods
Cincinnati

Thomas L. Romick
Stouffer Foods Corp.
Solon

South Dakota

Howard H. Bonnemann
Gillette Dairy
Rapid City

Robert Middaugh
SD State Univ.
Brookings

Tennessee

Ed Miller
Lewisburg

Texas

Tom Foegle
Yoplait USA
Addison

William J. Hanson
Dexide, Inc.
Ft. Worth

Forrest Seale
ScieTech Market Source, Inc.
San Antonio

Nebraska

King-Thom Chung
USDA
Clay Center

Kathleen S. Richter
Univ. of Nebraska
Lincoln

Oregon

Samuel E. Beattie
Oregon State Univ.
Corvallis
Utah

Dale Marx
Bureau of Drinking Water/Sanitation
Salt Lake City

Virginia

Michael Campbell
Henrico Co. Hlth Dept.
Richmond

Robert E. Jakubowski
Vie de France Corp.
McLean

Washington

Douglas Schultz
Great Western Chemical
Auburn

Wisconsin

Mahmoud Buazzi
Univ. of Wisconsin
Madison

David L. Hamm
Land O’ Lakes
Eau Claire

Theresa Hammelman
Univ. of Wisconsin
Madison

James L. Mayer
Vanguard Process Systems, Inc.
Eau Claire

Barbara Miller
Land O’ Lakes
Eau Claire

James L. Reigel
Paget Equipment Co.,
Marshfield

Cathy Scheibel
Doskocil Foods
Jefferson

Ken Sherlock
Twin Town Cheese Factory
Almena

Peter J. Stanley
Vanguard Process Systems, Inc.
Eau Claire

Alan Troullier
City of Manitowoc
Manitowoc

Canada

Jean-Marc Delort
Stouffer’s
Trenton, Ontario

Sylvian Desilets
ANALEX, Inc.
Chomedey-Lavel, Quebec

P.R. Flockton
Dickey-John Canada, Inc.
Cornwall, Ontario

Donald E. Murray
Univ. of Manitoba
Winnipeg, Manitoba

Bill Richards
Gay Lea Foods Ltd.
Guelph, Ontario

Dan Richen
Drumheller Hlth Unit
Drumheller, Alberta

Florence C. MacLachlan
Farmers Cheese Division
Truro, Nova Scotia

England

Peter Jones
UB Brands
Middlesex

Mexico

Lauro Angulo Gutierrez
Vimifos de Sonora
CD. Obregon

Wilimina Plascencia Sanchez
Nacional de Dulces
El Salto

Based on literature search and limited diet and chemical analyses, the United Kingdom (U.K.) Research team has estimated intake average and extreme consumption of Nitrogenous products and formulated plans for further investigations.

In normal diets, estimated intake of nitrates is 61 grams, nitrite < 1 gram, and N-nitrosodimethylamine up to 0.6 micrograms per person per day. In extremes, these dietary intakes may double. The major source of nitrogenous food intake is vegetables, especially root crops (potatoes). Additional amounts come from cured and smoked meats and fish and some continental cheeses.

Additional sources include water, barley-based beers and whiskeys, all forms of tobacco usage, and industrial air pollution. The U.K. has mostly controlled water and barley beverage contamination. Aerosol particles are difficult to assess.

Major concerns are: excess N in waters for dilution of baby formulas, especially, and in making all beverages; tobacco; and certain volatile industrial discharges. Although normal foods, including root crops, cured meats, and smoked meats were within U.K. and U.S. tolerances, more samples will be analyzed.

Grady F. Williams
Extension Dairy Scientist
Washington State University
7612 Pioneer, W.W.R.E.C.
Puyallup, WA 98371-4998.

FOOD RESEARCH AND DATA ANALYSIS is a unique and valuable reference for the food scientist and researcher. The editors, Harald Martens and Hellumt Russwurm, Jr., have done an excellent job of arranging invited lectures and papers presented during the 1982 International Union of Food Science and Technology Symposium on food research and data analysis to an authoritative statistical reference.

More than twenty symposium presentations are included in this volume ranging from multivariate analysis to matrix algebra. The editors have standardized notations and terminology used by the different authors making it easier for the non-mathematician to grasp fundamental concepts. In addition, each of the authors has used actual food research data in demonstrating the application of different analysis techniques discussed.

While FOOD RESEARCH AND DATA ANALYSIS is targeted for a specific audience it could be used by public health professionals. For the sanitarian in graduate school it would be a useful reference for data analysis and research design. It would also be a valuable tool in presenting field research data in the analysis of data collected during foodborne or waterborne disease outbreaks.

Homer C. Emery, R.S., Ph.D.
LTC, MS, US Army
This is the place to be...

Mail your copy or camera ready art work today to:

IAMFES-Advertising
P.O. Box 701 Dept. 2
AMES, IA 50010

Advertising Rates
Ad placed in one publication

<table>
<thead>
<tr>
<th>ADVERTISING RATES — BASE CHARGE</th>
<th>1 time</th>
<th>3 times</th>
<th>6 times</th>
<th>12 times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black & white rates</td>
<td>$641</td>
<td>$615</td>
<td>$584</td>
<td>$528</td>
</tr>
<tr>
<td>Back Cover</td>
<td>$623</td>
<td>$598</td>
<td>$572</td>
<td>$514</td>
</tr>
<tr>
<td>Inside Front Cover</td>
<td>$557</td>
<td>$531</td>
<td>$508</td>
<td>$459</td>
</tr>
<tr>
<td>1/3 page</td>
<td>$338</td>
<td>$314</td>
<td>$298</td>
<td>$263</td>
</tr>
<tr>
<td>1/4 page</td>
<td>$242</td>
<td>$230</td>
<td>$217</td>
<td>$196</td>
</tr>
<tr>
<td>1/8 page</td>
<td>$186</td>
<td>$179</td>
<td>$171</td>
<td>$147</td>
</tr>
<tr>
<td>Postcard Insert</td>
<td>$1400</td>
<td>$1355</td>
<td>$1300</td>
<td>$1250</td>
</tr>
</tbody>
</table>

Ad placed in both publications (same month & copy)

<table>
<thead>
<tr>
<th>ADVERTISING RATES — BASE CHARGE</th>
<th>1 time</th>
<th>3 times</th>
<th>6 times</th>
<th>12 times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back cover</td>
<td>$960</td>
<td>$918</td>
<td>$876</td>
<td>$794</td>
</tr>
<tr>
<td>Inside Back Cover</td>
<td>$936</td>
<td>$894</td>
<td>$853</td>
<td>$774</td>
</tr>
<tr>
<td>One page, Islands</td>
<td>$835</td>
<td>$798</td>
<td>$764</td>
<td>$690</td>
</tr>
<tr>
<td>1/2 page</td>
<td>$634</td>
<td>$600</td>
<td>$567</td>
<td>$508</td>
</tr>
<tr>
<td>1/3 page</td>
<td>$559</td>
<td>$535</td>
<td>$511</td>
<td>$446</td>
</tr>
<tr>
<td>1/4 page</td>
<td>$362</td>
<td>$344</td>
<td>$328</td>
<td>$291</td>
</tr>
<tr>
<td>Postcard Insert</td>
<td>$281</td>
<td>$268</td>
<td>$256</td>
<td>$217</td>
</tr>
<tr>
<td>1/8 page</td>
<td>$204</td>
<td>$187</td>
<td>$170</td>
<td>$147</td>
</tr>
</tbody>
</table>

COLOR CHARGES
2 color: Add $200 per placement
4 color: Add $400 per placement
Bleed: Add $55 to your base charge

MECHANICAL REQUIREMENTS

Full page	7" x 10"
2/3 page	7" x 6 1/2"
1/2 page (Vert.)	3 1/4" x 10"
1/2 page (Horz.)	7" x 5"
1/3 page (Horz.)	7" x 3 1/4"
1/4 page	3 1/4" x 4 1/4"
1/8 page	3 1/4" x 2 1/4"

Bleed: 8 1/2" x 11 1/4"

Unless otherwise instructed, artwork and copy will be disposed of.

All screened film negatives must be to size, right reading, emulsion side down. A minimum 100-line screen required for best reproduction. Film negatives with proofs are also acceptable; conversions will be billed to advertiser. Two- and four-color material must be color separated.

Negatives to be stripped in will be billed to advertiser. All camera-ready copy must be one-piece, with all elements in position.

Press Proofs required to assure proper color reproduction. Ad set-up charges $50 minimum.

Major Responsibilities
Milk/Food Quality Control 40%
General Sanitation 26%
Laboratory, Microbiologists, Chemists ... 22%
Teaching - R&D 11%

CIRCULATION
• Journal of Food Protection and Dairy and Food Sanitation are the official publications of the International Association of Milk, Food and Environmental Sanitarians, Inc. They are also the official publications of a number of state/province associations.
• Distribution to 88 countries
• 100% paid circulation
• 4000 copies of each mailed monthly
• Additional journals distributed at various meetings/conventions/trade-shows
• Actual readership over 10,000 per month
• Advertisements are assigned a reader service number for direct response.
• Close association ties provide an excellent networking system for advertisers
• Overall, over 75% of our readers are managers and directors in their areas.

DAIRY AND FOOD SANITATION/FEBRUARY 1988 83
Equipment / Supplies

HOMOGENIZERS FOR SALE
Manton Gaulin 200E & 300E.
Manton Gaulin K6, 500 GPH.
Manton Gaulin KF24, 750/1500 GPH w/ ball valves.
Manton Gaulin DJF40, 4000 GPH w/ stainless steel cabinet.
Manton Gaulin Pump MC18, 5400 GPH.
Manton Gaulin E-12, 1250 GPH.
Manton Gaulin DJF-12, 1200 GPH.

EISCHEN ENTERPRISES INC.
P.O. Box 6136
Fresno, CA 93703
(209) 251-6038

MEASURING DISPENSERS
pesticides – cleaning agents
lubricants – reagents
antimicrobial agents

LIQUID
32 oz capacity 1 pint capacity
8 oz per filling 1 lbs (15 ml) per filling
polyethylene polypropylene

POWDER
$6.00 each $5.00 each

QUANTITY DISCOUNTS

PESTIMATIC DISPENSER
P.O. Box 2%, Rocky Face, GA 30740
(404) 673-2068

DAIRY EQUIPMENT NEEDED
M & E will purchase your used equipment, either complete plants or individual items
We are THE Liquidators and
We Come With CASH
Call Don Rieschel

MACHINERY & EQUIPMENT CO.
PO BOX 7632-W SAN FRANCISCO, CA 94120
TOLL FREE: National 800-227-4544
California 800-712-2973
Local & International 415-467-3400
Telex 540-212

INFLATION

BREDDO HIGH SPEED BLENDERS
Available in All Sizes From:
25 gallons through 300 gallons

CHOOSE FROM
Complete Inventory Including
Single Wall or Jacketed Units

Attention:

BREDDO LIKWIFERS
18th & Kansas
Kansas City, KS 66105
800-255-4092

BENTLEY INSTRUMENTS, INC.
Milk Testing Equipment
New and rebuilt milk analyzing equipment for fat, protein, lactose and solids testing. Installation, training, parts and service available.

Call for more information
(612) 448-7600
Bentley Instruments, Inc.
P.O. Box 150
Chaska, MN 55318

CIRCLE READER SERVICE NO. 313
CIRCLE READER SERVICE NO. 301
CIRCLE READER SERVICE NO. 300
CIRCLE READER SERVICE NO. 292
CIRCLE READER SERVICE NO. 330
CIRCLE READER SERVICE NO. 286
CIRCLE READER SERVICE NO. 318
CIRCLE READER SERVICE NO. 265
CIRCLE READER SERVICE NO. 286
Equipment / Supplies

CARMEL EQUIPMENT
246 Beacon Ave.
Jersey City, NJ 07306
(201) 656-4030

Services / Products

Tired Of Brine Contamination Complaints?
Let us overhaul your ice cream stick novelty moulds
Call Carl for gram & vitaline mould overhauling
Top Quality Workmanship

AMERICAN MOULD SERVICE
6701 Eikerson St. Clinton, MD 20735
(301) 868-1273 Carl Hornbeck

GOSSELIN & BLANCHET
Butter-Making Equipment.

MICROBIOLOGICAL TESTING LABORATORY
Mary Anne K. LaRocca, Ph.D.
Paul T. LaRocca, Ph.D.
Mary Paul Laboratories, Inc.
All FDA; AOAC; USDA; APHA, and USP Microbiological Tests, Including Listeria
Registered with FDA, NJDEP, DEA and NRC
70 SPARTA AVENUE
P.O. BOX 952
SPARTA, NEW JERSEY 07871
201-729-2318

LISTERIA TESTING
Product and Environmental Samples
Free Environmental Sampling Kits Available
Rapid Service • Competitive Prices
Complete Laboratory Testing Services Including:
Campylobacter • Yersinia • Sugars
Salmonella • Protein • Fats

Great Lakes Scientific, Inc.
520 Pleasant St.
St. Joseph, MI 49085
Call collect: (616) 982-4000

CONTROL INSTRUMENT SERVICES, INC.
Complete instrument services including repair, rebuilding, calibration and general retrofitting AT YOUR PLANT OR OURS.
Parts stocked for most leading lines of instruments for the food and dairy industry. Orders shipped same day as received.

JOHN BENEDICT
CONTROL INSTRUMENT SERVICES, INC.
3607 Ventura Drive • Lakeland, FL 33803
813-644-9838
Services / Products

Employee Training Materials for Food Plants
- GMP booklets, slides & videos.
- Tapes in English & Spanish
- Sanitation booklets and slides

LJB, INC.
Associated with L.J. Bianco & Associates
Food Quality Control & Assurance Consultants
850 Huckleberry Lane
Northbrook, IL 60062
312-272-4944
35 Years Food Operation Experience

CIRCLE READER SERVICE NO. 297

Flooring

Grouting of Floors
Epoxy high acid resistant regrouting of quarry tile and brick floors. Also tile replacement where required, with special fast set epoxy — also fiberglass walls and floors installed.

M&W Protective Coating Co.
912 Nunn Ave. • Rice Lake, WI 54868
Ph. (715) 234-7894

CIRCLE READER SERVICE NO. 294

Employment Opportunities

DUNHILL OF SOUTHEAST FORT WORTH
has career opportunities for you in the areas of:
- ENGINEERING
- MAINTENANCE
- PRODUCTION
- QUALITY CONTROL
- SANITATION
Salaries from $30K - $60K
All responses held in the strictest confidence.
All fees and relocation employer paid.
Call or send resume to:
Dana S. Oliver
P.O. Box 6397
Fort Worth, TX 76115-0397
817-926-7284

CIRCLE READER SERVICE NO. 288

Your Message Could Be Here

Call an Advertising Sales Representative Today!
(800) 525-5223

CIRCLE READER SERVICE NO. 291
IAMFES Manuals

IAMFES MANUALS

* Procedures to Investigate Foodborne Illness — New 4th Edition
* Procedures to Investigate Waterborne Illness
* Procedures to Investigate Arthropod-Borne and Rodent-Borne Illness

These three excellent manuals are based on epidemiologic principles and investigative techniques that have been found effective in determining causal factors of disease outbreaks.

Single copies are available for $3.50 ea.; 25-99 copies $3.25 ea.; and 100 or more copies are 2.75 ea.

Call 800-525-5223 or 515-232-6699, ask for Scott.

International Association of Milk, Food and Environmental Sanitarians Inc.
P.O. Box 701 · 502 E. Lincoln Way · Ames, Iowa 50010 · (515) 232-6699 · 1-800-525-5223 (outside Iowa)

CIRCLE READER SERVICE NO. 359

3-A SANITARY STANDARDS

The Complete Dairy Sanitary Standards Booklet is available from the IAMFES Office, P.O. Box 701, Ames, IA 50010. 515-232-6699

3-A DAIRY SANITARY STANDARDS $33
3-A DAIRY AND EGG SANITARY STANDARDS $48
3-A EGG STANDARDS $28

5-year updates on the above $34

All prices include postage. Payment must accompany order. Master Card and Visa accepted.

CIRCLE READER SERVICE NO. 358
Business Exchange Ad

Send your business card, camera-ready copy, or we will type-set it for you:

(Please Print) __

Ad will run on a 3-column page (minimum Ad is 1 column by 2 inches) in Dairy and Food Sanitation. Rates: $20 per column inch, Boxed or Display Ads only. Examples of Sizes:

1 Column

x

2 inches

$40

2 Columns

x

2 inches

$80

1. Number of insertions (circle) 1 2 3 6 12
 (run 6x and get the 7th one free)

2. Months of insertion (list month) ________________ issue
 (Copy must be in by 1st of preceding month)

3. Size of Ad

 Signature _______________________________

 Name ___________________________________

 Company ________________________________

 Street ___________________________________

 City _______________________ State ______ Zip ______

 Phone Number __________________________

Mail Copy to: Dairy and Food Sanitation
 Business Exchange
 P.O. Box 701
 Ames, IA 50010
 515/232-6699
Holders of 3-A Symbol Council Authorization on February 15, 1988

Questions or statements concerning any of the holders authorizations listed below, or the equipment fabricated, should be addressed to: 3-A Symbol Council, W255 N477 Grandview Blvd., Suite 100, Waukesha, Wisconsin 53188.

01-06 Storage Tanks for Milk and Milk Products

115 A-L Stainless Inc. (9/28/58)
(Not available in USA)
113 Park St., South
Peterborough, Ontario Canada K9J 3R8

2 APV Crepaco, INC. (5/1/56)
100 South CP Ave.
Lake Mills, Wisconsin 53551

28 Cherry-Burrell Corporation (10/3/56)
(A Unit of AMCA Int’l., Inc.)
575 E. Mill St.
Little Falls, New York 13365

102 Chester-Jensen Co., Inc. (6/6/58)
5th & Tilghman Sts., P.O. Box 908
Chester, Pennsylvania 19016

117 DCI, Inc. (10/28/59)
P.O. Box 1227, 600 No. 54th Ave.
St. Cloud, Minnesota 56301

76 Damrow Company (10/31/57)
(A Div. of DEC Int’l., Inc.)
196 Western Ave., P.O. Box 750
Fond du Lac, Wisconsin 54935-0750

127 Paul Mueller Co. (6/29/60)
P.O. Box 828
Springfield, Missouri 65801

440 Scherping Systems (3/1/85)
801 Kingsley St.
Winsted, MN 55395

432 TCI-Superior Division, Mueller Canada Inc. (11/9/84)
6500 Northwest Dr.
Mississauga, Ontario, Canada L4V 1K4

31 Walker Stainless Equipment Co., Inc. (10/4/56)
Elroy, Wisconsin 53929

02-08 Pumps for Milk and Milk Products

63R APV Crepaco, INC. (4/29/57)
100 South CP Ave.
Lake Mills, Wisconsin 53551

325 Albin Pump, Inc. (12/19/79)
(Mfg. by Albin Motor, Sweden)
120 Interstate N. Pkwy. E.#208
Atlanta, Georgia 30339-2103

214R Ben H. Anderson Manufactures (5/20/70)
Morrisonville, Wisconsin 53571

212R Babson Brothers Company (2/20/70)
Dairy Systems Division
1400 West Gale
Galesville, WI 54630

29R Cherry-Burrell Corp. (10/3/56)
(A Unit of AMCA Int’l., Inc.)
2400-6th St. SW, P.O. Box 3000
Cedar Rapids, Iowa 52406

205R Dairy Equipment Co. (5/22/69)
1919 S. Stoughton Rd., P.O. Box 8050

Madison, Wisconsin 53716

377 Energy Service Co. (2/4/83)
B200 Walker Bldg., 734 15th St., NW
Washington, DC 20005

462 Enprotech Corporation (12/5/85)
335 Madison Avenue
New York, New York 10017

466 Fluid Metering Inc. (1/10/86)
29 Orchard St.
Oyster Bay, New York 11771

306 FRISTAM PUMPS, INC. (5/2/78)
2410 Parview Road
Middleton, WI 53562

65R G & H Products Corp. (5/2/78)
7600-57th Avenue
P.O. Box 1199
Kenosha, WI 53141

492 A. Gusmer Inc. (1/15/87)
Mfg. by Philip Hilge GmbH
27 North Avenue East
Cranford, NJ 07016

145R ITT Jabsco Products (11/20/63)
(Mfg. by ITT Jabsco, England)
1485 Dale Way
Costa Mesa, California 92626

502 INOXPZ, S.A. (4/27/87)
(not to be sold in USA)
c/ Telers, 54
Banyoles (Girona) Spain

314 Len E. Ivarson, Inc. (12/22/78)
3100 W. Green Tree Rd.
Milwaukee, Wisconsin 53209

372 The Konstro Co., Inc. (12/20/82)
450 W. River St., P.O. Box 30
Orange, Massachusetts 01364

373 Luwa Corporation (12/27/82)
(Mfg. by MAAG Gear, Switzerland)
P.O. Box 16348
Charlotte, North Carolina 28297-6348

364 M D Pneumatics, Inc. (7/28/82)
4840 W. Kearney
Springfield, Missouri 65803

319 Mono Group, Inc. (3/21/79)
100 South CP Ave.
Lake Mills, Wisconsin 53551

(Not available in USA)

148R Moyno Industrial Products (4/22/64)
of Robbins & Meyers, Inc.
1895 Jefferson St.
Springfield, OH 45506

400 Netzsch Incorporated (8/15/83)
119 Pickering Way
Exton, PA 19341-1393

375 Niro Atomizer Food & Dairy Inc. (1/25/83)
(Mfg. by Pasilac, Denmark)
1600 County Road F
Hudson, Wisconsin 54016

404 PACKO INOX N.V. (8-24-83)
(Not available in USA)
Torhoutsesteenweg 154
04-03 Homogenizers and High Pressure
Pumps of the Plunger Type

37 APV Crepaco, INC.
100 South CP Ave.
Lake Mills, Wisconsin 53551
(10/19/86)

75 APV Gaulin, Inc.
44 Garden St.
Everett, MA 02149
(9/26/57)

219 APV Gaulin, Inc.
611 Sugar Creek Rd.
Delavan, Wisconsin 53115
(9/14/57)

407 APV Gaulin, Inc.
6080 Leland Street
Ventura, California 93003
(6/10/80)

529 APV Gaulin, Inc.
406 State St.
Cedar Falls, IA 50613
(12/31/56)

517 APV Gaulin, Inc.
300 Westmoor Ltd./Conde Dairy Equipment
P.O. Box 99
West Hamilton Avenue
Sherrill, NY 13461
(9-23-87)

379 Bar-Bel Fabricating Co., Inc.
RR 2
Mauston, Wisconsin 53948
(3/15/83)

70R Brenner Tank, Inc.
450 Arlington Ave., P.O. Box 670
Fond du Lac, Wisconsin 54935
(8/5/57)

45 Kari-Kool Transports, Inc.
P.O. Box 538
Beaver Dam, WI 53916
(5/29/57)

201 Paul Krohnert Mfg. Ltd.
(Jntn. I-94 & Co Road 9
P.O. Box 231
Avon, MN 56310
(4/1/68)

85 Polar Tank Trailer, Inc.
Holdingford, MN 56340
(12/20/57)

521 R & D Stainless
409 S. Hampton
Republic, MO 65738
(12-17-87)

189 A & L Tougas, Ltee
(10/3/66)

169 A & L Tougas, Ltee
(4/27/86)

378 American Lewa, Inc.
132 Hopping Brook Road
Holliston, Massachusetts 01760
(9/12/72)

132 Advantage Piping, Inc.
1025 Busch Parkway
Buffalo Grove, Illinois 60015
(4/14/73)

87 Cherry-Burrell Corp.
(12/20/57)

486 Col-Flo Corporation
320 N. Jensen Road
West Hamilton Avenue
Sherrill, NY 13461
(11/18/86)

309 Niro Atomizer Food & Dairy Inc.
(Tech. by Masinfabriken, Denmark)
1600 County Road F
Hudson, Wisconsin 54016
(7/19/78)

425 TCI-Superior Division
(not available in USA)
Mueller Canada Inc.
6500 Northwest Dr.
Mississauga, Ontario, Canada L4V 1K4
(8/31/84)

05-13 Stainless Steel Automotive Milk Transportation
Tanks for Bulk Delivery and/or Farm
Pick-up Service

379, Bar-Bel Fabricating Co., Inc.
(3/15/83)

70R Brenner Tank, Inc.
(8/5/57)

45 Kari-Kool Transports, Inc.
(5/29/57)

201 Paul Krohnert Mfg. Ltd.
(4/1/68)

85 Polar Tank Trailer, Inc.
(12/20/57)

521 R & D Stainless
(12-17-87)

189 A & L Tougas, Ltee
(10/3/66)
<table>
<thead>
<tr>
<th>Fitting or Equipment</th>
<th>Address</th>
<th>City and State</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-17 Fittings Used on Milk and Milk Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APN, Inc.</td>
<td>400 W. Lincoln</td>
<td>Caledonia, Minnesota 55921</td>
<td>12/15/81</td>
</tr>
<tr>
<td>APV CREPACO, INC. (08-17 A&B)</td>
<td>100 South CP Avenue</td>
<td>Lake Mills, Wisconsin 53551</td>
<td>5/21/75</td>
</tr>
<tr>
<td>APV International Limited (Not available in USA)</td>
<td>P.O. Box 4, Manor Royal Crawley West Sussex RH10 2QB England</td>
<td></td>
<td>8/22/85</td>
</tr>
<tr>
<td>APV ROSISTA, INC. (08-17REV) (08-17B)</td>
<td>1325 Samuelson Road</td>
<td>Rockford, Illinois 61109</td>
<td>10/22/86</td>
</tr>
<tr>
<td>Accurate Metering Systems, Inc. (Mfg. by Diessel, Germany)</td>
<td>1651 Wilkening Court</td>
<td>Schaumburg, IL 60173</td>
<td>6/22/77</td>
</tr>
<tr>
<td>Advance Stainless Mfg. Corp. 218 West Centralia Street</td>
<td>Elk horn, Wisconsin 53121</td>
<td></td>
<td>3/30/86</td>
</tr>
<tr>
<td>Allegheny Bradford Corp. P.O. Box 200 Route 219 South Bradford, PA 16701</td>
<td></td>
<td></td>
<td>3/21/83</td>
</tr>
<tr>
<td>Alloy Products Corp. 1045 Perkins Ave. P.O. Box 529</td>
<td>Waukesha, Wisconsin 53187</td>
<td></td>
<td>11/23/57</td>
</tr>
<tr>
<td>BS&B Safety Systems, Inc. 7455 E. 46th St.</td>
<td>Tulsa, OK 74133</td>
<td></td>
<td>6/12/84</td>
</tr>
<tr>
<td>Babson Brothers Company Dairy Systems Division 1400 West Gale</td>
<td>Galesville, WI 54630</td>
<td></td>
<td>2/12/73</td>
</tr>
<tr>
<td>Badger Meter, Inc. 6116 East 15th Street</td>
<td>Tulsa, OK 74158</td>
<td></td>
<td>5/1/85</td>
</tr>
<tr>
<td>H. D. Bauman Assoc., Ltd. (08-17B) 35 Mirona Road</td>
<td>Portsmouth, NH 03801</td>
<td></td>
<td>8-24-87</td>
</tr>
<tr>
<td>Bristol Engineering Co. (08-17D) 210 Beaver St., P.O. Box 696</td>
<td>Yorkville, Illinois 60560</td>
<td></td>
<td>11/18/83</td>
</tr>
<tr>
<td>Capital Equipment Corp. 2421 Darwin Road</td>
<td>Madison, WI 53704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry-Burrell Corp. (A Unit of AMCA Int'l. Corp.) 2400-6th St. SW, P.O. Box 3000</td>
<td>Cedar Rapids, Iowa 52406</td>
<td></td>
<td>12/11/57</td>
</tr>
<tr>
<td>CIPRIANAI, INC. (Mfg. by Fratelli Tassalini, Italy) 25201 East La Paz Road</td>
<td>Laguna Hills, CA 92653</td>
<td></td>
<td>11/3/82</td>
</tr>
<tr>
<td>Continental Disc Corp. (08-17G) 4103 Riverside NW</td>
<td>Kansas City, MO 64150</td>
<td></td>
<td>9/11/85</td>
</tr>
<tr>
<td>Defontaine Inc. (Mfg. by Defontaine, France) 563 A. J. Allen Circle</td>
<td>Wales, WI 53183</td>
<td></td>
<td>10/15/86</td>
</tr>
<tr>
<td>Fitting Specialty 1303 35th Street</td>
<td>Kenosha, WI 53140</td>
<td></td>
<td>8-7-87</td>
</tr>
<tr>
<td>Flowtech Inc. 120 Interstate N. Pkwy. E. #208</td>
<td>Atlanta, Georgia 30339-2103</td>
<td></td>
<td>9/17/85</td>
</tr>
<tr>
<td>The Foxboro Co. 38 Neponset Ave.</td>
<td>Foxboro, Massachusetts 02035</td>
<td></td>
<td>3/8/76</td>
</tr>
<tr>
<td>GEA Food and Process Systems Corp. 8940 Route 108</td>
<td>Columbia, Maryland 21045</td>
<td></td>
<td>8/8/86</td>
</tr>
<tr>
<td>G & H Products Corp. 7600-57th Avenue</td>
<td>P.O. Box 1199 Kenosha, WI 53141</td>
<td></td>
<td>11/14/77</td>
</tr>
<tr>
<td>Hackman-MKT®, Inc. (Mfg. by Koltech, Finland) 100 Pinnacle Way, Suite 165 Norcross, GA 30071</td>
<td></td>
<td></td>
<td>11/3/82</td>
</tr>
<tr>
<td>IMEX, Inc. (Mfg. by Lube Corp., Japan) 4040 Del Rey Ave. Unit 9</td>
<td>Marina del Rey, CA 90292</td>
<td></td>
<td>11/27/68</td>
</tr>
<tr>
<td>ITT Grinnell Valve Co., Inc. Dia-Flo Division 33 Centerville Rd.</td>
<td>Lancaster, Pennsylvania 17603</td>
<td></td>
<td>9/11/85</td>
</tr>
<tr>
<td>Jensen Fittings Corp. 107-111 Goundy St.</td>
<td>North Tonawanda, New York 14120-5998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Stainless Fittings 1303 35th Street</td>
<td>P.O. Box 1676 Kenosha, WI 53140</td>
<td></td>
<td>8-14-87</td>
</tr>
<tr>
<td>Lee Industries, Inc. P.O. Box 688 Philadelphia, PA 19106</td>
<td></td>
<td></td>
<td>5/31/83</td>
</tr>
<tr>
<td>Lumaco, Inc. P.O. Box 688</td>
<td>Teaneck, New Jersey 07666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Line Instrumentation, Inc. Rt. 376, P.O. Box 541</td>
<td>Hopewell Junction, New York 12533</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: DAI RY AND FOOD SANITATION/FEBRUARY 1988
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>City, State/Postal Code</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>416 Process Engineers, Inc.</td>
<td>3329 Baumberg Ave. Hayward, CA 94545</td>
<td>Hayward, California</td>
<td>1/11/84</td>
</tr>
<tr>
<td>Puriti, S.A. de C.V. (not available in USA)</td>
<td>Alfredo Nobel 39 Industrial Puente de Vagas Tlanepantla, Mexico</td>
<td></td>
<td>9/12/72</td>
</tr>
<tr>
<td>Q Controls Subsid. of Cesco Magnetics</td>
<td>93 Utility Court Rohnert Park, California 94928</td>
<td>Rohnert Park, California</td>
<td>5/18/64</td>
</tr>
<tr>
<td>Robert-James Sales, Inc.</td>
<td>P.O. Box 1672, 269 Hinman Ave. Buffalo, NY 14216-0672</td>
<td>Buffalo, NY</td>
<td>8/31/84</td>
</tr>
<tr>
<td>Saunders Valve, Inc.</td>
<td>15760 W. Hardy, #440 Houston, Texas 77060</td>
<td>Houston, TX</td>
<td>2/10/87</td>
</tr>
<tr>
<td>Stainless Products, Inc.</td>
<td>1649-72nd Ave., Box 169 Somers, Wisconsin 53171</td>
<td>Somers, Wisconsin</td>
<td>12/18/80</td>
</tr>
<tr>
<td>Stork Food Machinery, Inc. (Mfg. by Stork Amsterdam, Netherlands)</td>
<td>P.O. Box 1258/Airport Parkway Gainesville, Georgia 30503</td>
<td>Gainesville, Georgia</td>
<td>6/9/83</td>
</tr>
<tr>
<td>Superior Stainless, Inc.</td>
<td>611 Sugar Creek Rd. Delavan, Wisconsin 53115</td>
<td>Delavan, Wisconsin</td>
<td>11/22/77</td>
</tr>
<tr>
<td>L. C. Thomsen & Sons, Inc. (08-17REV)</td>
<td>(08-17A) 1303-43rd St. Kenosha, Wisconsin 53140</td>
<td>Kenosha, Wisconsin</td>
<td>8/31/57</td>
</tr>
<tr>
<td>Tri-Clover, Inc.</td>
<td>(08-17REV) (08-17A) 9201 Wilmot Road Kenosha, WI 53141</td>
<td>Kenosha, WI</td>
<td>10/15/56</td>
</tr>
<tr>
<td>Tuchenhagen North America Inc.</td>
<td>4119 W. Green Tree Road Milwaukee, Wisconsin 53209</td>
<td>Milwaukee, Wisconsin</td>
<td>1/13/86</td>
</tr>
<tr>
<td>Up-Well Enterprises Co., USA</td>
<td>P.O. Box 5334 Grants Pass, Oregon 97527</td>
<td>Grants Pass, Oregon</td>
<td>8/1/85</td>
</tr>
<tr>
<td>VNE Corporation</td>
<td>(Mfg. by Egmo, Israel) 1415 Johnson St., P.O. Box 187 Janesville, Wisconsin 53547</td>
<td>Janesville, Wisconsin</td>
<td>3/16/78</td>
</tr>
<tr>
<td>Valex Products Corp.</td>
<td>6080 Leland Street Ventura, California 93003</td>
<td>Ventura, California</td>
<td>8/30/76</td>
</tr>
<tr>
<td>Waukesha Specialty Co., Inc.</td>
<td>Hwy 14 Darien, Wisconsin 53144</td>
<td>Darien, Wisconsin</td>
<td>12/20/57</td>
</tr>
<tr>
<td>Instrument Fittings and Connections Used on Milk and Milk Products Equipment</td>
<td></td>
<td></td>
<td>9/12/84</td>
</tr>
</tbody>
</table>

10-03 Milk and Milk Products Filters Using Disposable Filter Media, as Amended

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>City, State/Postal Code</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Products Corp.</td>
<td>1045 Perkins Ave., P.O. Box 529 Waukesha, Wisconsin 53187</td>
<td>Waukesha, Wisconsin</td>
<td>12/10/82</td>
</tr>
<tr>
<td>Sermia Equipment Limited (Not available in USA)</td>
<td>2511 Barbe Avenue Chomedey, Laval, Quebec, Canada H7T 2A2</td>
<td>Chomedey, Laval, Quebec</td>
<td>11/27/84</td>
</tr>
<tr>
<td>L. C. Thomsen, Inc.</td>
<td>1303 43rd St. Kenosha, Wisconsin 53140</td>
<td>Kenosha, Wisconsin</td>
<td>8/25/77</td>
</tr>
<tr>
<td>Tri-Clover, Inc.</td>
<td>9201 Wilmot Road Kenosha, WI 53141</td>
<td>Kenosha, WI</td>
<td>10/15/56</td>
</tr>
</tbody>
</table>

11-03 Plate-type Heat Exchangers for Milk and Milk Products

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>City, State/Postal Code</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>APV Crepaco, INC.</td>
<td>100 South CP Ave. Lake Mills, Wisconsin 53551</td>
<td>Lake Mills, Wisconsin</td>
<td>10/19/56</td>
</tr>
<tr>
<td>APV International Limited (Not available in USA)</td>
<td>P.O. Box 4, Manor Royal Crawley</td>
<td>Crawley</td>
<td>10/15/85</td>
</tr>
</tbody>
</table>
17 Alfa-Laval, Inc. 2115 Linwood Ave. Ft. Lee, New Jersey 07024
(8/30/56)

120 Alfa-Laval, Ltd. (DeLaval Agric. Div.) 11000 No. Congress Ave. Kansas City, Missouri 64153
(12/3/59)

326 American Vicarb Corporation (Mfg. by Vicarb, France) 89 Pearce Avenue Tonawanda, New York 14150
(2/4/80)

30 Cherry-Burrell Corp. (A Unit of AMCA Int'l. Inc.) 2400-6th St. SW, P.O. Box 3000 Cedar Rapids, Iowa 52406
(10/2/56)

14 Chester-Jensen Co., Inc. 5th & Tilghman Sts., P.O. Box 908 Chester, Pennsylvania 19016
(8/15/56)

468 GEA Food and Process Systems Corp. 8940 Route 108 Columbia, Maryland 21045
(2/2/86)

15 Kusel Equipment Co. 820 West St., P.O. Box 87 Watertown, Wisconsin 53094
(8/15/56)

360 Laffranchi Wholesale Co. P.O. Box 698 Ferndale, California 95536
(7/12/82)

414 Paul Mueller Co. P.O. Box 828 Springfield, MO 65801
(12/13/83)

491 On-Line Instrumentation, Inc. P.O. Box 541 Hopewell Junction, New York 12533
(1/2/87)

365 Pasical Therm (Mfg. by Pasilac, Denmark) 1000 FM 1960 West Houston, TX 77090
(9-8-82)

279 The Schlueter Co. (Mfg. by Samuel Parker, New Zeland) 112 E. Centerway Janesville, Wisconsin 53545
(8/30/76)

472 Schmidt-Bretten Inc. 1612 Locust Avenue Bohemia, New York 11716
(5/7/86)

426 TCI-Superior Division (Not available in USA) Mueller Canada Inc. 6500 Northwest Dr. Mississauga, Ontario, Canada L4V 1K4
(8/31/84)

103 Chester-Jensen Co., Inc. 5th & Tilghman Sts., P.O. Box 908 Chester, Pennsylvania 19016
(6/6/58)

307 G & H Products Corp. 7600-57th Avenue P.O. Box 1199 Kenosha, WI 53141
(5/2/78)

217 Girton Manufacturing Co. Millville, Pennsylvania 17846
(1/31/71)

238 Paul Mueller Co. P.O. Box 828 Springfield, Missouri 65801
(6/28/72)

96 C. E. Rogers Co. So. Hwy #65, P.O. Box 118 Mora, Minnesota 55051
(3/31/64)

298 Sanitary Processing Equipment Corp. P.O. Box 178, Salino Station Syracuse, NY 13201
(1/28/85)

392 Stork Food Machinery, Inc. (Mfg. by Stork, Netherlands) P.O. Box 1258/Airport Parkway Gainesville, Georgia 30503
(6/9/83)

13-08 Farm Milk Cooling and Holding Tanks

49R A-L Stainless Inc. (Not available in USA) 113 Park St., South Peterborough, Ontario Canada K9J 3R8
(12/5/56)

240 Babson Brothers Company Dairy Systems Division 1400 West Gale Galesville, WI 54630
(9/6/72)

4R Dairy Equipment Co. 1919 So. Stoughton Rd. Madison, Wisconsin 53716
(6/15/56)

179R Heavy Duty Products (Preston) Ltd. (not available in USA) 1261 Industrial Rd. Cambridge (Preston) Ontario Canada N3H 4W3
(3/8/66)

12R Paul Mueller Co. 1600 W. Phelps, P.O. Box 828 Springfield, Missouri 65801
(7/31/56)

16R Zero Manufacturing Co. 811 Duncan Ave. Washington, Missouri 63090
(8/27/56)

16-05 Evaporators and Vacuum Pans for Milk and Milk Products

254 APV Anhydro, Inc. (Mfg. by Anhydro, Denmark) 165 John L. Dietsch Square Attleboro Falls, Massachusetts 02763
(1/7/74)

132 APV Crepaco, INC. 395 Fillmore Ave. Tonawanda, New York 14150
(10/26/60)

277 Alfa-Laval, Inc. Contherm Division P.O. Box 352, 111 Parker St. Newburyport, Massachusetts 01950
(8/19/76)

DAIRY AND FOOD SANITATION/FEBRUARY 1988 95
17-06 Fillers and Sealers of Single Service Containers for Milk and Milk Products

186 Marriott Walker Corp.
925 E. Maple Rd.
Birmingham, Michigan 48011
(9/6/66)

19-03 Batch and Continuous Freezers for Ice Cream, Ices, and Similarly Frozen Dairy Foods, as Amended

141 APV Crepacco, INC.
100 South CP Ave.
Lake Mills, Wisconsin 53551
(4/15/63)

146 Cherry-Burrell Corp.
(A Unit of AMCA Int’l., Inc.)
2400-6th St. SW, P.O. Box 3000
Cedar Rapids, Iowa 52406
(12/10/63)

401 Coldelite Corp. of America
Robinson Rd. & Rt. 17 So.
Lodi, NJ 07644-3897
(8/22/82)

286 O. G. Hoyer, Inc.
(Mfg. by Alfa Hoyer, Denmark)
201 Broad St.
Lake Geneva, Wisconsin 53147
(12/8/76)

465 Leon’s Frozen Custard
3131 S. 27th Street
Milwaukee, Wisconsin 53151
(12/17/85)

412 Sani Mark, Inc.
2020 Production Drive
Indianapolis, Indiana 46241
(11/28/83)

355 Emery Thompson Machine & Supply Co.
1349 Inwood Ave.
Bronx, New York 10452
(3/9/82)
22-04 Silo-type Storage Tanks for Milk and Milk Products

262 A-L Stainless Inc.
(Not available in USA)
113 Park St., South
Peterborough, Ontario Canada K9J 3R8
(11/11/74)

154 APV Crepaco, INC.
100 South CP Ave.
Lake Mills, Wisconsin 53551
(2/10/65)

168 Cherry-Burrell Corp.
(A Unit of AMCA Int’l. Inc.)
575 E. Mill St.
Little Falls, New York 13365
(6/16/65)

222 Sweetheart Packaging Corporation
Maryland Cup Corporation
10100 Registerstown Road
Owings Mills, Maryland 21177
(11/15/71)

24-01 Non-coil Type Batch Pasteurizers

158 APV Crepaco, INC.
100 South CP Ave.
Lake Mills, Wisconsin 53551
(3/24/65)

161 Cherry-Burrell Corp.
(A Unit of AMCA Int’l., Inc.)
575 E. Mill St.
Little Falls, New York 13365
(4/5/65)

402 Coldelite Corp. of America
Robinson Rd. & Rt. 17 So.
Lodi, NJ 07644-3897
(8/22/83)

519 Sainty Processing Equip. Corp.
2611 Lodi Street
Syracuse, NY 13208
(10-22-87)

25-01 Non-coil Type Batch Processors for Milk and Milk Products

159 APV Crepaco, INC.
100 South CP Ave.
Lake Mills, Wisconsin 53551
(3/24/65)

162 Cherry-Burrell Corp.
(A Unit of AMCA Int’l., Inc.)
575 E. Mill St.
Little Falls, New York 13365
(4/5/65)

167 Paul Mueller Co.
P.O. Box 828
Springfield, Missouri 65801
(4/26/65)

519 Sainty Processing Equip. Corp.
2611 Lodi Street
Syracuse, NY 13208
(10-22-87)

26-02 Sifters for Dry Milk and Dry Milk Products

173 Blaw-Knox Food & Chemical Equip. Co.
P.O. Box 1041
Buffalo, New York 14240
(9/20/65)
<table>
<thead>
<tr>
<th>Number</th>
<th>Company Name</th>
<th>Address</th>
<th>City, State/Zip</th>
<th>Phone/Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>229</td>
<td>Russell Finex, Inc.</td>
<td>156 W. Sandford Blvd.</td>
<td>Mt. Vernon, New York 10550</td>
<td>78x622 (Mfg. by Russell Finex, England)</td>
</tr>
<tr>
<td>363</td>
<td>Kason Corp.</td>
<td>1301 East Linden Ave.</td>
<td>Linden, New Jersey 07036</td>
<td>78x612</td>
</tr>
<tr>
<td>430</td>
<td>Midwestern Industries, Inc.</td>
<td>915 Oberlin Rd., P.O. Box 810</td>
<td>Massillon, OH 44648-0810</td>
<td>10/11/84</td>
</tr>
<tr>
<td>185</td>
<td>Rotex, Inc.</td>
<td>1230 Knowlton St.</td>
<td>Cincinnati, Ohio 45223</td>
<td>8/10/66</td>
</tr>
<tr>
<td>172</td>
<td>SWECO, INC.</td>
<td>8029 U.S. Hwy. 25</td>
<td>Florence, Y 41042</td>
<td>9-1-65</td>
</tr>
<tr>
<td>27-01</td>
<td>Equipment for Packaging Dry Milk and Dry Milk Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>All-Fill, Inc.</td>
<td>40 Great Valley Pkwy.</td>
<td>Malvern, Pennsylvania 19355</td>
<td>3/2/82</td>
</tr>
<tr>
<td>409</td>
<td>Mate-Burt Co.</td>
<td>436 Devon Park Dr.</td>
<td>Wayne, PA 19087</td>
<td>10/31/83</td>
</tr>
<tr>
<td>476</td>
<td>Stone Container Corporation</td>
<td>1881 West North Temple</td>
<td>Salt Lake City, Utah 84116-2097</td>
<td>7/17/86</td>
</tr>
<tr>
<td>497</td>
<td>Triangle Package Machinery Co.</td>
<td>6655 West Diversey Ave.</td>
<td>Chicago, Illinois 60635</td>
<td>2/26/87</td>
</tr>
<tr>
<td>28-00</td>
<td>Flow Meters for Milk and Liquid Milk Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>Accurage Metering Systems, Inc.</td>
<td>1651 Wilkening Court</td>
<td>Schaumburg, IL 60173</td>
<td>4/2/76</td>
</tr>
<tr>
<td>253</td>
<td>Badger Meter, Inc.</td>
<td>4545 W. Brown Deer Rd.</td>
<td>P.O. Box 23099</td>
<td>1/2/74</td>
</tr>
<tr>
<td>518</td>
<td>Bailey Controls Company</td>
<td>29801 Euclid Avenue</td>
<td>Wickliffe, OH 44092</td>
<td>10-16-87</td>
</tr>
<tr>
<td>265</td>
<td>Electronic Flo-Meters, Inc.</td>
<td>P.O. Box 38269</td>
<td>Dallas, Texas 75238</td>
<td>3/10/75</td>
</tr>
<tr>
<td>359</td>
<td>Emerson Elec. Co.</td>
<td>Brooks Instrument Div.</td>
<td>P.O. Box 430, North 301</td>
<td>6/11/82</td>
</tr>
<tr>
<td>469</td>
<td>Endress + Hauser, Inc.</td>
<td>2350 Endress Place</td>
<td>Greenwood, Indiana 46142</td>
<td>3/8/86</td>
</tr>
<tr>
<td>226</td>
<td>Fischer & Porter Co.</td>
<td>County Line Rd.</td>
<td>Warminster, Pennsylvania 18974</td>
<td>12/9/71</td>
</tr>
<tr>
<td>477</td>
<td>Flowdata Inc.</td>
<td>15510 Wright Bros. Drive</td>
<td>Dallas, Texas 75244-2137</td>
<td>7/31/86</td>
</tr>
<tr>
<td>506</td>
<td>Flow Technology, Inc.</td>
<td>4250 East Broadway Road</td>
<td>Phoenix, AZ 85040</td>
<td>6/17/87</td>
</tr>
<tr>
<td>224</td>
<td>The Foxboro Co.</td>
<td>38 Neponset Ave.</td>
<td>Foxboro, Massachusetts 02035</td>
<td>11/16/71</td>
</tr>
<tr>
<td>475</td>
<td>Hackman-MKT, Inc.</td>
<td>100 Pinnacle Way, Suite 165</td>
<td>Norcross, GA 30071</td>
<td>7/15/86</td>
</tr>
<tr>
<td>512</td>
<td>Hoffer Flow Controls, Inc.</td>
<td>149 Highway 26</td>
<td>Port Monmouth, NJ 07758</td>
<td>8-17-87</td>
</tr>
<tr>
<td>474</td>
<td>Hydrid Production</td>
<td>3300 North Belt East</td>
<td>P.O. Box 60458</td>
<td>6/30/86</td>
</tr>
<tr>
<td>399</td>
<td>E. Johnson Engineering & Sales</td>
<td>11 N. Grant St.</td>
<td>Hinsdale, IL 60521</td>
<td>8/3/83</td>
</tr>
<tr>
<td>320</td>
<td>Max Machinery, Inc.</td>
<td>1420 Healdsburg Ave.</td>
<td>Healdsburg, California 95448</td>
<td>3/28/79</td>
</tr>
<tr>
<td>378</td>
<td>Micro Motion, Inc.</td>
<td>7070 Winchester Circle</td>
<td>Boulder, Colorado 80301</td>
<td>2/16/83</td>
</tr>
<tr>
<td>431</td>
<td>Niro Atomizer Food & Dairy Inc.</td>
<td>1600 County Road F</td>
<td>Hudson, Wisconsin 54016</td>
<td>10/11/84</td>
</tr>
<tr>
<td>490</td>
<td>Rosemount Inc.</td>
<td>12001 West 78th Street</td>
<td>Eden Prairie, Minnesota 55344</td>
<td>1/8/87</td>
</tr>
<tr>
<td>493</td>
<td>Sarasota Automation Inc.</td>
<td>1500 N. Washington Blvd.</td>
<td>Sarasota, Florida 33577</td>
<td>2/2/87</td>
</tr>
<tr>
<td>270</td>
<td>Taylor Instrument</td>
<td>Combustion Engineering, Inc.</td>
<td>400 West Avenue, P.O. Box 110</td>
<td>2/9/76</td>
</tr>
<tr>
<td>340</td>
<td>Accurate Metering Systems, Inc.</td>
<td>1651 Wilkening Court</td>
<td>Schauburg, IL 60173</td>
<td>6/2/81</td>
</tr>
<tr>
<td>485</td>
<td>Hackman-MKT, Inc.</td>
<td>100 Pinnacle Way, Suite 165</td>
<td>Norcross, GA 30071</td>
<td>11/18/86</td>
</tr>
<tr>
<td>436</td>
<td>Scherping Systems</td>
<td>801 Kingsley Street</td>
<td>Winsted, MN 55395</td>
<td>11/27/84</td>
</tr>
<tr>
<td>30-01</td>
<td>Farm Milk Storage Tanks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>Paul Mueller Co.</td>
<td>P.O. Box 828</td>
<td>Springfield, MO 65801</td>
<td>4/17/84</td>
</tr>
</tbody>
</table>
31-01 Scraped Surface Heat Exchangers, as Amended

290 APV Crepaco, INC. (6/15/77)
100 South CP Ave.
Lake Mills, Wisconsin 53551

274 Alfa-Laval, Inc. (6/25/76)
Contherm Div.
P.O. Box 352, 111 Parker St.
Newburyport, Massachusetts 01950

361 BF Machinery Corp. (7/12/82)
(Mfg. by M. V. Machinfabriek, Netherlands)
P.O. Box 117
Fall River, Wisconsin 53532

323 Cherry-Burrell Corp. (7/26/79)
(A Unit of AMCA Int’l., Inc.)
2400-6th St., SW, P.O. Box 3000
Cedar Rapids, Iowa 52406

496 FranRica Mfg. Corp. (2/23/87)
2807 South Highway 99
Stockton, California 95202

32-00 Uninsulated Tanks for Milk and Milk Products

397 APV Crepaco, INC. (6/21/83)
100 South CP Ave.
Lake Mills, Wisconsin 53551

264 Cherry-Burrell Corp. (1/27/75)
(A Unit of AMCA Int’l., Inc.)
575 E. Mill St.
Little Falls, New York 13365

268 DCl, Inc. (11/21/75)
600 No. 54th Ave., P.O. Box 1227
St. Cloud, Minnesota 56301

354 C. E. Rogers Co. (3/3/82)
So. Hwy #65, P.O. Box 118
Mora, Minnesota 55051

441 Scheringing Systems (3/1/85)
801 Kingsley St.
Winsted, MN 55395

433 TCI-Superior Division (11/9/84)
(Not available in USA)
Mueller Canada Inc.
6500 Northwest Dr.
Mississauga, Ontario, Canada L4V 1K4

339 Walker Stainless Equipment Co., Inc. (6/2/81)
601 State St.
New Lisbon, Wisconsin 53950

33-00 Polished Metal Tubing for Dairy Products

310 Allegheny Bradford Corp. (7/19/78)
P.O. Box 200 Route 219 South
Bradford, PA 16701

413 Azco, Inc. (12/8/83)
P.O. Box 567
Appleton, WI 54912

308 Rath Manufacturing Co., Inc. (6/20/78)
2505 Foster Ave.
Janesville, Wisconsin 53545

368 Gordon J. Rodger & Sons Ltd. (10/7/82)
P.O. Box 186
Blenheim, Ontario Canada N0P 1A0

335 Stainless Products, Inc. (12/18/80)

1649-72nd Ave., Box 169
Somers, Wisconsin 53171

289 Tri-Clover, Inc. (1/21/77)
9201 Wilmot Road
Kenosha, Wisconsin 53141

331 United Industries, Inc. (10/23/80)
1546 Henry Ave.
Beloit, Wisconsin 53511

35-00 Continuous Blenders

417 Cherry-Burrell (2/7/84)
Anco/Votator Division
P.O. Box 35600
Louisville, KY 40232

464 Dairy Service Mfg., Inc. (12/12/85)
4630 W. Florissant Ave.
St. Louis, Missouri 63115

415 Luwa Corporation (1/5/84)
P.O. Box 16348
Charlotte, North Carolina 28297-6348

36-00 Colloid Mills

293 Waukesha Div., Abex Corp. (8/25/77)
1300 Lincoln Ave.
Waukesha, Wisconsin 53186

37-00 Pressure and Level Sensing Devices

318 Anderson Instrument Co., Inc. (4/9/79)
R.D. #1
Fultonville, New York 12072

481 Control Systems Design, Inc. (8/14/86)
P.O. Box 1689
Manchester, Missouri 63011

405 Drexelbrook Engineering Co. (9/27/83)
205 Keith Valley Rd.
Horsham, PA 19044

423 Dynisco (6/15/84)
Ten Oceana Way
Norwood, MA 02062

459 Endress + Hauser, Inc. (10/17/85)
2350 Endress Place
Greenwood, Indiana 46142

463 The Foxboro Company (12/6/85)
38 Neponset Avenue
Foxboro, Massachusetts 02035

396 King Engineering Corp. (6/13/83)
P.O. Box 1228
Ann Arbor, Michigan 48106

501 Lumenite Electronic Company (4/27/87)
2331 N. 17th Avenue
Franklin Park, IL 60131

457 Moore Technologies Inc. (10/17/85)
P.O. Box 258
Klamath Falls, Oregon 97601

419 Niro Atomizer Food & Dairy Inc. (4/2/84)
1600 County Road F
Hudson, Wisconsin 54016

328 Rosemount, Inc. (5/22/80)
12001 W. 78th St.
Eden Prairie, Minnesota 55344

DAIRY AND FOOD SANITATION/FEBRUARY 1988 99

Microbiology

FOOD, BEVERAGE, ENVIRONMENTAL

CONTRACT RESEARCH — SPECIAL SERVICES — CONSULTATION

INOCULATED PACK STUDIES:
- *Clostridium botulinum*
- Spoilage microorganisms
- Other pathogens

EMERGING PATHOGENS:
- *Campylobacter*
- *Listeria*
- *Yersinia*

PHOTOMICROGRAPHY

CULTURE IDENTIFICATION:
- Bacteria
- Yeast
- Mold
- Algae
- Iron and Sulfur Bacteria

OUR CLIENTS INCLUDE:
- Food Manufacturers
- Packaging Companies
- Food Service Companies
- Industry Associations
- Equipment Manufacturers
- Environmental Engineers
- Insurance Companies

UNUSUAL OR NON-ROUTINE MICROBIOLOGICAL PROBLEMS?

— **CALL US** —

Alfred R. Fain, Jr., Ph.D.
Chief Microbiologist

ABC RESEARCH CORPORATION

3437 SW 24th Avenue
Gainesville, Florida 32607
904-372-0436

Please circle No. 208 on your Reader Service Card

Setra Systems, Inc.
45 Nagag Park
Acton, MA 01720

Statham Division of Solartron Transducers
2230 Stratham Blvd.
Oxnard, California 93033

Tank Mate Div/Monitor Mfg. Co.
P.O. Box AL
Elburn, IL 60119

Taylor Instrument Combustion Engineering, Inc.
400 West Avenue
Rochester, NY 14692

Viatran Corporation
300 Industrial Drive
Grand Island, NY 14072

Stoelting, Inc.
P.O. Box 127
Kiel, Wisconsin 53042-0127

Bag Collectors for Dry Milk and Dry Milk Products

406 Chicago Conveyor Corporation
330 LaLonde Avenue
Addison, IL 60101

504 General Resource Corporation
201 3rd. Street South
Hopkins, MN 55343

381 Marriott Walker Corp.
925 E. Maple Rd.
Birmingham, Michigan 48011

453 MikroPul Corporation
10 Chatham Road
Summit, New Jersey 07901

456 C. E. Rogers Company
P.O. Box 118
Mora, Minnesota 55051

Cottage Cheese Vats (In Press)

380 Cottage Cheese Vats (In Press)

5/5/83
Cook/Chill Foodservice System with a Microwave Oven: Coliforms and Aerobic Counts from Turkey Rolls and Slices, Patricia A. Ollinger-Snyder and M. Eileen Matthews, Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
J. Food Prot. 51:84-87

Turkey was sampled for total aerobic plate counts and coliform counts, before and after cooking, after chilled storage and after reheating in a microwave oven. Frozen turkey rolls were thawed for 48 h at 3°C. Rolls were then cooked (105, 135 and 165°C) to an internal temperature of 77°C. Cooked rolls were placed into a refrigerator operating at 1°C and chilled for 24 h. Rolls were removed from the refrigerator, sliced and refrigerated for ≤ 2 1/2 h to simulate holding conditions in a hospital cook/chill foodservice system. Slices were reheated for 30 or 40 s in a microwave oven. For the raw product, total aerobic plate counts and coliform counts ranged from 78,000 - 615,000/g and 1,600 - 38,000/g, respectively. No coliforms were found in turkey rolls following cooking and chilled storage and turkey slices reheated in a microwave oven. Cooking turkey rolls resulted in reduction of two to five orders of magnitude in total aerobic plate counts. For most trials of the experiment, counts were further reduced when turkey slices were reheated in a microwave oven. These low microbial counts may be attributed to cooking turkey rolls to an end point temperature of 77°C and storing chilled at 1°C before reheating the slices in a microwave oven.

Performance of Four Selective Media for Enumerating Staphylococcus aureus in Corned Beef and Cheese, K. Rayman, N. Malik and G. Jarvis, Food Directorate, Health Protection Branch, Health and Welfare Canada, Tunney’s Pasture, Ottawa, Ontario, Canada K1A 0L2
J. Food Prot. 51:87-88

The performance of four selective media for enumerating *Staphylococcus aureus* in artificially contaminated samples of corned beef was strain-dependent. Baird-Parker (BP), Kranep (KR), Mannitol Salt (MS) and Staphylococcus medium 110 (S110) performed equally well in enumerating an enterotoxin A producing strain, but KR and BP were significantly better than S110 in enumerating an enterotoxin D producing strain of *S. aureus*. In naturally contaminated cheese samples which abound with competing microorganisms, BP performed significantly better than the other three media.

Evaluation of Three Different Cleaners Recommended for Ultrafiltration Systems by Direct Observations of Commercial-Scale Spiral-Wound Ultrafiltration Membranes, K. E. Smith and R. L. Bradley, Jr., Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
J. Food Prot. 51:89-104

Efficacy of cleaners designed for use with ultrafiltration systems was determined by microbiological evaluation and through visual inspection using scanning electron microscopy. The ultrafiltration system containing two commercial-scale, polysulfone membranes was soiled with sweet whey (40°C) then rinsed with water and membranes were removed. One half of each membrane was soaked for 2 h at 38°C in one of the following solutions: control (no soaking), acid cleaner (pH 2.5), enzyme-based cleaner (pH 11.5) and chlorinated alkaline cleaner (pH 11.5). The membranes were repositioned in the ultrafiltration unit, rinsed with water, then removed and unwound for analysis. Sections of membrane, retentate spacer and permeate mesh were aseptically removed for enumeration of microorganisms remaining and for examination by scanning electron microscopy. Membranes cleaned with chlorinated alkaline cleaner averaged 2×10^{4} CFU/50 cm2, enzyme-based cleaner 6×10^{5}/CFU, acid anionic cleaner 1×10^{7}/CFU and the control 5×10^{5}/CFU. Scanning electron microscopy found soil and microorganisms present on all membrane materials exposed to all three cleaners.

Effects of Antioxidants on the Retail Appearance and Display-Life of Frozen Bacon, L. E. Jeremiah, Red Meat and Beef Production Section, Agriculture Canada Research Station, Lacombe, Alberta, T0C 1S0, Canada
J. Food Prot. 51:105-109

The efficacy of three antioxidants and a reductant for preventing deterioration in factors contributing to the retail acceptability of bacon slices during frozen storage and simulated retail display was examined. The antioxidants [butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and propyl gallate (PG)] and the reductant [ascorbic acid (AA)] were incorporated into a dry sugar bacon cure alone or in combination. Composite results indicated that incorporation of the formulations evaluated into dry sugar bacon cures did not appear to be practical for either extending the frozen storability or retail display-life of frozen and thawed bacon from an appearance aspect. However, incorporation of BHA and BHT in combination extended the retail display life of fresh bacon slices by approximately 3.5 d, based upon regression analysis.
Enhanced Recovery of Plesiomonas shigelloides following an Enrichment Technique, Susan M. Freund, John A. Koburger and Cheng-I Wei, Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611

J. Food Prot. 51:110-112

Enrichment techniques using five broths (gram-negative broth, alkaline peptone water, tetrathionate broth without iodine and two Plesiomonas broths) were compared to direct plating methods using freshwater samples to determine their ability to increase the isolation rate of Plesiomonas shigelloides, a suspected food and waterborne pathogen. Tetrathionate broth consistently gave significantly (p<0.05) greater recovery of P. shigelloides than the other four broths tested as well as by direct plating. Incubation of the enrichment broths at 40°C also resulted in significantly higher recovery of Plesiomonas than at 35°C. It is therefore suggested that for routine monitoring of P. shigelloides, tetrathionate broth incubated at 40°C be used for enrichment before plating.

Effects of Electrical Stimulation and Kidney-Pelvic Fat Removal Before Chilling on Microbial Quality of Beef Tenderloins, E. Connie Grimes, William R. Jones, Dale L. Huffman and Dennis N. Marple, Department of Animal and Dairy Sciences, Alabama Agricultural Experiment Station, Auburn University, Auburn University, Alabama 36849

J. Food Prot. 51:113-116

Twenty-four steers (435-567 kg) were used to study the effects of electrical stimulation (50 V for 120 s) and of kidney-pelvic fat removal before chilling (3-4°C) on microbial populations of beef tenderloins on days 1, 4 and 7 post-mortem. Kidney-pelvic fat was stripped from one side of each carcass; the other side remained intact for later fat removal. On each respective chill-day, kidney-pelvic fat was aseptically removed from intact sides, tenderloins were swabbed at two anatomically referenced locations (3rd and 5th lumbar vertebra) and microbial load was determined. The statistical model for data analysis included the effects of electrical stimulation, chill-day, animal within chill-day X stimulation, fat removal, location, and all main effect interactions. Removal of kidney-pelvic fat before chilling resulted in a significantly higher bacterial load on the surface of exposed tenderloins after 24 h of chill. Electrical stimulation produced significantly lower bacterial counts for fat-intact surfaces on chill-day 7 and for fat-removed surfaces on chill-day 4. Kidney-pelvic fat removal allowed for significantly higher bacterial counts on the tail portion of tenderloins (3rd lumbar vertebra) for surfaces from non-stimulated carcasses than the butt portion (5th lumbar vertebra). Mean bacterial counts from electrically stimulated carcasses at the fifth and third lumbar vertebra locations did not differ (P>0.10) between fat treatments.

Effects of Dietary Trans Fatty Acids on Mutagenesis of Known Carcinogens, Marianne Schaub and Nancy R. Green, Department of Nutrition and Food Science, Florida State University, Tallahassee, Florida 32306

J. Food Prot. 51:117-120

The metabolic activating potential of liver homogenates from animals fed a diet containing 46.6% trans fatty acids or a diet containing less than 1% trans fatty acids was compared in the Ames assay with 2-aminofluorene (AF), benzo(a)pyrene (BP), and dimethylbenz(a)anthracene (DMBA). The control fat had a similar fatty acid composition only consisting of cis fatty acid (cis fats). Since both the cis and trans fats contained moderate levels of saturated fatty acids, a comparison was made between these two fats and corn oil. All three fats were incorporated into high fat, 20%, and low fat, 5%, diets and fed to male Sprague-Dawley rats for three weeks. Although the mutagenic potentials of AF and BP increased with increasing mutagen concentration and with increasing level of dietary fat, there was no consistent difference in mutagenic potential between the cis and trans fats. DMBA was mutagenic only at the two highest concentrations with livers from corn oil-fed rats. The mutagen activating potential of S-9 from animals fed trans fat diets generally was similar to that of animals fed cis fat diets, but did not follow the trend of animals fed corn oil diets. Thus the amount and/or type of polyunsaturated fatty acids (essential fatty acids) present in the diet may be key factors in evaluating the enhancement of mutagenic activity of DMBA by dietary fat.

Saprophytic and Pathogenic Bacteria Levels in Turkish Soudjouks Manufactured in Erzurum, Turkey, H. Y. Gokalp, H. Yetim, M. Kaya and H. W. Ockerman, Department of Animal Science, The Ohio State University, 2029 Fyffe Road, Columbus, Ohio 43210-1095

J. Food Prot. 51:121-125

In Turkey, spicy, typically dry, fermented sausage (soudjouk) is one of the most popular processed meat products. In this study, 42 soudjouk samples were collected from the eight manufacturers in Erzurum, Turkey. These samples were evaluated for aerobic plate count (APC) at 37 and 25°C, psychrotrophic, coliform, Escherichia coli, and coagulase-positive Staphylococcus aureus counts and presence of Salmonella and Shigella spp. Generally, all the samples had very high counts of most of the bacteria enumerated. In two samples of the 42, Shigella spp. was found and one of them was Shigella boydii. None of the samples yielded Salmonella spp.
Ineffectiveness of Three Added Mold Species to Enhance the Rapid Aging of Beef, A. W. Kotula, S. G. Campano and D. M. Kinsman, Meat Science Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705

J. Food Prot. 51:126-129

Paired beef short loin sections from four U.S. Good and four U.S. Choice carcasses were used to determine the effects of the mold *Thamnidium elegans* on cooking and palatability characteristics. The longissimus muscle from each section was treated with mold spores and aged for 2 or 4 d or left untreated and aged for 2 or 14 d at 4°C. Sensory panel ratings revealed that mold treatment had no significant effect (P<0.05) on tenderness, juiciness, detectable connective tissue amount, or beef flavor intensity of the loins aged for 2 d. Thawing loss, cooking loss, cooking time, Instron shear force and work force values were not affected (P>0.05) by treatment with *T. elegans*. Aging untreated meat for 14 d significantly improved (P<0.05) sensory panel ratings for tenderness. No significant difference (P>0.05) was noted between mold treatments (2 and 4 d) when compared to the 4-d untreated aging, for beef flavor intensity, detectable connective tissue amount, shear and work force values. Significant grade effects were noted with U.S. Choice samples having higher (P<0.05) sensory panel ratings for juiciness and beef flavor intensity, and decreased (P<0.05) ratings for connective tissue amount when compared with U.S. Good samples. The data indicate that treatment of sub-primal cuts with *T. elegans* has little or no effect on palatability and cooking characteristics.

J. Food Prot. 51:130-138

Studies in the past decade have demonstrated with convincing evidence that *Campylobacter jejuni* is an important enteric pathogen of man. The wide distribution of the organism in animal reservoirs, and in foods of animal origin makes control of this foodborne microbe a formidable undertaking. Although the vehicles that are incriminated as sources of infection are broad, most illnesses occur sporadically without a finite determination as to the mode of transmission. The problem is further amplified because an infectious zoonotic disease like *Campylobacter enteritis* not only occurs frequently, but is almost always unsuspected, and too often unrecognized. Factors that perpetuate the Campylobacter problem are spreading Campylobacter during animal slaughtering and processing, concentrating animals in feedlots and brooding houses, poor food handling and storage practices, environmental contamination from animal wastes and other sources. Campylobacteriosis is a universal problem and an immense challenge to all who work in the arena of food protection. The solutions for control and prevention are demanding. In addition to more needed research, close national and international cooperation is a mandate if progress will be realized in the long-term minimization, and eventual elimination of this pathogen.

Selective Enterotoxin Production by a Staphylococcus aureus Strain Implicated in a Foodborne Outbreak, Raymond G. Bryant, Josephine Jarvis and Gerry Guibert, California Department of Health Services, Microbial Diseases Laboratory, 2151 Berkeley Way, Room 330, Berkeley, California 94704 and Sacramento County Public Health Laboratory, 4611 Broadway, Sacramento, California 95820

J. Food Prot. 51:139-140

More than 80 of 230 participants (>34.7%) at a literary conference became ill with acute gastroenteritis 3 to 14 h after a catered meal. Attack rate data implicated cheese tortellini as the suspect food (p=0.0087). Selective plating of partially prepared and finished tortellini produced *Staphylococcus aureus* counts of 6.0 x 10³ and 1.0 x 10⁶ CFU per gram, respectively. Enterotoxin, phage typing, antibiotic sensitivity testing, and other biotyping studies were applied to *S. aureus* isolates from the suspect food and the single food-handler involved. All isolates reacted identically by all criteria, and each isolate produced both type A and C staphylococcal enterotoxins. Type A enterotoxin (0.90 µg/100 g) alone was detected in samples of the suspect food. The production of type C enterotoxin by the outbreak strain was delayed approximately 4 h relative to production of enterotoxin A when grown in Heart Infusion broth (pH 5.5). This study serves as an example of selective enterotoxin production by *S. aureus* in suspect foods which can be misleading to outbreak investigators.

Thermal Destruction of Escherichia coli and Klebsiella pneumoniae In Human Milk, Jeffrey N. Morgan, F. Jane Lin, Ronald R. Eltenmiller, Harold M. Barnhart and Romeo T. Toledo, Food Science and Technology Department, University of Georgia, Athens, Georgia 30602

J. Food Prot. 51:141-145

A continuous flow high-temperature short-time pasteurization system was used to determine kinetic parameters (D- and z-values) for thermal destruction of the bacterial pathogens, *Escherichia coli* and *Klebsiella pneumoniae*, in mature human milk. D- and z-values of each bacterium were determined from data on survivors enumerated on both selective media, Violet Red Bile agar or MacConkey's, and on a non-selective medium, nutrient agar (NA). For *E. coli*, D-values were determined at 58, 60, 62 and 64°C. The predicted value of D at 60°C is 31.5 s. The z-value for *E. coli* is 3.2°C. D-values for *K. pneumoniae* were determined at 52, 56 and 58°C. Based on these data the predicted value of D at 60°C is 1.3 s. The z-value for *K. pneumoniae* is 2.8°C. For both *E. coli* and *K. pneumoniae*, counts on NA tend to be higher than on selective media. This is undoubtedly due to the inhibitory nature of the selective media. This also suggests that some degree of thermal injury may occur for each organism.
Analysis of Sulfites in Shrimp Using Rapid Distillation Followed by Redox Titration, Marian V. Simpson, W. Steven Otwell, Maurice R. Marshall and John A. Cornell, Food Science and Human Nutrition Department and Department of Statistics, University of Florida, IFAS, Gainesville, Florida 32611

J. Food Prot. 51:146-147

The use of rapid steam distillation followed by redox iodine titration provides a rapid and accurate determination of total sulfite residual in shrimp. Values obtained for sulfite-treated shrimp using the rapid distillation method gave comparable results to those of the officially recognized Monier-Williams method. Values for the rapid distillation method ranged from 6 to 212 ppm while those of the Monier-Williams procedure ranged from 6 to 241 ppm for untreated and treated shrimps, respectively. Statistical analysis using two-sample Student’s t-test indicated that there were no significant differences (p>0.05) for residual levels below 100 ppm but the values obtained by the rapid distillation method and the Monier-Williams procedure were significantly different (p<0.05) at concentrations near and above 100 ppm.

Potassium sorbate at 500, 1000 and 1500 µg/ml delayed initiation of growth and sporulation by Aspergillus ochraceus 0L24 in yeast extract-sucrose (YES) broth at 15°C, 25°C and 35°C. At 25°C, sporulation and growth were more rapid. Potassium sorbate at 500 µg/ml resulted in an increase in mycelial weight, but at 1000 and 1500 µg/ml the mycelial mass was decreased. Potassium sorbate also reduced or prevented production of penicillic acid, especially at 15 and 35°C. Natamycin at 1, 10 and 20 µg/ml delayed initiation of growth and sporulation in YES broth. At 20 µg of natamycin/ml, mycelial growth was inhibited by 80 to 100% and penicillic acid production was completely inhibited. Growth and penicillic acid production on olive paste by A.ochraceus in the presence of potassium sorbate and natamycin showed that sorbate at 1500, 3000, and 6000 µg/g delayed growth and sporulation. Also, the extent of growth was greatly reduced by 3000 and 6000 µg of potassium sorbate/g. Penicillic acid production was reduced over the control at all the potassium sorbate levels. At 6000 µg of sorbate/g, no penicillic acid was detected after 21 d of incubation. Natamycin at 85, 175, and 350 µg/g delayed growth and sporulation by A. ochraceus on olive paste. Increasing levels of

Bring standard plate counting into the 20th Century

- Simple and reliable
- Rapid counting—seconds/sample
 Typically 200 samples per hour.
- Operator independent
 Single touch control

Microprocessor Controlled Image Analyzer. Provides digital display with print-out of results.

- Repeatability*
 SD: two colonies

- Highly accurate*
 CV: 8% over the range

*These figures were obtained on Milk Agar Plates in the range 30-300 colonies per plate.

Be FOSSure when you count with the bio-Foss Colony Counting System

Foss Food Technology Corporation

10355 W. 70th St. • Eden Prairie, MN 55344 USA
612-941-8670 FAX: 612-941-6333

Please circle No. 172 on your Reader Service Card
DAIRY INDUSTRY WORKSHOP will be held at Virginia Polytechnic Institute and State University, Blacksburg, VA. For more information, contact: W. J. Farley, Rt. 1, Box 247, Staunton, VA 24401.

March 6-8, OHIO DAIRY PRODUCTS ASSN., INC. ANNUAL CONVENTION, to be held at Dayton Marriott Hotel, Dayton, OH. For more information, contact: Don Buckley, 1429 King Ave., #210, Columbus, OH 43212.

March 6-9, TEXAS PUBLIC HEALTH ASSOCIATION, 63rd Annual Meeting to be held at the Hilton Palacio del Rio in downtown San Antonio. For more information, contact: James O. Allen, Jr., Texas Public Health Association, PO Box 4246, Austin, Texas 78765.

March 9-11, AMERICAN BUTTER INSTITUTE - NATIONAL CHEESE INSTITUTE ANNUAL MEETING, to be held at the Hyatt Regency Washington on Capitol Hill, Washington, DC. For more information, contact: the AIB-NCI, 699 Prince Street, Suite 102, Alexandria, VA 22314. 703-549-2230.

March 13-16, INTERNATIONAL CONFERENCE ON THE BIOTECHNOLOGY OF MICROBIAL PRODUCTS: NOVEL PHARMACOLOGICAL AND AGRONOMICAL ACTIVITIES, to be held in San Diego, CA. For more information, contact: Mrs. Ann Kulback, SIM, PO Box 12534, Arlington, VA 22209-8534.

March 13-16, AMERICAN CULTURED DAIRY PRODUCTS INSTITUTE ANNUAL MEETING and annual meeting and conference/Cultures and Curds Clinic/International Canned Dairy Products Evaluation Sessions, Marriott Hotel, Newport Beach, CA. For more information, contact: Dr. C. Bronson, ACDPI, PO Box 547813, Orlando, FL 32854-7813. Telephone: 305-628-1266.

March 16, IDIANA DAIRY INDUSTRY CONFERENCE sponsored by the Food Science Department at Purdue University. For more information, contact: James V. Chambers, Food Science Dept., Smith Hall, Purdue University, West Lafayette, IN 47907. Telephone: 317-494-8279.

March 21-24, INDUSTRIAL REFRIGERATION SHORT COURSE is designed for engineers and supervisors employed by food processors or for contractors, design firms and equipment manufacturers. The 4 day course will be held on the U.C. Davis campus. The fee is $630. For more information on refrigeration, contact: James Lapsey, University Extension, U.C. Davis 95616. Telephone: 916-752-4395.

March 21-25, DEPARTMENT OF FOOD SCIENCE & NUTRITION, MID-WEST WORKSHOP IN MILK & FOOD SANITATION, to be held at Fawcett Center for Tomorrow, Ohio State University, Columbus, OH. For more information, contact: David Duzer, 2121 Fyffe Road, Columbus, OH 43210-1097.

March 27-30, DAIRY AND FOOD IN-
May 9-12, PURDUE ASEPTIC PROCESSING AND PACKAGING WORKSHOP, sponsored by the Food Science Department at Purdue University. For more information, contact: James V. Chambers, Food Science Dept., Smith Hall, Purdue University, West Lafayette, IN 47907. Telephone: 317-494-8279.

May 16-18, THE PA DAIRY SANITARIANS & LABORATORY DIRECTORS ANNUAL MEETING, to be held at Penn State University. For more information, contact: Sidney Barnard, Food Science Extension Specialist-Dairy, 8 Borland Laboratory, Penn State Univ., University Park, PA 16802. Telephone: 814-863-3915.

May 22-24, GEORGIA DAIRY PRODUCTS ASSOCIATION ANNUAL CONVENTION, to be held at Callaway Gardens, Pine Mountain, GA. For more information, contact: Pat Hamlin, P.O. Box 801, Macon, GA 31208.

July 31-August 4, IAMFES 75th ANNUAL MEETING, to be held at the Hyatt Regency Westshore, Tampa, FL. For more information, contact Kathy R. Hathaway, IAMFES, Inc., PO Box 701, Ames, IA 50010. 800-525-5223, in Iowa 515-232-6699.

August 7-12, 1988 ANNUAL MEETING OF THE SOCIETY FOR INDUSTRIAL MICROBIOLOGY, to be held at the Hyatt Regency, Chicago, IL. For more information, contact: Mrs. Ann Kulback, SIM, PO Box 12534, Atlanta, GA 30329-1253.

September 11-14, SOUTHERN ASSOCIATION OF DAIRY FOOD MANUFACTURERS, INC. 74TH ANNUAL CONVENTION, to be held at the Boca Raton Hotel & Club, Boca Raton, FL. For more information, contact: John E. Johnson, P.O. Box 1050, Raleigh, NC 27605.

September 21-22, UNITED DAIRY INDUSTRY ASSOCIATION ANNUAL MEETING, to be held at the Hyatt Regency Minneapolis, Minneapolis, MN. For more information, contact: Edward A. Peterson, 600 N. River Road, Rosemont, IL 60018.

September 27-29, NEW YORK STATE ASSOCIATION OF MILK AND FOOD SANITARIANS, to hold annual meeting in Binghamton, NY. For more information, contact: Paul Dersam, telephone: 716-937-3432.

September 29-30, SOUTH DAKOTA STATE DAIRY ASSOCIATION, will hold its annual meeting at the Hotel InterContinental San Diego, in San Diego, California. For more information, contact: Raymond J. Tarleton, American Assoc. of Cereal Chemists, 3340 Pilot Knob Road, St. Paul, MN 55121. 612-454-7250.
In studies screening thousands of unknown samples, PENZYME® consistently detected positive loads, determined later by the B. stearothermophilis disc assay.

Sure.

Penzyme III is specifically designed to be used at milk plants or receiving stations to screen incoming milk for beta-lactam antibiotic residue. Penzyme III is the sure and simple antibiotic residue screen test for milk.

Simple.

In 60 seconds, your technician can complete the three steps described on the Penzyme III procedure sheet. Then, a short 15 minutes later, the enzymatic colorimetric results are easily read.

Not only does it detect Penicillin, Amoxicillin, Ampicillin, Cloxacillin, Cephapirin and a host of other beta-lactam antibiotics, in less time than a coffee break, it costs less than $1.65 per test.

Phone or write us for more of the pure and simple truth about Penzyme III. The antibiotic residue screen test for milk.
International Association of Milk, Food & Environmental Sanitarians, Inc.

All memberships and subscriptions are on a calendar year. Back issues are supplied for memberships and subscriptions received after the 1st of the year.

1988 MEMBERSHIP APPLICATION

Best Buy

Check one:
□ Membership with BOTH journals $58
 (Dairy and Food Sanitation & Journal of Food Protection)
□ Membership with Dairy and Food Sanitation $33

1988 SUSTAINING MEMBER APPLICATION

□ Membership with BOTH journals $375
 includes monthly company listing in both journals
 table top exhibit discount
 advertising discount in convention issue and plaque.

1988 STUDENT MEMBERSHIP APPLICATION

Best Buy

Check one:
□ Membership with BOTH journals $29
□ Membership with Dairy and Food Sanitation $17
□ Membership with Journal of Food Protection $17

Student verification must accompany order

1988 SUBSCRIPTION APPLICATION

for agencies, associations, and institutions

Best Buy

□ BOTH Journals $137
□ Dairy and Food Sanitation $75
□ Journal of Food Protection $100

FOREIGN & CANADIAN ORDERS ADD $10 FOR EACH JOURNAL ordered
U.S. FUNDS ONLY

3-A Sanitary Standards

3-A Sanitary Standards
() Complete set 3-A Dairy Stds $33
() Complete set 3-A Dairy & Egg Stds $48
() 3-A Egg Stds $28

Five-Year Service on 3-A Sanitary Standards
() 3-A Dairy & Egg Stds $28 Five years $34

“Procedures” Booklets

□ Procedures to Investigate Waterborne Illness $3.50
□ Procedures to Investigate Foodborne Illness - new 4th Edition $3.50
□ Procedures to Investigate Arthropod-borne and Rodent-borne Illness $3.50

Multiple copies available at reduced price. Prices include postage.

Please fill out completely

Name ____________________________ Company Name ____________________________
Address ____________________________ State/Province ___________ Country __________ Zip __________
City ____________________________

Phone with area code ____________________________
Job Title ____________________________

Best Buy

□ Payment enclosed
□ Mastercard/Visa (circle appropriate card)
 Card # ____________________________
 Expiration Date ____________________________
□ Bill me (memberships only)
□ Please check here if you would like information on joining your state/province association.

* U.S. FUNDS *

MAIL ENTIRE FORM TODAY TO:
IAMFES-Dept. B
P.O. Box 701
Ames, IA 50010
800-525-5223
515-232-6699

Please circle No. 360 on your Reader Service Card

108 DAIRY AND FOOD SANITATION/FEBRUARY 1988
Reader requests for information are sent to the appropriate company. Follow-up on reader requests are the responsibility of the company advertising.

The Advertisements included herein are not necessarily endorsed by the International Association of Milk, Food and Environmental Sanitarians, Inc.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State/Prov.</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To receive information on membership with IAMFES Circle 360 on this card.

Please send information on items circled below: Deadline 60 days from issue date

<table>
<thead>
<tr>
<th>Item Numbers</th>
<th>Item Numbers</th>
<th>Item Numbers</th>
<th>Item Numbers</th>
<th>Item Numbers</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>101 114 127 140 153 166 179 192 205 218 231 244 257 270 283 296</td>
<td>309 322 335 348</td>
</tr>
<tr>
<td>103 116 129 142 155 168 181 194 207 220 233 246 259 272 285 298</td>
<td>311 324 337 350</td>
</tr>
<tr>
<td>104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299</td>
<td>312 325 338 351</td>
</tr>
<tr>
<td>107 120 133 146 159 172 185 198 211 224 237 250 263 276 289 302</td>
<td>315 328 341 354</td>
</tr>
<tr>
<td>108 121 134 147 160 173 186 199 212 225 238 251 264 277 290 303</td>
<td>316 329 342 355</td>
</tr>
<tr>
<td>110 123 136 149 162 175 188 201 214 227 240 253 266 279 292 305</td>
<td>318 331 344 357</td>
</tr>
<tr>
<td>111 124 137 150 163 176 189 202 215 228 241 254 267 280 293 306</td>
<td>319 332 345 358</td>
</tr>
</tbody>
</table>
Open your eyes and see just how many subjects are covered in the new edition of the Consumer Information Catalog. It's free just for the asking and so are nearly half of the 200 federal publications described inside. Booklets on subjects like financial and career planning; eating right, exercising, and staying healthy; housing and child care; federal benefit programs. Just about everything you would need to know. Write today. We'll send you the latest edition of the Consumer Information Catalog, which is updated and published quarterly. It'll be a great help, you'll see. Just write:

Consumer Information Center
Department TD
Pueblo, Colorado 81009

A public service of this publication and the Consumer Information Center of the U.S. General Services Administration.
One Cow, One Cow, that father bought for two zuzim, One Cow, One Cow,

And the bug came and infected the cow that father bought for two zuzim. ONE COW, ONE COW.

And the tetracycline came and killed the bug that infected the cow that my father bought for two zuzim.

And the child came and drank the milk that contained the tet that killed the bug that infected the cow that my father bought for two zuzim.

Penicillin Assays Inc.
Nothing works like a Charm.

36 FRANKLIN STREET, MALDEN, MASSACHUSETTS 02148 TEL. (617)322-1523
TELEX: 200049, ANSWERBACK: PENZ UR

Please circle No. 230 on your Reader Service Card