A Publication of the International Association of Milk, Food and Environmental Sanitarians, Inc.

"The mission of IAMFES is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply"
There's more to Hygiene than meets the eye.

Poor hygiene, if undetected, can lead to contaminated production. Reduced product quality, reject batches, delays in supplying important customers, and consequences of a costly product recall, are major risks.

Uni-Lite, the world's first direct Swab Monitor, is 'food factory safe' and can provide hygiene test results in minutes - before production commences.

Rapid results from Uni-Lite help ensure:

- improved product quality
- increased customer confidence
- reduced reject batches
- extended shelf life
- enhanced compliance with HACCP regimes
- reduced sanitizer costs

Uni-Lite is an award winning, state of the art system from Biotrace - the industry leader. Send for details now.

Biotrace Inc, 666 Plainsboro Road, Suite 1116, Plainsboro NJ 08536, USA. Tel: (609) 897 0282 Fax: (609) 897 0289

1. Wet the swab with Biotrace's unique swab moistening fluid and swab the surface in the normal way.
2. Immerse the swab in the enzyme solution using the container provided.
3. Place the swab into the Uni-Lite sample chamber and measure.
QMI helps you identify the source of product contamination

AND helps you avoid it!

With its patented QMI Aseptic Sampling System and Aseptic Transfer System, QMI is a fast, sure and easy solution for the threat of contamination. More importantly, QMI goes a long way to help avoid an even bigger threat—the threat of product recall due to spoiled or unsafe products.

• Using the QMI Aseptic Sampling System, you can effectively document microbiological process control, which is critical to an effective HACCP system.
• Using the QMI Aseptic Transfer System, you can avoid contamination during inoculation.

Don’t take chances. Take action against contamination. Get all the facts on our aseptic sampling and transfer systems now.
IAMFES Sustaining Members

ABC Research, PO Box 1557, Gainesville, FL 32602; (904)372-0436

ABELL Pest Control, 246 Atwell Drive, Etoibioke, ON M9W 5B4; (416)675-6060

Accurate Metering Systems, Inc., 1651 Wilkening Court, Schaumburg, IL 60173; (708)882-0690

Alfa-Laval Agri, Inc., 1110 North Congress Avenue, Kansas City, MO 64153; (816)923-8613

AMPCO Pumps, Inc., 4000 W. Burnham St, Milwaukee, WI 53215; (414)637-1110

Anderson Instrument Co., RD #1, Fultonville, NY 12072; (518)922-5315

Applied Microbiology Inc., 170 53rd Street, Brooklyn, NY 11232; (212)578-0851

APV Crepaco, 9525 W. Bryn Mawr Avenue, Rosemont, IL 60018; (708)678-4300

Babson Bros. Co., 1800 Country Farm Drive, Naperville, IL 60563; (708)369-8100

Becton Dickinson Microbiology Systems, PO Box 243, Cockeyville, MD 21030; (301)584-7188

Bentley Instruments, Inc., 327 Lake Hazeltine Drive, Chaska, MN 55318; (612)448-7600

Biolog, Inc., 3447 Investment Blvd., Suite 2, Hayward, CA 94545; (415)785-2585

bioMérieux Vitek, Inc., 595 Anglers Drive, Hayward, CA 94545; (415)785-2585

Borden, Inc., 180 E. Broadway, Columbus, OH 43215; (614)225-6139

Capitol Vial Corp., PO Box 446, Fultonville, NY 12072; (518)853-3377

Charm Sciences Inc., 36 Franklin Street, Malden, MA 02148; (617)322-1523

Chem-Bio, Inc., 5723 W. Fullerton, Chicago, IL 60639; (312)923-8613

Cherry-Burrell Corp., 2400 6th Street, SW, Cedar Rapids, IA 52406; (319)399-3236

Custom Control Products, Inc., 1300 North Memorial Drive, Racine, WI 53404; (414)637-9225

Dairy Quality Control Inst., 5205 Quincy Street, St. Paul, MN 55112-1400; (612)785-0484

Dairymen, Inc., 10140 Linn Station Road, Louisville, KY 40223; (502)426-6455

Darigold, Inc., 635 Elliott Avenue, W., Seattle, WA 98119; (206)284-6771

Dean Foods, 1126 Kilburn Avenue, Rockford, IL 61101; (815)862-0647

Decagon Devices, PO Box 835, Pullman, WA 99163; (509)332-2756

Difco Laboratories, PO Box 331058, Detroit, MI 48223; (313)462-8479

Diversey Corp., 12052 Tech Center Drive, Livonia, MI 48150-2122; (313)458-5000

Eastern Crown, Inc., PO Box 216, Vernon, NY 13476; (315)829-3505

F & H Food Equipment Co., PO Box 398595, Springfield, MO 65808; (417)881-6114

FRM Chem, Inc., PO Box 207, Washington, DC 20030; (301)563-4360

Alex C. Ferguson, Inc., Spring Mill Drive, Frazer, PA 19355; (215)647-3300

Foss Food Technology Corporation, 10355 W. 70th Street, Eden Prairie, MN 55344; (612)941-8870

H.B. Fuller Co., 3900 Jackson Street, NE, Minneapolis, MN 55421; (612)781-8071

Gardex Chemicals, Ltd, 246 Atwell Drive, Etoibioke, ON M9W 5B4; (416)675-6727

GENE-TRAK Systems, 31 New York Avenue, Framingham, MA 01701; (508)872-3113

General Mills Restaurants, Inc., PO Box 593330, Orlando, FL 32859; (407)850-5330

Gist-brocades Food Ingredients, Inc., 2200 10th Street, SW, Washington, DC 20006; (202)296-4250

IBA Inc., 27 Providence Road, Millbury, MA 01527; (508)563-9911

Hess & Clark, Inc./KenAg, 7th & Orange Street, Ashland, OH 44805; (800)338-7953

IDEXX Laboratories, Inc., One Idexx Drive, Westbrook, ME 04092; (207)856-0474

International Dairy Foods Association, 888 16th Street, NW, Washington, DC 20006; (202)296-4250

Klenzade Division, Ecolab Inc., 207 W. 70th Street, Eden Prairie, MN 55344; (612)876-3680

Land O'Lakes Inc., PO Box 116, Minneapolis, MN 55440-0116; (612)481-2870

LindtChocolatier, Inc., 11100 N. Congress Avenue, West Agro Inc., Minneapolis, MN 55421; (612)481-2870

Lorio Cows, 201 Spring Mill Drive, Sparta, WI 53956; (603)269-7045

Loria Cows, 201 Spring Mill Drive, Sparta, WI 53956; (603)269-7045

MediCure, Inc., 593330, Orlando, FL 32859; (407)850-5330

Nestle USA, Inc., 593330, Orlando, FL 32859; (407)850-5330

Northland Food Lab., 2415 Western Avenue, PO Box 160, Manitowoc, WI 54221-0160; (414)682-7998

Norton Company Transflow Tubing, PO Box 3660, Akron, OH 44309-3660; (216)799-9240

Organon Teknika, 100 Akzo Avenue, Durham, NC 27704; (919)620-2000

Pall Ultrafine Corp., 2200 Northern Boulevard, East Hills, NY 11548; (516)484-5400

Penn State Creamery, 12 Borland Laboratory, University Creamery, University Park, PA 16802; (814)865-7535

Rio Linda Chemical Co., Inc., 410 N. 10th Street, Sacramento, CA 95814; (916)443-4939

Ross Laboratories, 625 Cleveland Avenue, Columbus, OH 43216; (614)227-3333

Seiberling Associates, Inc., 1141 Main Street, Roscoe, IL 61072; (815)623-7311

Silliker Laboratories Group, Inc., 900 Maple Drive, Homewood, IL 60430; (708)957-7878

SmithKline Beecham Animal Health, 812 Springdale Drive, Exton, PA 19341; (800)877-6250, ext. 3756

Sparta Brush Co., Inc., PO Box 317, Sparta, WI 54656; (608)269-2151

Tekmar Co., PO Box 371856, Cincinnati, OH 45222-1856; (513)761-0633

3M/Medical-Surgical Div., 3M Center, St. Paul, MN 55144-1000; (612)736-9593

Unipath Co., Oxoid Div., PO Box 691, Ogdenburg, NY 13669; (800)567-8378

Viatran Corporation, 300 Industrial Drive, Grand Island, NY 14072; (716)773-1700

Vicom, 313 Pleasant Street, Watertown, MA 02172; (617)922-0745

Walker Stainless Equipment Co., 618 State Street, New Lisbon, Wl 53950; (608)563-3215

West Agro Inc., 11100 N. Congress Avenue, Kansas City, MO 64153; (816)691-1558

World Dryer Corp., 5700 McDermott Drive, Berkeley, IL 60163; (708)449-6950

Mike Yurosek & Son, Inc., 6900 Mountain View Road, Lamont, CA 93241; (805)845-3764
Dairy, Food and Environmental Sanitation

CONTENTS

Articles:

Foodborne Illness (Part 2):
Salmonellosis
George H. Reed

Recovery of Short Chain-Length Fatty Acids from Milk by Several Methods
G. L. Christen, N. Shen and J. L. Maruri

The Use of Conductivity for Controlling Cleaning Solution Strength
Gerald Harsma

Biological Effects of 137C Uptake in Carp (Cyprinus carpio, L.) and Eel (Anguilla anguilla, L.): A Comparative Study
P. A. Karakoticis, F. K. Vosniakos, A. Giouvoukoudi, A. Kafaf and A. Mountzis

News

Dairy Leaders Develop Plan for Farm Financing Demonstration; West Agro Acquires Chemland "*** and much more***

Federal Register

Updates

Food and Environmental Hazards to Health

HAZCON-Based Total Quality Management

Association News:

Sustaining Members

From the President

On My Mind

Affiliate News

Affiliate Officers

New IAMFES Members

Industry Products

Dairy, Food and Environmental Sanitation Index for Vol. 13

Author

Subject

Advertising

Business Exchange

"Classifieds"

3-A Sanitary Standards

Number 63-00

Number 59-00

Coming Events

Advertising Index

IAMFES Booklet Form

IAMFES Membership Application

ABOUT THE COVER...

Photo courtesy of Silliker Laboratories Group, Inc., Homewood, IL Zubair Kirmani, chemistry supervisor at Silliker’s IL facility, checks the Vitamin D content in a milk sample using the HPLC method.

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein nor do they warrant any views or opinions offered by the authors of said articles and descriptions.
FOOD PROCESSING
CleanTech® hand and glove washing systems.

- Food Safety
- Improved HACCP
- Impress Your Customers
- Inspectors
- Water Bill
- Employees Like To Use It
- Replaces Messy Maintenance Intensive Dip Stations

Just a few reasons Food Processors are adopting the CleanTech® System.

CleanTech® Systems are Habit Forming

MERITECH, INC.
8250 South Akron St., #201 Englewood, CO 80112 • 800/932-7707

Temperature is critical to food safety and quality inspections—rely on Atkins Thermometers and Recorders! Ideal for wet processing environments, they are O-ring sealed against moisture. These rugged, high accuracy digital thermometers have several probe designs available. Atkins 330 Series with Probe Priced from $115 Recorder Thermometer with Probe Priced from $325

1-800-284-2842 ext. 404

ATKINS
Thermometer Manufacturing
Gainesville, FL USA • (904) 378-5555
FAX to (904) 335-6736 • Dept. 404
24 Hour Auto-Faxed Information
Call 1-800-888-1335, key in Info Pak #404, information will be immediately faxed to you.

THE HACCP EXPERTS
The Food Processors Institute (FPI) and
The National Food Laboratory (The NFL)
offer the following professional services to meet your organization's commitment to HACCP principles:

IMPLEMENTATION
► Existing HACCP Plan Review
► New HACCP Plan Development
► HACCP Implementation
► Annual HACCP System Audit
► Associated HACCP Testing Services

UNDERSTANDING

Contact... THE NATIONAL FOOD LABORATORY 6363 Clark Ave, Dublin, CA 94568-3098 (510) 828-1440 Fax (510) 833-8795 Affiliates of The National Food Processors Association

The Food Processors Institute 1401 New York Ave, N.W. Washington, D.C. 20005 (202) 393-0890 Fax (202) 639-5932

Temperature is critical to food safety and quality inspections—rely on Atkins Thermometers and Recorders! Ideal for wet processing environments, they are O-ring sealed against moisture. These rugged, high accuracy digital thermometers have several probe designs available. Atkins 330 Series with Probe Priced from $115 Recorder Thermometer with Probe Priced from $325

1-800-284-2842 ext. 404

ATKINS
Thermometer Manufacturing
Gainesville, FL USA • (904) 378-5555
FAX to (904) 335-6736 • Dept. 404
24 Hour Auto-Faxed Information
Call 1-800-888-1335, key in Info Pak #404, information will be immediately faxed to you.
Just when you need it
A leading supplier of pest control chemicals and equipment is only 10 finger-taps away:

800-563-4273
(or fax 416-675-6727)

- Sprayers, misters, foggers and dusters.
- Application, detection and safety equipment.
- Flying insect eliminators.
- Baits, traps and monitoring systems.
- Insecticides and rodenticides.

Ask for our 300-item catalog

GARDEX CHEMICALS LTD

Listertest Accurate, quantitative results in
24 hours

Know your product is Listeria-free the day after you make it.
Be confident that your production environment is clean with Listertest from VICAM — the only test which gives you accurate, confirmed quantitative results within 24 hours.

Listertest eliminates enrichment which is not only time consuming, but can produce false negatives if the Listeria are killed by harsh selective agents. And, Listertest won't produce false positives either — eliminating the need and cost of confirmation. In our test, live Listeria are bound to antibodies on microscopic magnetic beads. These beads are then isolated from the rest of the food/environmental sample, and live Listeria are confirmed immunologically and biochemically. All in 24 hours.

Best of all, because the test is simple, it can be run in house. No other Listeria test is this fast, simple, sensitive, or competitively priced.

So, for more information, give us a quick toll-free call at 800-338-4381 (in Massachusetts, call 617-926-7045) and we'll respond even faster than our test.

LISTERIA BOUND TO BEADS
ARE ISOLATED BY MAGNETS
Thoughts From the President . . .

By
Harold Bengsch
IAMFES President

Strategic Planning Moves Forward

The IAMFES Strategic Planning Session in August of 1993 set four priority objectives for the organization and identified a number of strategies for achieving each of these objectives. It was not possible, because of time constraints, to write action plans during that session, so action planning was assigned to four subcommittees. After further discussion it was decided that this process could be made more effective by an action planning session involving a consultant and staff. Consequently on October 19, 1993 an action planning session was held at the IAMFES offices. At its November 8 and 9 meeting, your executive board approved and implemented the next phase of the long-range plan.

This month's column is an attempt to provide you with a consolidated overview of the action planning now assigned to four subcommittees.

OBJECTIVE “A”
A Major Effort to Expand the Membership

Strategy A1: Expand the focus beyond the current affiliate organizations to identify other potential member pools.
- Project A1a: Identify publications and other sources of names who are likely to have members and/or subscribers to whom IAMFES membership may be attractive.
- Project A1b: Identify groups with similar interests who exist outside the US whose members may benefit from IAMFES membership.
- Project A1c: Develop recruiting materials and a full recruitment program to attract targeted individuals.
- Project A1d: Improve the current membership retention program.

Strategy A2: Shift responsibility for developing the membership program from the membership committee to staff.
- Project A2a: Redefine the role and charge of the membership committee as an information and resource provider and a group to guide volunteer execution of the program developed under Strategy A1.
- Project A2b: Design the membership recruitment program jobs so that they are in small, doable pieces and develop training so that volunteers are able to do effective recruiting.
- Project A2c: Develop a program for ongoing evaluation of the membership recruitment and retention activities.

Strategy A3: Develop an effective membership database.
- Project A3a: Redesign the membership renewal form so it shows current information for database.
- Project A3b: Include the form developed under A3a in the new member data package.
- Project A3c: Include a postage-paid self-addressed card in annual directory.
- Project A3d: With database in place quantify retention and nonrenewable rates and patterns.
OBJECTIVE “B”
A Major Education Program Development Effort

Strategy B1: Develop a speaker’s bureau/panel of experts which can deliver education through the affiliate organizations.
 Project B1a: Collect information from all affiliate organizations regarding their speakers and programs.
 Project B1b: Create a master list of subject matter, speakers, and programs which can be sent on request.
 Project B1c: Promote the availability of the speaker’s bureau.
 Project B1d: Track the usage of the speaker’s bureau panel of experts for year-end evaluation.
 Project B1e: Identify areas where the officers of the organizations have expertise and can serve as spokesman to the press.

Strategy B2: Utilize the PDG groups as developers of new programs.
 Project B2a: Write a charge for all PDG groups.
 Project B2b: Each PDG group to suggest specific programs to the program development committee.
 Project B2c: The PAC is to perform a marketing evaluation for each proposed program.
 Project B2d: The PAC recommends program content to the board for action and inclusion in the program.

Strategy B3: Develop a process whereby IAMFES creates white papers on issues of significance in food safety and sanitation each year.
 Project B3a: Appoint a “White Paper Development Group” with specific charges.

Strategy B4: Develop a system in the office to track all requests for information/program assistance/white papers/and other kinds of requests.
 Project B4a: An informational log will be developed to include subject material of request and disposition.
 Project B4b: Identify officers as policy spokespersons for the association to whom information requests can be referred.
 Project B4c: Identify and approve a list of speakers which the office can recommend when requests are received.

OBJECTIVE “C”
A Major Review of our Current Product and Service Offerings Leading to a Product Enhancement Program

Strategy C1: Write a journal editorial policy.
 Project C1a: Staff editor and volunteer editor to write guidelines which now exist informally on editorial policy.
 Project C1b: Review editorial policy and approve/revise as necessary.

 Project C2a: Develop a request for a proposal for a research organization to perform regular research for education program content.
 Project C2b: Actually perform the research as outlined in the strategic plan.
 Project C2c: Use research to guide program development.

Strategy C3: Develop marketing plans for major projects and service areas.
 Project C3a: Write formal marketing plans in the area of membership development, educational programs, and publications.

OBJECTIVE “D”
Develop a Formal and More Sophisticated Financial Plan

Strategy D1: Include investment policy, review of dues policy, identification of reserve target, and policy regarding all revenue and expense streams to the association.
 Project D1a: Write a preliminary plan documenting all assumptions for review by the board.
 Project D1b: Allocate resources according to the financial plan and require performance from all aspects of the organization in accordance with the plan.

'Well, there you have it. Ambitious? Yes! Impossible? No! This is indeed a major undertaking but nevertheless a project necessary for the IAMFES to be the Food Protection and Environmental Sanitation leader for the rest of this decade and as we move into the 20th Century. Until next month . . . Happy Holidays.
... is 1993

Unforgettable hardly does justice to 1993. As Charles Dickens said: "It was the best of times. It was the worst of times." When 1993 was good, it was very good. When it was bad, it was horrible. I would like to review some of the events of 1993—the good and the bad.

1993 was the year in which we saw great gains in our understanding of who we are as an association and role we are to fill in the world. We saw this in our volunteer leadership and the commitment and dedication that they brought to the association. We saw it in the growth of activities undertaken by our Committees, Professional Development Groups and Task Forces. We saw it in the progress made by the Strategic Long Range Planning Task Force as they began mapping our future. We saw it in improvements in our journals both in the quantity and the quality of the information they contained. We saw it in the growth of the membership’s demands and expectations from the association.

1993 was the year in which IAMFES took a giant step forward in recognizing that we had outgrown our need for a "bookkeeper" and now needed a Financial Manager if we were to be able to meet our financial information needs. David Tharp’s knowledge and expertise have already benefitted us greatly and will continue to allow us to improve our management of the association’s finances in ways that would have never been possible with a bookkeeper. It is exciting to be pushed by the visions of what IAMFES can become.

1993 was the year in which we put together the annual meeting while enduring the ravishes of The Flood of the Millenia. Doing that took a toll that I am not sure I fully understood even yet. At the time, it seemed like that the strain was all physical. It was not until I became chocked with emotion as I tried to deliver my report at the Business Meeting, that I began to realize the magnitude of the emotional stress we had been under. As I stood at the podium, I suddenly felt as if a tremendous burden had been lifted from me and I was quite frankly not prepared to handle it. The bright side of that disaster was that we saw a great team effort by a staff that put their comforts and needs secondary to their desire to run a great meeting for you.

1993 was the year in which I saw the best Annual Meeting that I have been involved with in my years of association management. I am still just overwhelmed when I read through the abstracts of the papers presented. Words cannot express the quality of that program. And the ILSI sponsored symposia were the icing on the cake. They pushed a great program way over into the superb program category. But in addition to the program, the social events were outstanding in every way; the hotel was outstanding and our hosts, the Georgia affiliate, was outstanding in every way.

The dark side of this was a dramatic increase in the number of complaints we received from members who were unable to attend all the sessions they wanted to because they could not be in two places at the same time. Never before have we been able to run four concurrent sessions. When you do that, it is natural to find conflicting programming. But then, that is a problem I can live with.

Yes, 1993 was unforgettable. And I just realized that it is impossible to do it justice with one page of words. To paraphrase Shakespeare “The old year is dead—long live the new one!”
High quality microscopes for every budget.

• Upright
• Inverted
• Stereo

You can afford the best.

(800) 233-2343

IAMFES Members

INVITE A COLLEAGUE TO JOIN THE ASSOCIATION

You, as a member of IAMFES, can contribute to the success of the Association and the professional advancement of your colleagues by inviting them to become a part of IAMFES. On your behalf, we would be happy to send a colleague a membership kit, including complimentary copies of Dairy, Food and Environmental Sanitation and the Journal of Food Protection and an invitation to join IAMFES. It’s easy, just fill in the following information and return this card to IAMFES. (Please Print)

Name: ___________________________ Company: ___________________________

Address: __________________________ City: ___________________________

State/Prov.: __________________________ Zip: __________________________ Phone: __________________________

Your Name: __________________________ Your Phone: __________________________

Carl Zeiss, Inc. ___

Microscope Division
One Zeiss Drive
Greenwich, Connecticut 06831-0001
(203) 637-4000 • Fax: 203-637-4246

Carl Zeiss, Inc.

Your Name: __________________________ Your Phone: __________________________
High quality microscopes for every budget.

- Upright
- Inverted
- Stereo

You can afford the best.

(800) 233-2343
THERMOMETERS
ACCURATE, RUGGED & RELIABLE

HAND-HELD PROBES FOR FOOD-USE

IMC
INSTRUMENTS, INC.
Menomonee Falls, WI
TEL: 414-252-4620
FAX: 414-252-4823

$214*
SIX INPUT MODEL 776X
(13,000 HR. BATTERY LIFE)

$169*
STEM PROBES

THERMOWELL PROBES

SINGLE INPUT MODEL 771SX
(6,500 HR. BATTERY LIFE)

* PRICE EA. FOR 2 OR MORE - PROBES ARE EXTRA

"DRY" STEAM FOR CLEANING

- Clean Meat Processing, Packing and Packaging Equipment
- Kills Bacteria On Contact-Without Chemicals.
- Cuts Grease & Grime - Clean & Sanitize Hoods, Filters, Kitchen Equipment and Dock Area.
- No Flooding, Flame or Fumes
- 98% Efficiency - Use Gallons Per Hour - Not GPM

STEAM FOR FOOD PROCESSING

- 100% Culinary Steam - No Boiler Chemicals
- Can Operate Sterilizers/Retorts/Cook Chill Systems
- Multiple Kettles - Singly Or Together
- Continuous Steam For Steam Tables
- Use For Defrosting Foods & Sauces
- Sizes From 1/2 To 54 B.H.P.

- Hand Built For Your Needs —
- Our 40th Year —

UL
ETL
ASME
CSA

ELECTRO-STEAM GENERATOR CORP.
1000 Bernard St. • Alexandria, VA 22314
800-634-8177 703-549-0664 FAX 703-836-2581

None So Pure
SANITARY
PETROL-GEL
LUBRICANT
NITRITE MINERAL OIL
USP ingredients
ULTILY TASTELESS,
ODORLESS
At Melting Point.
Will not taint when
mixing in contact with
food products.
Impervious to water.
MANUFACTURED BY
McGLAUGHLIN
OIL COMPANY
3750 E. LIVINGSTON
COLUMBUS, OH
Lube Daily with PETROL-GEL

The ideal sanitary lubricant, Petrol-Gel is tasteless and odorless. Recommended uses: Stainless Steel Valves, Ice Cream Freezers, Homogenizer Pistons, Guide and Slide Mechanisms, Centrifugal Pumps, Continuous Freezers, Gaskets and Seals, and "O" Rings. The U.S. Department of Agriculture has approved the ingredients or components of materials used in the making of Petrol-Gel.

PACKAGED 6 & 12 four ounce tubes

CIP LUBE
Developed specifically to meet the demand for a lubricant for use with stationary or in-place cleaning. Washes off easily—no dismantling of tubing, valves, gaskets and seals. CIP Lube is used by most of the nation’s leading dairies.

Write for FREE Trial Tube
Foodborne Illness (Part 2)

Salmonellosis

George H. Reed, Services Manager,
University of Massachusetts/Amherst,
Environmental Health & Safety (EH&S),
Environmental Health Services,
N 414 Morrill Science,
Amherst, MA 01003

Salmonellosis is fairly common. Many species and types (called serotypes) of salmonellae are known, over 2300, with all considered pathogenic for humans; some strains are more virulent than others. These bacteria are gram-negative, non-spore forming rods and can grow facultatively, meaning with or without oxygen. They can grow between 41 F (5 C) and 114 F (45.6 C), with the organism being able to double its growth every 25 minutes at about human body temperature, 95 F (35 C) - 98.6 F (37 C). They grow at a water activity range of 0.945 - 0.999; they will generally die off at a pH below 4. The organism can survive freezing.

Salmonella are found in the intestinal tract of animals and humans, with cycles of infection between animals, humans and the environment. Animal food products - meats, poultry, eggs and items made with them - may contain the bacteria; any contaminated foods rich in protein and carbohydrates are particularly vulnerable. Sometimes humans (especially as carriers) can be directly or indirectly a source of contamination, with poor handwashing (personal hygiene) playing a vital role in transmission from a human.

Foods that have been implicated with salmonellosis include poultry and poultry salads, meat and meat products, dairy products, egg products, and other protein foods. The prevalence of the bacteria in foods is variable. Studies have shown that about half of chicken carcasses are contaminated with salmonellae, with pig carcasses having lesser contamination, and beef and lamb carcasses having the least contamination. Vegetables, salads, and cereals can be contaminated with salmonellae but at much lower levels than meats. Most vulnerable foods are those handled extensively, left unrefrigerated for periods of time, and then lightly cooked or served without further cooking.

Persons differ in susceptibility to this illness. The incubation period ranges from 6 - 72 hours, with 12 - 36 hours being average; duration of the illness is usually 1 - 4 days. Symptoms are those of acute gastroenteritis, including abdominal pain, diarrhea, and usually nausea, vomiting, a moderate fever, and headache; recovery is usually uncomplicated, but may be more severe in the very young, the elderly, and immunocompromised persons. After an outbreak laboratory studies of any incriminated leftovers and the patient’s stools should be done to try to isolate a Salmonella serotype.

Salmonella problems from shell eggs emerged during the 1980’s. In 1990 FDA again declared shell eggs a potentially hazardous food, making them subject to time/temperature controls. Epidemiological studies have indicated that most outbreaks that occurred in this time frame appear to be related to pooling (commingling) of eggs, temperature abuse, and incomplete cooking (egg mixture runny); FDA has issued egg handling/preparation guidelines.

Control of Salmonellosis

Control (prevention) of salmonellosis is based on four principles which can be accomplished by food service personnel:

1. Cooking (reheating) foods thoroughly and serving them HOT (above 140 F [60 C]) and not just WARM.
2. Preventing recontamination (cross-contamination) by using sanitary practices of food protection and sanitation (cleanliness, especially of the hands and food-contact surfaces, and proper use of equipment, utensils [are knives cleaned and sanitized between uses ?], and dishware).
3. Prompt cooling (freezing) of foods after preparation (if prepared ahead) to retard multiplication of bacteria, especially by storing in shallow pans (food not over 4 inches in depth) or in small quantities or portions. Do not store foods at room temperature.
4. Complete reheating (to at least 165 F [74 C]) of stored refrigerated foods in or on proper heating units, not by using warming (holding) units.

Remember, foods contaminated with salmonella bacteria do not usually appear to be “bad” (spoiled), so that changes in odor and taste are not apparent.

Salmonellae + food safety mistakes can = ILLNESS.

Part three of the Foodborne Illness Series will be published in the January, 1994 issue of Dairy, Food and Environmental Sanitation.
Recovery of Short Chain-Length Fatty Acids from Milk by Several Methods

G. L. Christen, N. Shen', and J. L. Maruri, Dept. of Food Science and Technology, Agricultural Experiment Station, The University of Tennessee, Knoxville, TN 37901-1071

ABSTRACT

Hydrolytic rancidity is a potential flavor problem in milk. Traditional means of measuring rancidity do not correlate well with flavor scores. The copper soap method, an extraction-titration method, and analyses by gas chromatography were compared for ability to recover butyric, caproic, caprylic, capric, and lauric acids from milk. The copper soap method did not recover the shortest chain-length fatty acids but the other two methods did. The extraction-titration procedure was used to analyze commercial milk samples. Mean free fatty acid content was 0.61 μeq/mL (+ 0.31 μeq/mL). Duplicate samples varied with an average of 0.06 μeq/mL. The average coefficient of variation on the duplicates was 9.5%.

INTRODUCTION

Milk readily develops lipolyzed off-flavor; a result of enzymatic hydrolysis of fatty acids from the glycerol molecule resulting in free fatty acids (FFA), mono- and diglycerides. Even chain-length FFA of 12 carbons or less have been reported to impact specific flavor sensations variously described as like butyric acid, cowy, unclean, goaty, bitter, soapy, and rancid (1). FFA of greater than 14 carbons in length have not been reported to contribute to the flavor described as rancid or more correctly lipolyzed. Only minimal quantities of short chain-length FFA are required for detection by sensitive individuals. The enzyme, lipase, responsible for hydrolysis of FFA from milk fat is found normally in raw milk but is inactivated by adequate pasteurization. In raw milk, the milk fat is protected from attack by the enzyme by milk fat globule membrane. Improper handling of raw milk can disrupt the protective membrane allowing lipase to cause rancidity. Excessive agitation, freezing or churning, or mixing of raw and homogenized milk are common ways for rancidity to result.

Traditionally, acid degree value (ADV) has been used as a measure of hydrolytic rancidity. The most recent edition of Standard Methods for the Examination of Dairy Products (15) recognizes the limitations of ADV and now specifies that high ADV results are indicative of hydrolysis of milk fat rather than assurance of rancid flavor development. Research in our laboratory has shown that ADV is not a good measure of rancid flavor development since it does not detect the short chain-length FFA responsible for the flavor (10,11,12). In an International Dairy Federation monograph (2) the limitations of ADV (also known as BDI) are discussed. They suggest that the "copper soap" method described by Koops and Klomp in 1977 and modified by Shipe et al. in 1980, has advantages over ADV of rapidity and potential for automation. The monograph authors comment that it does not appear that the accuracy of the copper soap method in recovering specific short chain-length FFA has been assessed. The monograph also describes an automated method based on the method of Dole and Meinertz (9) that had previously been applied to blood plasma. The three methods described in the IDF monograph were for rapid laboratory analyses of multiple samples.

We have adapted the methods of Dole (8), Noble (16), and Dole and Meinertz (9) to a simple extraction-titration procedure (4). The objective of this research was to compare the recovery from milk of short chain-length FFA by the copper soap method, the modified extraction-titration method developed in our laboratory, and a gas chromatography method of Deeth et al. (7). Further, the results of using the extraction-titration procedure on commercial samples of milk are reported.

MATERIALS AND METHODS

Recovery of FFA from Milk

Samples were prepared by adding 0.6 g of Tween 80 to each sample bottle with or without (blank) weighed quantity of fatty acids. Fatty acids used were butyric (4:0), caproic (6:0), caprylic (8:0), capric (10:0), and lauric (12:0). All fatty acids were from Sigma (St. Louis, MO). Quantity of each fatty acid was determined to the nearest 0.0001 g and was approximately 0.5 μeq/mL. Fatty acids and Tween 80 were transferred to a blender jar containing 500 ml of commercially-pasteurized, homogenized whole milk (the sample bottle was rinsed 5x with milk to ensure complete transfer of fatty acids) and mixed at low speed (Waring Products, New Hartford, CT) for 3 min.

To avoid contamination, all glassware were soaked in a solution of saturated alcoholic KOH; washed with detergent and rinsed several times with deionized, distilled water; rinsed with 4% acetic acid; rinsed with deionized, distilled water; and oven-dried.

1Present address: Food Science and Human Nutrition Dept., Iowa State University, Ames, IA 50011.
The extraction mixture (15 mL) was added to 5 mL of milk. Extraction was performed as for the samples. A blank designed for use in nonaqueous solutions was used to place upright and the layers allowed to separate. The upper FFA were extracted using a mixture of isopropyl alcohol, hexane and 0.1N sulfuric acid in a ratio of 40:10:1 (v/v/v). The extraction mixture (15 mL) was added to 5 mL of milk sample in a 25 x 150 mm culture tube, with a Teflon™-lined screw cap. After mixing for 15 s using a Vortex mixer, KOH (0.001 N in 95% ethanol) was added from repeating burette dispensers fitted atop amber reagent jars. The test tubes were placed horizontally in a magnetic stirrer. KOH (0.001 N in 95% ethanol) was added to a 50 mL burette to a pH endpoint of 11.30. A Ag/AgCl glass body combination electrode (Fisher Scientific, Atlanta) designed for use in nonaqueous solutions was used to monitor pH. The electrode was connected to an Orion Research Digital Ionalyzer, Model 501 (Orion Research Inc., Boston, MA) with accuracy of 0.01 pH units. Lauric acid was used to standardize the KOH. One-half milliliter 0.005N lauric acid in hexane was added to 4.5 mL water and extraction was performed as for the samples. A blank consisted of 0.5 mL hexane and 4.5 mL water and was extracted as for the samples. Recoveries were calculated as percentage of quantity of fatty acid added.

Copper Soap Procedure

The copper soap extraction method was as described by Shipe et al. (18) except that the solvent was a 48:48:4 (v/v/v) mixture of chloroform/heptane/methanol. Standard curves were prepared using palmitic acid. Recoveries were calculated as percent of quantity of fatty acid added.

Extraction - Titration Procedure

The titration method for determining the extent of lipolysis was developed by Christen and Shen (4) as a modification of the methods of Dole (8) and Noble (16). FFA were extracted using a mixture of isopropyl alcohol, hexane and 0.1N sulfuric acid in a ratio of 40:10:1 (v/v/v). The extraction mixture (15 mL) was added to 5 mL of milk sample in a 25 x 150 mm culture tube, with a Teflon™-lined screw cap. After mixing for 15 s using a Vortex mixer (American Scientific Products, McGraw Park, IL), hexane (16.5 mL) and water (6 mL) were added. All reagents were added from repeating burette dispensers fitted atop amber reagent jars. The test tubes were placed horizontally in a basket and were shaken for 15 min using a Garver shaker (Garver Mfg. Co., Union City, IN) at full speed. Tubes were placed upright and the layers allowed to separate. The upper layer was transferred into a 50 mL beaker placed on a magnetic stirrer. KOH (0.001 N in 95% ethanol) was added from a 50 mL burette to a pH endpoint of 11.30. A Ag/AgCl glass body combination electrode (Fisher Scientific, Atlanta) designed for use in nonaqueous solutions was used to monitor pH. The electrode was connected to an Orion Research Digital Ionalyzer, Model 501 (Orion Research Inc., Boston, MA) with accuracy of 0.01 pH units. Lauric acid was used to standardize the KOH. One-half milliliter 0.005N lauric acid in hexane was added to 4.5 mL water and extraction was performed as for the samples. A blank consisted of 0.5 mL hexane and 4.5 mL water and was extracted as for the samples. Recoveries were calculated as percentage of quantity of fatty acid added.

Gas-Liquid Chromatographic (GLC) Method

FFA were extracted from the samples according to the procedure described by Deeth et al. (7). Modifications of the method included the conditioning of alumina at 173°C for 24 h prior to extraction. Also, pentanoic acid was used as the only internal standard and was added into the formic acid-diisopropyl ether (6%, v/v). Details of the gas chromatographic method may be found in Lee (14). Purity of the standards was determined by dividing the area of the standard by the total area.

Extraction-Titration Procedure on Retail Milk Samples

Forty-six samples of pasteurized-homogenized whole milk were randomly purchased from retail stores in the Knoxville, TN area. These were in cardboard or pigmented plastic containers (1 pt, 1 qt, 1/2 gal, or 1 gal). Code dates showed samples were of varying age. All samples were held at 4°C until evaluated and duplicate analyses were complete on each. Microequivalent (μeq) of FFA per milliliter of milk was determined using equation 1.

\[
\text{μeq FFA/mL milk} = \frac{A \times B \times 1000}{\text{sample size (mL)}}
\]

Where:
- A = volume of KOH added for the sample minus the volume of KOH added for the blank;
- B = normality of KOH as determined by standardization using lauric acid.

RESULTS AND DISCUSSION

Recoveries of butyric, caproic, caprylic, capric, and lauric acids from milk by each of the methods are given in Table 1. Recoveries by ADV as reported by Duncan and Christen (11) are provided for comparison. The copper soap method does not recover butyric or caproic acid. This was as expected; although previously, the lack of recovery of these fatty acids had not been verified (2). The copper soap method recovers caprylic and lauric acid efficiently. In contrast, the other two methods evaluated in this research did not recover caprylic or lauric acid very well, but did recover the shorter chain-length fatty acids. Best recovery of these shorter chain-length fatty acids was by the gas chromatographic method of Deeth et al. (18). This method, however, is tedious and does not lend itself to routine quality assurance applications. Although the extraction-titration procedure does not recover completely the short chain-length fatty acids, it does recover them partially. The standard deviations reported reflect difference between determinations an different samples of milk. Homogenization of milk may interfere with complete extraction of FFA (2). Although great care was taken to replicate exactly the procedure, it is possible that the blending process varied enough to introduce the variation reported herein.

The copper soap method is not recommended for use on homogenized milk because of lack of correlation with ADV (18). It has been postulated that this lack of correlation is due to incomplete extraction of the FFA from the fat in homogenized milk (2). Our results indicate that the copper soap method better recovers medium chain-length FFA from homogenized milk than does ADV. This may account for the

Table 1. Recovery of individual fatty acids by four different methods and purity of the standards determined by gas chromatography.

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Acid Degree Value*</th>
<th>Copper Soap Method (n=8)</th>
<th>Extraction-Titration Methods (n=6)</th>
<th>Method of Deeth et al. (GC) (n=2)</th>
<th>Purity of Standards (% by GC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyric (4:0)</td>
<td>9.1</td>
<td>0.0</td>
<td>50.0</td>
<td>99.6</td>
<td>96.0</td>
</tr>
<tr>
<td>Caproic (6:0)</td>
<td>7.1</td>
<td>1.4</td>
<td>64.1</td>
<td>118.7</td>
<td>96.6</td>
</tr>
<tr>
<td>Caprylic (8:0)</td>
<td>8.0</td>
<td>53.4</td>
<td>85.5</td>
<td>94.4</td>
<td>97.1</td>
</tr>
<tr>
<td>Capric (10:0)</td>
<td>30.0</td>
<td>120.0</td>
<td>45.8</td>
<td>33.2</td>
<td>98.9</td>
</tr>
<tr>
<td>Lauric (12:0)</td>
<td>32.3</td>
<td>107.8</td>
<td>42.6</td>
<td>33.5</td>
<td>96.2</td>
</tr>
</tbody>
</table>

*From Duncan and Christen (1991)
lack of correlation between the methods, and the copper soap method may in fact be a better method for homogenized milk. Shen (17) reported that recovery by the copper soap method of fatty acids with 14, 16, and 18 carbons was similar to recovery by ADV.

Post-manufacture lipolysis by heat-resistant lipases originating from psychrotrophic bacteria is the primary risk for lipolytic off-flavors in milk and milk products currently (2). Although data is limited, bacterial lipases may preferentially release short and medium chain-length fatty acids that affect milk and milk product flavor quality (2). Research in our laboratory indicates that lipases from psychrotrophic bacteria release significantly more butyric, caproic, and caprylic than does milk lipase (Breeding, 1989). Methods which are insensitive to the short and medium chain-length FFA may not accurately predict lipolytic flavor resulting from heat-resistant bacterial lipases. The extraction-titration procedure reported herein deserves further evaluation for this application. Subsequent research in our laboratory indicates that the method is better correlated with lipolytic flavor of milk than is ADV (5,14). Further, 15-min shaking can be replaced by a simple manual inversion, and the titration can be automatically completed using an auto-titrator (unpublished data).

Application of the extraction-titration procedure to 46 samples of milk obtained from retail stores and held under various conditions yielded a mean FFA content of 0.61 μeq FFA/mL (+0.31 μeq FFA/mL). The maximum value for these samples was 1.28 μeq FFA/mL and the minimum was 0. Deeth and Fitz-Gerald (6) reported that normal raw milk from a healthy cow is expected to have a FFA value of 0.5 μeq/mL while milk with 2.0 or more μeq FFA/mL will likely have a lipolyzed flavor. The retail samples were also analyzed by a sensory panel trained to evaluate lipolyzed flavor in milk (14). The overall mean lipolyzed flavor score was 1.4 on a scale of 0 = not rancid to 15 = rancid. The mean lipolyzed flavor scores ranged from 0.4 to 4.74 for these samples (14). Thus, the sensory results supported the chemical evaluation.

Duplicate determinations on the same sample varied from one another by an average of 0.06 μeq FFA/mL. The average coefficient of variation for the duplicates was 9.5%.

ACKNOWLEDGMENTS

This research was supported by a grant from the National Dairy Board and by Hatch and State fund allocated to the Tennessee Agriculture Experiment Station, Project 993.

REFERENCES

The Use of Conductivity for Controlling Cleaning Solution Strength

Gerald Harsma,
West Agro, Inc., 1110 North Congress Avenue, Kansas City, MO 641533

WHAT IS CONDUCTIVITY CONTROL?

For our purposes conductivity control refers to a device that measures the electrical conductivity of a chemical solution. This device will start or stop a chemical feed pump or an alarm in response to the measured conductivity value of the solution being controlled.

WHAT DOES CONDUCTIVITY MEAN?

Conductance is defined as the reciprocal of electrical resistance as measured between the probe leads when the probe is immersed in the chemical solution to be measured. Conductivity depends only on the solution being measured. The electrical resistance value is measured in Ohm’s. Conductivity is the measured value of conductance between two opposing faces of a cube of solution one centimeter on a side.

Conductivity is directly exposed to the solution being measured. This class of conductivity controllers can be priced up to a thousand dollars or more. From this you can see that there is a device available for any type of installation required. These units are all more or less accurate controlling devices provided the selection of both the device and the sensing probe was properly carried out. The bottom line is that a conductivity control can be obtained to accurately control chemical solution strength and to provide other desired functions at a reasonable cost. The alternatives to conductivity controls are for the most part not as accurate or more expensive.

WHAT ARE THE FAULTS OF CONDUCTIVITY CONTROLLERS?

The conductivity of all chemical solutions is affected by temperature. The conductivity will increase by 1.3% to 2% per degree of temperature increase. This will vary with the chemical solution being measured. This means that if the solution is made up by a conductivity control with cold water the solution strength will be too strong at use temperature. This assumes that the conductivity control being used does not have a temperature compensation feature. If the control being used does have a temperature compensation feature it can only correctly compensate for the temperature curve of the specific chemical for which it is set. Should a second chemical with a different temperature curve be controlled by the same controller there would be an inherent error introduced into the control of the second chemical.

The probe used with any chemical must obviously be suited to the chemical, both in chemical resistance and in conductivity characteristics. Chemical resistance is not that much of a problem in the age of plastics. The conductivity characteristics, even if correct at installation, can vary by the probe becoming soiled or plated. This means that the probe must be inspected frequently and cleaned when necessary. The chemical solution should also be titrated with the correct test kit at regular intervals to assure that the controller is accurate.

Water hardness also affects conductivity control in that the hardness present in the water will impart a conductivity value to the water. If this is not taken into account when setting the controller an error is always present in the solution strength. It is advisable to make periodic checks of the water hardness present in any installation and then make any needed adjustment to the conductivity control setting. Product soil has an effect on the conductivity of a chemical solution. By way of illustrating these points the following tests were run; water used to mix solutions used in these tests were tap water with 300 ppm total hardness and distilled water.

These tests were not run under laboratory conditions and were done with a rather crude conductivity device. And yet, these tests still proved accurate, with the results being repeat-
Guess what’s riding on your wood pallets?

But you can defend against it. Get the wood out! Use Defender™ Sanitary Pallets to store products and supplies in your plant.

USDA/FDA accepted polyethylene does not support bacterial growth. Solid top protects against moisture on the floor. No splinters or nails to tear bags or boxes. Cleanable. Durable. Lasts far longer than wood.

And, of course, you don’t have to guess what’s come along for the ride!

Nelson-Jameson, Inc.
2400 E. 5th Street, Marshfield, WI 54449
Phone (715) 387-1151, FAX (715) 387-8746

PHONE TOLL FREE 1-800-826-8302 (1-800-472-8339 in WI)

Test 1 - 1/2 oz Chlor-Mate HW in 1 gal. of distilled water.

<table>
<thead>
<tr>
<th>Conductivity of water</th>
<th>0 mmho’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity of distilled water and Chlor-Mate HW</td>
<td>3300 mmho’s</td>
</tr>
<tr>
<td>Conductivity of solution soiled with 1 oz/gal of 2% milk</td>
<td>3450 mmho’s</td>
</tr>
</tbody>
</table>

Test 2 - 1/2 oz Chlor-Mate HW in 1 gal. tap water.

<table>
<thead>
<tr>
<th>Conductivity of water</th>
<th>300 mmho’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity of tap water and Chlor-Mate HW</td>
<td>3650 mmho’s</td>
</tr>
<tr>
<td>Conductivity of solution soiled with 1 oz/gal of 2% milk</td>
<td>3800 mmho’s</td>
</tr>
</tbody>
</table>

Test 3 - equivalent of 1 qt acid 2000 in 100 gal. of distilled water.

<table>
<thead>
<tr>
<th>Conductivity of water</th>
<th>0 mmho’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity of distilled water and acid 2000</td>
<td>6500 mmho’s</td>
</tr>
<tr>
<td>Conductivity of solution soiled with 1 oz/gal of 2% milk</td>
<td>6300 mmho’s</td>
</tr>
</tbody>
</table>

Test 4 - equivalent of 1 qt acid 2000 in 100 gal. of tap water.

<table>
<thead>
<tr>
<th>Conductivity of water</th>
<th>300 mmho’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity of tap water and acid 2000</td>
<td>7500 mmho’s</td>
</tr>
<tr>
<td>Conductivity of solution soiled with 1 oz/gal of 2% milk</td>
<td>7300 mmho’s</td>
</tr>
</tbody>
</table>

There is a definite link between water hardness, the soil load of the solution, and the conductivity of a chemical solution. This interrelationship can vary depending on the chemical and soils. Notice the reduction in conductivity of the acid 2000 solution when the 1 oz/gal. of 2% milk was added. This is the opposite of what was observed in the Chlor-Mate HW solutions.

PROBE SELECTION

When selecting the probe for use with a specific product it should be kept in mind that the selection must be based on the properties of the chemical and the characteristics of the conductivity device to be used. The material of the probe housing and of the sensing elements must be of a material that is compatible with the chemical properties of the product. The sensing elements must be suited to the conductivity range of both the product and the conductivity device. You must also keep in mind the expected temperature range that the probe will be required to operate in.

The manufacturer’s specification charts will help you to make the proper selection. Most of the specifications are of a straightforward nature, like the section marked as cell constant. For a product with a very high conductivity value select a probe with a higher cell constant or “C”. In general, a cell of 5 to 10 is normal for our business. For products having a very low conductivity value, select a probe with a lower cell constant. The probe should also be selected to provide a conductivity reading in the mid range of the conductivity device being used. This will assure more accurate results.

EXAMPLE

If a chemical solution produces a conductivity reading of 10,000 mmho’s with a probe having a cell constant of 10, the same solution will produce a reading of 20,000 mmho’s from a probe having a cell constant of 5.
Biological Effects of 137Cs Uptake in Carp (Cyprinus carpio, L.) and Eel (Anguilla anguilla, L.): A Comparative Study

P. A. Karakoltsidis1, F. K. Vosniakos2, A. Giouvanoudi1, A. Kalfa1 and A. Mountzis2

1Food Science and Nutrition Research Center, University of Rhode Island, USA.
2School of Food Technology and Nutrition, Dept. of Food Technology, Fish and Fish Product Quality Control and Technology Lab., Technological Educational Institution (TEI) of Thessaloniki, P.O. Box14541, Thessaloniki 54 101, Greece.

Abstract

Comparative studies were carried out in two cultured freshwater fish, Cyprinus carpio and Anguilla anguilla, to determine their tolerance in the uptake of 137Cs (3000 Bq/l). The results showed that the concentration of 137Cs in the muscular tissues was greater in the carp and lesser in the eel. The accumulation was progressive for both species and for a period of six months.

The histological studies were concentrated in muscular tissues, livers, kidneys, and gills. The symptoms observed include hyperaemia, and gradual degeneration of liver and kidney tissues. The physiology and anatomy of each species played an important role in the accumulation process of 137Cs.

Introduction

Prior to 1945 x-rays and radium, mainly used for medicinal treatment, constituted the only important radiation hazard to man. With the subsequent vastly expanded use of radioactive material, primarily for military purposes and industry, not only has the potential radiation danger increased many times but so has the danger from fallout. Oceans covering large proportions of the earth, naturally are the major recipients of man-induced stratospheric and atmospheric radio elements. It therefore, seems appropriate to survey to what degree such radioactive matter can enter the aquatic food harvests and if they influence in any detrimental way the normal productivity of the oceans (1).

Food is a major route by which environmental radiocontaminants reach man (2,15). Even with strict controls and containment, releases of radioactive fission products from nuclear plants are likely to occur (12). Animal products may become contaminated basically in two ways, directly or indirectly. Directly, through drinking water, inhalation or originating from aquatic organisms via gills and integument. Indirectly, through consuming contaminated food. Various aquatic organisms are capable of taking up radionuclides but unfortunately accumulate considerable quantities of such nuclides in their organs (13).

Cesium-137 was selected for this study due to its abundance in fission products, its relatively long half-life as radionuclide and its facile incorporation into food, body fluids and tissues (7,14). It is regarded as the fission product with greatest potential hazard. Recently a number of accidents in nuclear stations revealed the possibility of radioactive substances accumulated in fish (3,4,11).

Cyprinus carpio and Anguilla anguilla were selected for this study, due to their different anatomy and physiological function. In addition carp is a bottom feeder while the eel ranges throughout the water (5).

This work is concerned with the accumulation of 137Cs in two known species and its pathological effects, for comparative purposes. The results of this investigation can aid in finding the relative sensitivity of aquatic organisms to 137Cs and in planning emergency actions following accidental releases of nuclear fission products with subsequent contamination of marine biota (6).

Analytical methods

The determination of 137Cs was done by gamma-spectroscopy system, consisting of a high purity coaxial Germanium detector p-type (CP 2100 Tennelec). The sample chamber was a cylinder 2cm in diameter and 25cm in height and was shielded by 5.0cm of lead and 0.5cm of copper. The full width at half maximum (FWHM) of the system was found to be 1.95 Kev at 1332 Kev of 60Co. The linearity of the detector was checked with a 152Eu source and a simple regression analysis gave a straight line with a correlation coefficient of 0.999. The radionuclides used were supplied by “The Nucleus”, Oak Ridge, U.S.A. The experiment was conducted in fresh-water fish A. anguilla and C. carpio cultured in small water tanks, artificially contaminated with radioactive 137Cs. The fish A. anguilla, were collected from artificial ponds two days before the experiment started. The fish C. carpio were collected from a local...
lake. They were kept in a 200L aquarium provided with good aeration and continuous throughput of tap water, dechlorinated by active carbon. The fish acclimatised well to the aeration and continuous throughflow on tap water, dechlorinated lake. They were kept in a 200L aquarium provided with good aquarium conditions, behave normally and no diseases occurred. The dimensions of the water tanks used were 79cm in length, 35cm in width and 50cm in height.

The fish were sacrificed every one or two weeks, weighed, their length was measured and the overall condition of the fish was compared with the control. Visual observations were recorded and the radioactivity of a few organs was measured. The samples of the organs were fixed with 10 percent formaldehyde solution, embedded in paraffin wax and sections of 3-10µm thickness stained with Erlich’s hematoxylin-eosin, to be examined under the microscope.

Results and Discussion

No changes visual or microscopic were noticed in the control fish. Behavioural changes were not observed. Both species kept their balance and respiration was normal. The results indicated that the amount of 137Cs was more in the muscular tissues of carp than the eel. As Table 1 shows, the accumulation for the eel was progressive for a period of two months. After that time the load of 137Cs seems to be stabilized. The slime which is destroyed in the presence of ammonium (9), it may play a protective role against the absorption of 137Cs from the skin. The secretions of mucous membranes have important protective and lubricative functions. Their active substances are glycoproteins, known as mucins, that contain numerous negatively charged oligosaccharide chains (8,10).

Eels are smooth skinned and very slimy. Most people would say that an eel has no scales, but actually many very small scales are present but they are embedded under the skin. Due to the absence of large scales, an eel can breathe through its skin as well as through the gills. The proportion of breathing carried out through the gills is about 40 percent and that through the skin is about 60 percent. This means that less water is taken up by the eel in comparison to carp (9). Higher amounts of 137Cs were found in carp and the accumulation was related to the time of exposure.

The polyelectrolytic behavior of slime, together with the rate of respiration and the different compositional characteristics of the fish organs, can explain the difference in accumulation of 137Cs in both species. The histological studies revealed that eel is more resistant to 137Cs exposure than carp. The presence of 137Cs in all organs tested caused a gradual degeneration. With high doses up to 3000 Bq/l degeneration of epithelial cells and secondly fusion of lamellae final in the gills are very common. It is concluded that allergic or toxic effects of 137Cs caused liver hyperaemia, hemorrhages in musculature fibers and focal degeneration of epithelial cells of the renal tubules.

Conclusions

The presence of 137Cs causes allergic and toxic effects. The ability of both species to concentrate 137Cs to a high degree make them valuable as biological indicators of radioactivity. The present work intensifies the necessity to look after more aquatic species investigating their sensitivity to 137Cs in order to plan an emergency action, in case of a nuclear accident and subsequent release of radionuclides in the environment. More work has to be done on the uptake of 137Cs, governed chiefly by physical factors, such as pH, ion exchange, concentration differentials, etc., besides the accumulation, due to normal physiological activities in animals.

Acknowledgment

The authors wish to express their appreciation to Mrs. H. Diomou and Mr. D. Tsielepides from the staff of Applied Physics Lab. and to the following students for their collaboration and assistance in conducting the research: H. Karagianis, G. Ioannidis, S. Iakovoglou, Ch. Tsielepidis, S. Theocharis and J. Ioannidis.

References

Dairy Leaders Develop Plan for Farm Financing Demonstration

Demonstrating the financing of dairy farms that will provide a “sustainable lifestyle” for milk producers is the goal of a new plan that Minnesota dairy leaders have developed.

The plan provides for 20 demonstration farms across Minnesota to receive financing beyond normal operating limits. Backing for the extra financing would come from guarantees made by milk processors and other dairy-related businesses.

The plan was drafted by a subcommittee of the Minnesota Dairy Leaders Roundtable, which includes some 50 top dairy leaders in the state. Dave Eckholm of Land O’ Lakes and John Fetrow of the University of Minnesota’s College of Veterinary Medicine were co-chairs of the subcommittee. Fetrow outlined the plan at a recent Roundtable meeting.

“Over the past seven years, Minnesota has lost nearly a third of its dairy farms, 22 percent of its cows, and has fallen from fourth to fifth place as a major dairy state,” said Fetrow. “Despite these drops, dairying accounts for 20 percent of all farm income in the state.”

“If there are no farms, there are no cows and no milk,” Fetrow continued. “If there is no milk, there are no feed sales, no manufacturing jobs, no local employment, and no service (over) industries to support the remaining dairy farms.”

Fetrow said Minnesota has the advantages of low-cost feed, plentiful water and smart farmers. “But,” he added, “for many farmers, there is lack of a sustainable lifestyle. Many lack the opportunity to live on a farm in a way that they want to continue there. Young people say ‘I have other options in my life I would rather pursue.’ It relates to income, working hours, working conditions, the amount of time off. They don’t live in a vacuum; they see how other people live.”

Fetrow said new farmers and those making gradual changes can usually find sources of financing. It is those who want to make a “major leap forward” who most often have trouble finding financing, he added.

“Typically, they want to combine more than one family together in an operation, so a son can join a father,” he said. “They need to expand to an economically efficient scale. They also want to preserve a decent income and sustainable lifestyle for each family.

“Those operations may have an excellent background of productive farming, stable finances, and responsible farm business management. However, they may not have enough equity to obtain conventional financing for such an expansion.”

The plan Fetrow outlined and the Roundtable endorsed would provide loans beyond normal operating limits for about 20 such farms over the next two years.

The Farm Credit System has agreed to be the source of the loans. Borrowers would pay an interest (more) premium on the extra money, and this premium would go into a pool of funds to back the loans. An additional level of backing would come from the guarantees made by the processors and other agri-businesses.

“By making these guarantees, these businesses provide a demonstration and a major stimulus to the state’s dairy industry,” said Fetrow. “They also support a project that can be replicated by others across the entire state in the future.”

For more information contact John Fetrow at (612)625-7791.

Bruce Smith New Sales Manager at Fristam

Fristam Pumps announces that Bruce Smith has joined the company as the Northeast Territory Sales Manager. Bruce will have responsibility for all distributor and OEM sales in northeastern United States and eastern Canada.

Bruce previously worked for Oliver M. Dean, a distributor of process equipment, and held several sales and marketing positions with Anderson Instrument Company. Along with his 15 years of experience in the sanitary process industry, Bruce brings to Fristam a BA degree from Hope College and a Master’s degree from Florida State University.

Bruce will be managing the northeast region from his home office in Fultonville, New York, where he lives with his wife and three children.

Fristam Pumps, Middleton, WI, manufactures sanitary centrifugal and positive displacement pumps for the food, dairy, beverage, pharmaceutical, and biotechnology industries.

For more information contact Connie Frickie, Marketing Coordinator at (608)831-5001.

West Agro Acquires Chemland

West Agro, Inc., announced it has acquired most of the assets of Chemland, Inc., including its plant in Turlock, California. Chemland manufactures dairy farm and food processing facility cleaners and sanitizers, as well as udder health products.

West Agro is a member of the worldwide Tetra Laval Group, based in Sweden, which manufactures and distributes equipment and supplies for the dairy, food processing and dairy farm industries. In addition to its manufacturing facility and headquarters operations in Kansas City, Missouri, West Agro operates manufacturing plants in Des Plaines, Illinois; Orrville, Ohio; and Hamilton, New York.
West Agro intends to operate Chemland as a separate entity with its own distinct line of products, services and distribution.

For more information, please call West Agro, Inc., 11100 North Congress Avenue, Kansas City, MO 64153, (816) 891-1600.

Retirement

Lloyd A. Doane, 66, of 200 Jordan Drive in West Des Moines retired July 30 as a milk rating officer for the Iowa Department of Public Health. He had been with the department for 19 years. Doane and his wife Sandra, have a son, Brent, of Topeka, KS. He plans to spend time traveling and managing a family farm in Kansas.

In Memory of . . .

Walter F. Laun, Jr.

The Food and Dairy Industry suffered a great loss on Sunday, July 11, 1993. Walter F. Laun, Jr., a 40-year employee of Cherry-Burrell Corp., died at the Mercy Medical Center in Cedar Rapids, Iowa, at the age of 69.

Walt Laun was born on February 11, 1924, in Utica, NY, and obtained a BME from Cornell University, Ithaca, NY. He married Helen Mackay Laun on July 26, 1952, and together they have one daughter, Deborah Mackay Grantham.

Although active with the 3-A Sanitary Standards Symbol Council for many years, Walt became the 3-A Symbol Administrative Officer after his 1989 retirement from Cherry-Burrell. Walt had devoted most of his life to the betterment of the Food and Dairy Industry. In 1992, he received the DFISA Distinguished Service Award, in response to his service and dedication to the industry.

Survivors include his wife, Helen Mackay Laun, his daughter, Deborah Mackay Grantham and her husband, Thomas E. Grantham of Cedar Rapids. A memorial fund has been established.

Vernal S. Packard, Jr.

Vernal S. Packard, Jr., Professor Emeritus and Extension Specialist in Dairy Technology, died of cancer on September 28, 1993. He had been on the faculty of the University of Minnesota for 36 years, retiring from the Department of Food Science and Nutrition on June 30, 1992.

Dr. Packard earned a Ph.D. in Dairy Technology from the University of Minnesota in 1960. As a faculty member, he conducted continuing education programs for dairy and food plant management, production and field personnel, dairy farmers, and the general public. His specialty was milk analysis and quality evaluation: his programs emphasized new and emerging production and processing technologies; analytical and quality control procedures; product composition, wholesomeness, nutrition, and safety; and regulations, standards, and labeling.

He wrote two books and numerous research papers and Extension bulletins. He was a member of the International Association of Milk, Food, and Environmental Sanitarians, American Dairy Science Association (member of the editorial board, Journal of Dairy Science), Institute of Food Technologists, Association of Official Analytical Chemists, Minnesota Sanitarians Association, Minnesota Dairy Science and Technology Association, Sigma Xi, and Gamma Sigma Delta.

Dr. Packard is survived by his wife, Kathryn; two sons—William (and his wife, Patricia) and Stephen; three daughters—Mary (and her husband, Wyman Collier), Susan, and Amy; one grandchild, his mother, and a sister.

Please circle No. 139 on your Reader Service Card

BENTLEY INSTRUMENTS, INC.
** Milk Testing Instruments **

Somacount 300
A somatic cell counter controlled by a personal computer. State of the art technology.

Bentley 2000
Infrared milk analyzer for fat, protein, lactose, and solids in milk and milk products.

Bentley Instruments Inc. is an American manufacturer of quality instruments for the dairy industry.

Call for more information

Bentley Instruments, Inc.
P.O. Box 150 Tel. (612) 448-7600
Chaska, MN 55318 Fax. (612) 368-3355

Please circle No. 208 on your Reader Service Card

(check all that apply:)

Microbial Identification & Analysis:
☑ G+ G- aerobes, anaerobes, yeasts, molds
☑ comparative analysis/tracking organisms
☑ state-of-the-art fatty acid analysis

Professional Service & Staff:
☑ specializing in microbial ID since 1988
☑ personal, confidential attention
☑ customer satisfaction

Reliable Test Results:
☑ accurate, precise & rapid
☑ 48 hour turnaround
☑ clearly documented

(check only one:)

MICROCHECK, INC. EST. 1988
MIcroCHECK INC. Est. 1988
MICROBIAL ANALYSIS LAB

PHONE 802/485-6600 FAX 802/485-6100
P.O. Box 456, 48 So. Main St., Northfield, VT 05663
A. MCLG for Total Coliforms

Contaminant, EPA can establish a treatment technique requirement for effects of drinking water contamination. Contaminant level goals (MCGL’s), which are health goals that are based on whether the agency should establish quality standard regulations for other microorganisms that may be present in bottled water and may pose a health risk.

Background

EPA promulgates NPDWR’s to protect the public from the adverse health effects of contaminants in public drinking water. In addition, at the time that it promulgates NPDWR’s, EPA promulgates maximum contaminant level goals (MCGL’s), which are health goals that are based solely on considerations of protecting the public from the adverse health effects of drinking water contamination.

NPDWR’s, which are enforceable standards, consist of either a maximum contaminant level (MCL) or a treatment technique regulation for each contaminant. EPA sets MCL’s for contaminants as close as feasible (with the use of the best technology or other means available, taking cost into consideration) to the MCGL, the level at which no known or anticipated adverse health effects occur and that provides an adequate margin of safety. When it is not feasible to establish an MCL for a specific contaminant, EPA can establish a treatment technique requirement for removal or reduction of that contaminant from drinking water to protect the public health from the adverse health effects of that contaminant.

In the Federal Register of June 29, 1989 (54 FR 27544), EPA published a final rule amending its NPDWR for coliform bacteria. EPA revised the MCL for total coliform bacteria (total coliforms), including Escherichia coli (E. coli) and other fecal coliforms, in public drinking water. In addition, it established an MCLG of zero for total coliforms, including E. coli and other fecal coliforms. This rulemaking was based upon a proposal that EPA had published in the Federal Register of November 3, 1987 (52 FR 42224).

A. MCLG for Total Coliforms

In its November 3, 1987, proposal (52 FR 42224 at 42226) to amend the NPDWR for coliform bacteria in drinking water, EPA quoted that public health officials and professionals have used total coliforms for decades as the major criterion to assess the microbiological quality of drinking water. Coliform bacteria are usually present in water contaminated with human or animal feces and are often associated with outbreaks of diseases (Refs. 1 and 2). Moreover, according to EPA, although the presence of coliform bacteria in drinking water indicates that fecal pathogens may also be present, the detection of fecal coliform organisms, in particular E. coli, provides more definitive evidence of fecal pollution than the detection of total coliforms.

EPA noted in its November 3, 1987, proposal (54 FR 27544 at 27548) that the data in the available literature do not support a quantitative relationship between coliform densities and either pathogen density or the potential for waterborne disease outbreaks. In its June 29, 1989, final rule (54 FR 27544 at 27548), EPA stated that it was not aware of any data in the literature that support a coliform density value below which there are no anticipated adverse health effects with an adequate margin of safety. EPA further stated that waterborne disease outbreaks and the presence of specific waterborne pathogens have been associated with coliform densities from less than 1 per 100 milliliters (mL) to very high levels. Therefore, to reduce fecal pathogens to minimal levels, EPA established an MCLG of zero for total coliforms in drinking water, including E. coli and other fecal coliforms.

B. MCL for Total Coliforms

1. Intent is to Lower Risk of Waterborne Disease Outbreaks

In its final rule of June 29, 1989 (54 FR 27544 at 27547), EPA concluded that despite existing drinking water regulations, the number of actual outbreaks and cases of waterborne disease was unacceptably high. For example, EPA noted that between 1971 and 1983, 427 outbreaks with over 100,000 cases of waterborne disease have been reported. However, because EPA believed that a large number of waterborne disease outbreaks and cases was not reported, it concluded that the actual number of outbreaks was much higher than the recorded number of outbreaks.

EPA, therefore, established several regulatory measures in its final rule of June 29, 1989 (54 FR 27544 at 27549), to further reduce the risk of waterborne illness. In addition to the revised MCL for total coliforms, it established monitoring requirements, including sanitary surveys for systems collecting fewer than 5 samples per month, State review of sample citing plans, testing for either fecal coliforms or E. coli if a sample tests positive for total coliforms. Furthermore, in a separate final rule that was also published in the Federal Register of June 29, 1989 (54 FR 27486), EPA established filtration and disinfection treatment requirements for systems using surface water sources and stated that it intended to adopt additional disinfection requirements for systems using ground water sources.

2. MCL Based on Presence-Absence of Coliforms

Before amending its NPDWR on June 29, 1989 (54 FR 27544), EPA based compliance for total coliforms in drinking water on two MCL’s (a single-sample MCL and a monthly average MCL) that specified a number of coliform bacteria detected in the sample, calculated as coliform density. The two MCL’s varied according to the method used (Multiple Tube Fermentation (MTF) technique or Membrane Filter (MF) technique) and the sample volume (500 mL or 500 mL for MTF technique and 100 mL for MF technique). However, in its proposal of November 3, 1987 (52 FR 42224 at 42229), EPA stated that basin compliance with the MCL on a monthly average density calculation had been criticized because the variability of coliform counts greatly reduces the precision of this calculation (i.e., there is a large standard deviation). EPA further stated that basing compliance on the presence or absence of coliform bacteria rather than on coliform bacteria density would provide the following advantages: ease of detection; less influence of sample transit time; and greater mathematical precision in analytical findings because the calculation difficulties implicit in the statistical methodology of coliform density calculations would be eliminated. Therefore, under the amended NPDWR (54 FR 27544, June 29, 1989), EPA bases compliance with the MCL on the presence or absence of coliforms rather than on an estimate of coliform density.

In determining compliance with the revised MCL, EPA permits use of any of the following four analytical methods: (1) The MTF technique, (2) the MF technique, (3) the Presence/Absence (P/A) Coliform test, and (4) the Minimal Media ortho-nitrophenyl-β-D-galactopyranoside, 4-methylumbelliferyl-β-D-glucuronide technique (Minimal Media ONPG-MUG technique), sometimes referred to as the Autoanalysis Colilert System. EPA recommends that, when the presence of heterotrophic bacteria in water samples interferes with the MTF technique, the MF technique, or the P/A Coliform test, water systems use the Minimal Media ONPG-MUG technique which is less prone to interference. In addition, EPA requires that a 100 mL standard sample volume be used, regardless of the method used for determining the presence of absence of coliforms in drinking water.

Federal Register/ Vol. 58, No. 192/Wednesday, October 6, 1993/ Proposed Rules

For this complete listing, please contact the IAMFES Office at 1-800-369-6337, US; 1-800-284-6336 (Canada) or (515)276-3344.
ATTENTION

Journal of Food Protection

Authors

Effective January 1, 1994, all manuscripts and other related material for the Journal of Food Protection will be handled out of the IAMFES office located in Des Moines, Iowa. Please begin mailing these materials to:

IAMFES
Attn: Technical Editor
6200 Aurora Avenue
Suite 200W
Des Moines, IA 50322
(515)276-3344
(800)369-6337 (US)
(800)284-6336 (Canada)
FAX (515)276-8655

Please note that this is a change from the Lincoln, Nebraska mailing address. If you have any questions regarding this change, please contact Ms. Margie Marble at the phone number listed above.

Attention IAMFES Members

Announcing the
Availability of
Advertising Space
in the
1994-1995
Annual Membership Directory

From now until January 10, 1994, IAMFES will be accepting advertising orders for its 1994-95 Annual Membership Directory.

Once again, the Directory will feature Commercial Listings of industry suppliers, in addition to listings of IAMFES Members, Associations and Government Agencies.

To Reserve Your Company’s Advertisement or Commercial Listing in this important information resource:
Call your Advertising Representative at:
(800) 369-6337 (US), (800) 284-6336 (Canada) or (515) 276-3344.

81st IAMFES
Annual Meeting
Call for Papers

This is an invitation to all IAMFES Members to submit a paper for presentation at the 81st Annual Meeting, July 31-August 3, 1994, in San Antonio, Texas. Abstract forms are published in the September and October issues of Dairy, Food and Environmental Sanitation and the Journal of Food Protection.

To receive more information on submitting a paper for presentation, contact IAMFES at (800) 369-6337 (US), (800) 284-6336 (Canada) or (515) 276-3344.

Updates . . .

Please circle No. 155 on your Reader Service Card

Handwashing. Important!
People. Impossible?

Brevis specializes in Infection Control including instructional and humorous products to promote handwashing.

GloGerm
Buttons
Pins
T-shirts
Posters
Videos
Puppets
Signage
Dispensers

Request our new catalog.

Brevis Corporation
3310 South 2700 East
Salt Lake City, Utah 84109
1-800-383-3377 or 801-466-6677

Dairy, Food and Environmental Sanitation/December 1993 717
Update: Multistate Outbreak of *Escherichia coli* O157:H7 Infections from Hamburgers—Western United States, 1992-1993

From November 15, 1992, through February 28, 1993, more than 500 laboratory-confirmed infections with *E. coli* O157:H7 and four associated deaths occurred in four states—Washington, Idaho, California, and Nevada. This report summarizes the findings from an ongoing investigation that identified a multistate outbreak resulting from consumption of hamburgers from one restaurant chain.

Washington

On January 13, 1993, a physician reported to the Washington Department of Health a cluster of children with hemolytic uremic syndrome (HUS) and an increase in emergency room visits for bloody diarrhea. During January 16–17, a case-control study comparing 16 of the first cases of bloody diarrhea or postdiarrheal HUS identified with age- and neighborhood-matched controls implicated eating at chain A restaurants during the week before symptom onset (matched odds ratio [OR]=undefined; lower confidence limit=3.5). On January 18, a multistate recall of unused hamburger patties from chain A restaurants was initiated.

As a result of publicity and case-finding efforts, during January-February 1993, 602 patients with bloody diarrhea or HUS were reported to the state health department. A total of 477 persons had illnesses meeting the case definition of culture-confirmed *E. coli* O157:H7 infection or postdiarrheal HUS. Of the 477 persons, 52 (11%) had close contact with a person with confirmed *E. coli* O157:H7 infection during the week preceding onset of symptoms. Of the remaining 425 persons, 372 (88%) reported eating in a chain A restaurant during the 9 days preceding symptom onset. Of the 338 patients who recalled what they ate in a chain A restaurant, 312 (92%) reported eating a regular-sized hamburger patty. Onsets of illness peaked from January 16 to January 20. Of the 477 case-patients, 144 (30%) were hospitalized, 30 developed HUS, and three died. The median age of patients was 7.5 years (range: 0–74 years).

Idaho

Following the outbreak report from Washington, the Division of Health, Idaho Department of Health and Welfare, identified 14 persons with culture-confirmed *E. coli* O157:H7 infection, with illness onset dates from December 11, 1992, through February 16, 1993. Four persons were hospitalized; one developed HUS. During the week preceding illness onset, 13 (93%) had eaten at a chain A restaurant.

California

In late December, the San Diego County Department of Health Services was notified of a child with *E. coli* O157:H7 infection who subsequently died. Active surveillance and record review then identified eight other persons with *E. coli* O157:H7 infections and record review then identified with other persons with *E. coli* O157:H7 infections or HUS from mid-November through mid-January 1993. Four of the nine reportedly had recently eaten at a chain A restaurant and four at a chain B restaurant in San Diego. After the Washington outbreak was reported, reviews of medical records at five hospitals revealed an overall 27% increase in visits or admissions for diarrhea during December 1992 and January 1993 compared with the same period 1 year earlier. A case was defined as postdiarrheal HUS, bloody diarrhea that was culture negative or not cultured, or any diarrheal illness in which stool culture yielded *E. coli* O157:H7 with onset from November 15, 1992, through January 31, 1993.

Illnesses of 34 patients met the case definition. The outbreak strain was identified in stool specimens of six patients. Fourteen persons were hospitalized, seven developed HUS, and one child died. The median age of case-patients was 10 years (range: 1–58 years). A case-control study of the first 25 case-patients identified and age- and sex-matched community controls implicated eating at a chain A restaurant in San Diego. A study comparing case-patients who ate at chain A restaurants with well meal companions implicated regular-sized hamburger patties (matched OR=undefined; lower confidence limit=1.3). Chain B was not statistically associated with illness.

Nevada

On January 22, after receiving a report of a child with HUS who had eaten at a local chain A restaurant, the Clark County (Las Vegas) Health District issued a press release requesting that persons with recent bloody diarrhea contact the health department. A case was defined as postdiarrheal HUS, bloody diarrhea that was culture negative or not cultured, or any diarrheal illness with a stool culture yielding the Washington strain of *E. coli* O157:H7, with onset from December 1, 1992, through February 7, 1993. Because local laboratories were not using sorbitol MacConkey (SMAC) medium to screen stools for *E. coli* O157:H7, this organism was not identified in any patient. After SMAC medium was distributed, the outbreak strain was detected in the stool of patient 38 days after illness onset.

Of 58 persons whose illnesses met the case definition, nine were hospitalized; three developed HUS. The median age was 30.5 years (range: 0–83 years). Analysis of the first 21 patients identified and age- and sex-matched community controls implicated eating at a chain A restaurant during the week preceding illness onset. A case-control study using well meal companions of case-patients also implicated eating hamburgers at chain A.

Other Investigation Findings

During the outbreak, chain A restaurants in Washington linked with cases primarily were serving regular-sized ham-
burger patties produced on November 19, 1992; some of the same meat was used in “jumbo” patties produced on November 20, 1992. The outbreak strain of *E. coli* O157:H7 was isolated from 11 lots of patties produced on those two dates; these lots had been distributed to restaurants in all states where illness occurred. Approximately 272,672 (20%) of the implicated patties were recovered by the recall.

A meat traceback by a CDC team identified five slaughter plants in the United States and one in Canada as the likely sources of carcasses used in the contaminated lots of meat and identified potential control points for reducing the likelihood of contamination. The animals slaughtered in domestic slaughter plants were traced to farms and auctions in six western states. No one slaughter plant or farm was implicated where illness occurred. Approximately 272,672 (20%) of the contaminated lots had been distributed to restaurants in all states.

The outbreak strain of *E. coli* 0157:H7 was isolated from 11 lots of patties produced on November 19, 1992; some of the same meat was used in “jumbo” patties produced on November 20, 1992. The outbreak strain of *E. coli* O157:H7 was isolated from 11 lots of patties produced on those two dates; these lots had been distributed to restaurants in all states where illness occurred. Approximately 272,672 (20%) of the implicated patties were recovered by the recall.

Further investigation of cases related to secondary transmission in families and child day care settings is ongoing.

Editorial Note: *E. coli* O157:H7 is a pathogenic gram-negative bacterium first identified as a cause of illness in 1982 during an outbreak of severe bloody diarrhea traced to contaminated hamburgers. This pathogen has since emerged as an important cause of both bloody diarrhea and HUS, the most common cause of acute renal failure in children. Outbreak investigations have linked most cases with the consumption of undercooked ground beef, although other food vehicles, including roast beef, raw milk, and apple cider, also have been implicated. Preliminary data from a CDC 2-year, nationwide, multicenter study revealed that when stools were routinely cultured for *E. coli* O157:H7 that organism was isolated more frequently than *Shigella* in four of 10 participating hospitals and was isolated from 7.8% of all bloody stools, a higher rate than for any other pathogen.

Infection with *E. coli* O157:H7 often is not recognized because most clinical laboratories do not routinely culture stools for this organism on SMAC medium, and many clinicians are unaware of the spectrum of illnesses associated with infection. The usual clinical manifestations are diarrhea (often bloody) and abdominal cramps; fever is infrequent. Younger age groups and the elderly are at highest risk for clinical manifestations and complications. Illness usually resolves after 6-8 days, but 2%-7% of patients develop HUS, which is characterized by hemolytic anemia, thrombocytopenia, renal failure, and a death rate of 3%-5%.

This report illustrates the difficulties in recognizing community outbreaks of *E. coli* O157:H7 in the absence of routine surveillance. Despite the magnitude of this outbreak, the problem may not have been recognized in three states if the epidemiologic link had not been established in Washington. Clinical laboratories should routinely culture stool specimens from persons with bloody diarrhea or HUS for *E. coli* O157:H7 using SMAC agar. When infections with *E. coli* O157:H7 are identified, they should be reported to local health departments for further evaluation and, if necessary, public health action to prevent further cases.

E. coli O157:H7 lives in the intestines of healthy cattle, and can contaminate meat during slaughter. CDC is collaborating with the U.S. Department of Agriculture’s Food Safety Inspection Service to identify critical control points in processing as a component of a program to reduce the likelihood of pathogens such as *E. coli* O157:H7 entering the meat supply. Because slaughtering practices can result in contamination of raw meat with pathogens, and because the process of grinding beef may transfer pathogens from the surface of the meat to the interior, ground beef is likely to be internally contaminated. The optimal food protection practice is to cook ground beef thoroughly until the interior is no longer pink, and the juices are clear. In this outbreak, undercooking of hamburger patties likely played an important role. The Food and Drug Administration (FDA) has issued interim recommendations to increase the internal temperature for cooked hamburgers to 155 F (6.1 C) (FDA, personal communication, 1993).

Regulatory actions stimulated by the outbreak described in this report and the recovery of thousands of contaminated patties before they could be consumed emphasize the value of rapid public health investigations of outbreaks. The public health impact and increasing frequency of isolation of this pathogen underscore the need for improved surveillance for infections caused by *E. coli* O157:H7 and for HUS to better define the epidemiology of *E. coli* O157:H7.

Morbidity and Mortality Weekly Report 4/16/93
The following is the second installment of the Retail Food Operation Food Hazard Control Checklist mentioned in the October 1993 column. This checklist will be continued over the next several months to cover its entirety.

RETAIL FOOD OPERATION FOOD HAZARD CONTROL CHECKLIST

FOOD SAFETY CONTROL REQUIREMENTS

HANDLING EMERGENCIES

Procedures are documented and are adequate to handle:

- **Crisis situations.** (Haz) All personnel are instructed to call 911 for emergencies which include fire, burglary, or any life threatening situation.
- **Food related injury or illness.** (Reg)
- **Power outage.** (Reg)
- **Fire extinguisher discharge in the kitchen.** (Haz)
- **A massive foodborne illness in the community.** (Haz)

Improvement of unit performance. (Haz) FSPMs, supervisors, and employees are:

- Constantly aware of environment, equipment, and facility and process performance, and take action immediately to correct problems; conduct systematic audits.
- Evaluate prevention system weaknesses
- Analyze the cause of problems
- Take action through improved policies, procedures, and standards and system development to prevent future problems.

First aid material

- The first aid kit contains a supply of excellent quality surgical gloves that can be worn when any personnel touch blood or body fluids from another person. (Haz)
- A first aid information chart illustrating the use of the emergency first aid procedure for choking is posted in the food preparation area. (Reg)

Customer comment cards (Qual)

- Customer comment cards are provided to encourage customer feedback.
- A record of all customer comments concerning quality is maintained.
- Corrective action resulting from customer comments will be discussed with the QMT before any policies, procedures, and standards are changed.

PROGRAM ENFORCEMENT, RECOGNITION AND RENEWAL

Management: (Haz)

- Conducts and documents a monthly (or more often) review of the program effectiveness, and then plan for improving the program based on the findings.
- Maintains an enforcement statement on safe food operation practices, food safety rules, and standard operating procedures. Disciplinary procedures are specified.

Abbreviations: (Haz) = Hazard; (Reg) = Regulatory; (Qual) = Quality; (OSHA) = Occupational Safety and Health Agency

1 Temperatures, unless otherwise stated, are food temperatures. They are measured both 1/16-inch below the surface as well as at the center of food in order to determine the degree of control and stability of hot and cold systems.
FOOD SAFETY CONTROL REQUIREMENTS

- Conducts **verification audits** that to ensure that all hazards are identified, controls are adequate, and actual operations are in compliance with the company’s policies, procedures and standards.
- Maintains records of **disciplinary actions** and warnings.
- Recognizes efforts and achievements of employees.
- Renews enthusiasm by providing for celebration of safety achievements.

<table>
<thead>
<tr>
<th>PERFORMANCE EVALUATION</th>
<th>NEEDED TO ASSURE SAFETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSONNEL</td>
<td></td>
</tr>
</tbody>
</table>

Employee responsibility (Haz)
- Responsibility for safe food handling and good personal hygiene is practiced and can be described by employees.

Individual illness (Reg)
- No employee who is known to have a communicable illness which could be transferred directly by the employee or by employee contact with food is allowed to work in the preparation and service of food.
- Supervisors are notified by employees if illness symptoms include: nausea, diarrhea, and vomiting, or any other illness that is serious enough to be diagnosed by medical personnel.
- If illness is not severe and symptoms are not acute, employees can be assigned to tasks that do not involve food handling or excused from work altogether until they are completely well.

Gloves (OSHA)
- Employees who need to wear heavy duty, non-disposable gloves to protect their hands from harsh chemicals (e.g., pot and pan washing) are given their own personal gloves that are not shared with any other person.

Hand cuts and abrasions (Reg)
- Supervisors observe employees for any infected lesions, boils, or other pathogenic skin conditions on food handlers.
- If the infection is not severe and can be covered with a bandage and a waterproof protector (e.g., tight-fitting latex glove), the employee can continue working with food, providing they continue to use correct hand washing and change gloves as required.
- If infection is severe, employees are excused from work until infection is sufficiently healed.

Contact with blood or body fluids from another person (Haz)
- Before any personnel touch the blood (e.g., if bandaging the wound of another individual) or any other body fluid such as vomitus of another person, they put on proper fitting latex gloves that prevent the body fluid from entering any cuts or breaks in the skin of their own hands.

Personal Cleanliness (Reg)
- All employees bathe daily and use a deodorant to control body odor.
- Employees use only mild perfumes or colognes that will not interfere with the aroma of food.
- Employees wear clean, closed-toe shoes, and clean uniforms, or full aprons or smocks over street clothing.
- Clothing or outer covering is replaced if it becomes dirty while working.

Fingernails (Haz)
- Fingernails are neatly trimmed to less than 1/16-inch to make them easier to clean.
- Employees do not wear fingernail polish or artificial fingernails while working.

Hair restraint (Reg)
- Hair restraints or other type of hair covering are worn by employees to prevent hair from falling into food.

Jewelry and hard objects in pockets (Haz)
- To prevent hard foreign objects from being found in food, employees avoid wearing jewelry on the hands, wrist, neck, and ears, and also avoid carrying hard objects such as pens, pencils, etc., in outside pockets while preparing and serving food.
- Employees are permitted to wear plain wedding bands.

Handkerchiefs and facial tissues (Haz)
- Handkerchiefs or facial tissues are not carried into the food production or foodservice areas.
FOOD SAFETY CONTROL REQUIREMENTS

• Disposable facial tissues are placed at the hand washing sink where employees can use them and then wash their hands.
• Employees sneeze or cough, by directing their head away from foods, toward the floor or into their shoulder, but NEVER their hands.

Chewing gum, smoking, and eating (Reg)
• Employees do not chew gum, eat, drink or smoke in the food production and foodservice areas.

Personal medication (Reg)
• Employees do not bring personal medications in the kitchen or food production area.

Handling food in front of the customer (Reg)
• Employees who serve food use utensils, plastic gloves, or paper sheets to handle and serve food in the presence of customers.

Hand and fingertip washing (Haz)
• All employees who prepare food in the kitchen or production area and who serve food wash their fingertips and hands properly and as often as required by tasks performed.
• Employees use the double wash procedure (2x) which utilizes a fingernail brush to wash their hands at the following times:
 - Upon beginning a work shift.
 - When entering the kitchen.
 - After using the toilet.
 - After cleaning up vomitus or any fecal material.
 - After touching sores or bandages.
• Employees use the single wash procedure (1x) at the following times:
 - Before and after coffee, food, or cigarette breaks.
 - After handling garbage.
 - After handling dirty dishes.
 - Between handling raw and cooked foods.
 - After blowing nose.
 - After touching skin, hair, beard, or soiled apron.
 - Before handling clean utensils, dishes, or single service items.
 - As often as necessary to keep hands clean after they become soiled.
 - After any absence the from work station.

Unauthorized persons (Reg)
• Are not allowed in the food production and utensil washing areas.

This Retail Food Operation Food Hazard Control Checklist will continue in subsequent issues of Dairy, Food and Environmental Sanitation. The January installment will cover: Environment; Facilities; and Equipment.
New Isomatic Gravity Flow Vacuum Gate for Fast, Cost Saving Dry Bulk Flow Control

The NEW Isomatic Gravity-Flow Vacuum Gate has been developed to save the user time, money and move dry bulk powders, abrasives, granular, or pelletized products in processing systems.

This valve is a simple solution to product and flow control in a broad variety of applications ranging from: Food and pharmaceutical, to general industrial and abrasive products.

It operates on a simple, efficient vacuum/counterweight principle. A seal is maintained by a negative pressure within the valve that holds the flapper against the seat. This design provides an air-tight seal at the discharge end of cyclones, bins or hoppers.

The material flow is controlled by a simple adjustable counterweight. Simplicity of design, ease of adjustment and fewer moving parts makes the GF-Valve an inexpensive alternative to flapper valves or airlocks in many applications.

A variety of seal and construction materials are available, and the stainless steel food and pharmaceutical units meet USDA design and construction requirements.

For more information on the Gravity-Flow, Vacuum Gate valve, Contact Isomatic and request bulletin GL-765.

General Resource Corporation - Hopkins, MN

Please circle No. 241
on your Reader Service Card

Rapid Results Microbiology Test Makes International Debut

Envirocon International, Inc. has introduced unique biochemical tests that are completed in less than thirty minutes. Microquik Confirmation tests are rapid results tests that confirm the presence or the absence of specific bacteria from a primary culture. These enzymatic tests are available for the rapid detection of: Enterococcus, E. coli, Streptococcus, Total Coliforms, and Candida albicans. Kits can be ordered to be read with a longwave UV light in as little as five minutes or by a color change from between ten to thirty minutes. With the Microquik Confirmation test there is no need to replate and wait an additional twenty-four hours for confirmation.

Each Kit contains fifty tests and may be ordered directly from Envirocon International, or from your local Curtiss Matheson Scientific sales representative.

Envirocon International Inc. - Concord, CA

Please circle No. 242
on your Reader Service Card

Delavan Cap Point Series Level Controls Ideal for Liquid Interfaces

Delavan Electronics CAP POINT series Capacitance point level switches have been a proven solution for providing reliable and accurate detection of many granules, liquids, slurries, and interfaces.

Delavan’s CAP POINT MODEL 510 is an integral unit which allows the operator to set differential adjustments at the probe itself. CAP POINT MODEL 520 is a remote electronics unit for high temperature, high vibration, and provides easy access to the electronics. A unique feature of the CAP POINT series is its immunity to product build-up and coatings, thus eliminating the need for re-calibration.

Delavan Electronics - Roscoe, IL

Please circle No. 243
on your Reader Service Card

West Agro’s New Indicate Acid (Patent Pending)

West Agro, Inc., a manufacturer of cleaners and sanitizers for dairy and food processing facilities, announces a new product in its chemical sanitation line.

The “Indicate Acid” is a blended, nonfoaming acid detergent with a unique soil indicating system used for soak and C.I.P. cleaning of stainless steel parts and equipment. As an acid cleaner it effectively removes mineral scale and carbon deposits. However if the alkaline cleaning step prior to acid cleaning fails in any way, the unique indicating dye will highlight any residual protein soils for easy inspection and correction.

West Agro, as one of the Tetra Laval companies, designs products to complement processing without compromising equipment.

West Agro, Inc. - Kansas City, MO

Please circle No. 244
on your Reader Service Card

Highspeed Central Laboratory Milk Analysis System

Foss Food Technology announces the introduction of the CombiFoss 300 System for fat, protein, lactose, solids, and somatic cell analysis of milk.

The system is based on the well-proven and accepted MilkoScan and Fossomatic instruments combined and controlled by Windows-based PC software.

Dairy Herd Improvement and other laboratories with high volume sampling will be the main users for this system.

Foss Food Technology Corp. - Eden Prairie, MN

Please circle No. 245
on your Reader Service Card
Porter International Introduces Intershield Floor Protection Systems

Intershield Floor Protection Systems, newly developed by Porter International, provide maximum floor protection through seven distinctly engineered systems designed for use in a wide range of Industrial and General Service environments.

Differing industrial environments and performance demands require specific floor protection solutions. Intershield Floor Protection Systems provide the optimal balance between durability, function, and aesthetics.

Intershield Floor Protection Systems carry USDA acceptability for regulated food processing exposures. All seven Intershield systems are fully compliant with existing VOC standards.

Application environments can be troublesome. However, the entire Intershield floor protection range is supported by a detailed application guide and technical service support allowing a greater confidence of quality installations when compared to other flooring materials.

The physical characteristics of Intershield — excellent flexural strength, high abrasion and impact resistance, and outstanding concrete bonding properties — qualify all seven protection systems as outstanding candidates for a variety of floor coating needs. Intershield includes a matrix of 100% solids, self-leveling epoxy systems and screeds.

Intershield Floor Protection Systems are available in a range of ten standard colors formulated using lead-free pigments for better consistency and performance. This allows Intershield to better fulfill customer specifications.

Porter International - Louisville, KY

WCR Plate Heat Exchanger Regasketing Brochure

For plate heat exchangers, this brochure outlines the fast, dependable, comprehensive, and economical regasketing services provided by WCR.

Gasket performance often depends on superior regasketing technology. The WCR ten-step regasketing process assures extended service life, even in the most difficult applications.

WCR regasketing services are more economical and reliable than comparable services offered by plate heat exchanger manufacturers. WCR regasketing is also more dependable than in-plant, do-it-yourself regasketing.

Regasketed and reconditioned plates are usually on their way back to the processor within two weeks of receipt. WCR exchange programs are available for selected plates.

WCR - Dayton, OH

Concentrated Labware Cleaner

Manostat’s CHROMERGE, supplied in packs of six 25 ml bottles of liquid containing chromium trioxide in solution, eliminates the toxic fumes and dangerous heating and shaking associated with making chromic-sulfuric cleaning solution. Once mixed, CHROMERGE can be stored and re-used until the color turns green, indicating loss of effectiveness.

CHROMERGE, when mixed according to instructions, produces a super-efficient chromic-sulfuric acid solution that safely removes stubborn deposit and does not etch the glassware. It leaves surfaces chemically clean permitting a perfect meniscus for precise volumetric work.

Available through laboratory supply dealers or contact Manostat Corporation.

Manostat Corporation - New York, NY

New M-110S Small Volume Microfluidizer® Optimizes Product Recovery

The new M-110S Small Volume Microfluidizer is now available from Microfluidics Corporation, a leading supplier of high technology equipment for the chemical, pharmaceutical, biotechnology, cosmetic and food industries. The new model is specifically designed for processors who require minimum sample sizes and optimum product recovery.

To accommodate precious applications, the M-110S processes batches as small as 10 ml, with 9 ml recovery, and can process continuously as well. The unit achieves pressures as high as 14,000 psi and, weighing only 45 lbs., is portable and versatile. Other features include stainless steel construction, a removable 10 ft. cooling coil, and the option to reach 23,000 psi. Like all Microfluidizer equipment, the M-110S is guaranteed scalable from laboratory through production.

This air powered unit employs the patented Microfluidizer interaction chamber to produce a more uniform product and yield particle sizes as small as 0.1 micron. Unlike conventional equipment, the M-110S utilizes no moving parts and no grinding media in the process stream, so results are reproducible and scalable.

Microfluidics Corporation - Newton, MA

Labconco’s Redesigned RapidStill II for Kjeldahl Distillation is Made in U.S.A.

Labconco Corporation offers the RapidStill II as an automatic steam distillation unit for labs performing rapid Kjeldahl protein/nitrogen determinations. It serves as a companion to Labconco Rapid Digestors. The new RapidStill II is made in America with domestically produced components.

The RapidStill II has a built-in dispenser switch which allows the operator to control the amount of sodium hydroxide being added to the sample. A manually set audible timer alerts the operator when distillation is complete. Each distillation takes five to ten minutes.

The RapidStill II fits conveniently on a counter top or shelf and is ideal for labs requiring fast turnaround of KNA determinations. The RapidStill II produces steam using an 1100 watt heater element surrounding a 1000 ml flask. The condenser is equipped with a ventilation valve which prevents any siphoning of distillate back into the condenser chamber.

Labconco Corporation - Kansas City, MO
Minories of the TAMWFP Meeting

The fall meeting of the Tennessee Association of Milk, Water and Food Protection was held November 10, 1993 at Ellington Agricultural Center, Nashville, TN. Fifty-one members and guests were present.

President Wayne Crabtree of Mayfield Dairy, Athens, TN presided. Hugh Wilson of Tennessee Department of Agriculture served as Session Chairman.

Harold Rose of the Tennessee Dairy Products Association gave the Invocation.

A Dairy Regulatory Update was given by Tennessee Department of Agriculture staff. Dennis Lampley, Dairy Administrator, updated the group on regulatory activities. John Sanford, Milk Rating Officer, spoke on changes in Pasteurized Milk Ordinance. Dewain Patterson, Laboratory Evaluation Officer, spoke on changes in the laboratory certification program.

After a milk break, Steve Wilborn of the Consolidated Flavor Corporation spoke on Vitamin Fortification of Milk. A panel discussion of Fluid Milk Quality and Shelf Life was held. Professor Herbert Holt of the University of Tennessee, Knoxville, served as moderator. Panelists were: Charles Hilton, Fleming Dairy, Nashville; Gil Murrey, Heritage Farms Dairy, Murfreesboro; and Wayne Crabtree, Mayfield Dairy, Athens.

Jerry Baggett of TDA served as door prize chairman. Glenda Smead of TDA served as photographer. Mary Lou Hopper and Teresa Graves of TDA were in charge of registration and arrangements.

After lunch, members of the group toured the Tennessee Agricultural Museum.

California Affiliate News

The Fall Dairy Industry Conference was held in conjunction with the California Dairy Industries Association at the Ontario Airport Hilton, Ontario, September 28-29. Over 161 people attended this annual educational event that featured several talks by Dr. Mike Doyle, Past President of IAMFES and Professor Bob Marshall of the University of Missouri. Doyle focused his presentations on the species of bacteria important to the dairy industry, including E. coli O157:H7, and Listeria monocytogenes. Marshall discussed the new sections of the 16th Editions of “Standard Methods.”

During the meeting other topics discussed on plant and lab issues, new processing technologies and regulatory issues. During the breaks, the participants visited the 11 exhibitors.

Both the CDIA and CADMS held board meetings during the conference to plan the educational programs for 1994. The CADMS also held their annual business meeting and elected Les Wood, inspector in the California Department of Food and Agriculture as Recording Secretary, John Jackson of Food 4 Less as 2nd Vice President, Mostafa Sherzad as 1st Vice President and Nancy Ahern as President for 1994. Ahern and Sherzad both work in inspection for the California Department of Food and Agriculture. Dr. John C. Bruhn was reappointed as Executive Secretary and Delegate to the IAMFES.

The CADMS will again cooperate with CDIA in the statewide Spring Dairy Conference planned for February 23-24, 1994 at the Holiday Inn Capitol Plaza, Sacramento, California.
California Affiliate Recognizes Two at Annual Meeting

The California Association of Dairy and Milk Sanitarians (CADMS) Sanitarian of the Year Award was established years ago to recognize outstanding people who have distinguished themselves in their field and have contributed significantly and with distinction to the profession of the sanitarian. Nominations are annually invited and evaluated by the CADMS Executive Committee. An Award is not necessarily given each year.

The 1992 recipient was not able to attend the 1992 Annual Meeting so his recognition was announced during the Fall Annual Conference of the Association held September 28-29 at the Ontario (California) Airport Hilton.

The 1992 recipient is Bob Darrah who recently retired from Safeway after a very distinguished career of 31 years. Following graduation from Iowa State, Ames, Bob worked for an independent dairy processor that was later bought out by Fairmont Foods. After a short tenure with Fairmont Foods, he joined Safeway in Denver. Later he moved to California and developed a sanitation program in each Safeway plant that allowed each plant’s lab to conduct the critical analyses necessary to insure that safe and wholesome products were produced. This successful program focused on creating sanitary processing environment.

His interest and knowledge about how to maintain the sanitary quality of the processing environment has been freely shared with those who have asked and all have profited by this exchange. He has authored papers on “how to keep it sanitary,” and has authored the popular sanitation booklet on sanitation principles sold by IAMFES. He has served on several IAMFES plant sanitation committees. He is very active in industry meetings, learning and sharing.

Recently, he was involved in the critical experiments that evaluated a new method to sanitize hands which he discussed at the meeting. Bob continues in his retirement helping people and companies develop and perfect good sanitation programs.

The second person honored at the Annual Meeting was Jack Pollack whose career in the dairy industry spanned fifty years. His dairy industry career started in the 1940’s when he worked during high school at Morgan’s Dairy Farm in Torrance, a southern California town. At the farm he first worked as a milkman and then as a processor and relief milker.

After graduating from Redondo Union High School in 1946, he served two years in the Army’s 82nd Airborne Division. His Army experience gave him the opportunity to attend college courtesy of the G. I. Bill. He first attended a junior college, The College of the Sequoias in Visalia, CA and then California Polytechnical State University, San Luis Obispo graduating in 1954 with a degree in dairy manufacturing.

He then worked for several dairy companies gaining considerable experience and expertise in processing. In 1961 he joined the California Department of Food and Agriculture (CDFA) where he worked until his retirement 30 years later in 1990. His first efforts were to direct the pesticide residue program for milk and cream. This successful effort provided a promotion to a dairy foods specialist and as a specialist he covered all aspects of product inspections. Ultimately, he became a USDA Grader and Survey Officer under the USDA and CDFA Cooperative Program.

Jack is an active member in many of the state’s dairy associations, including CADMS where he served as President in 1984-1985. He always contributed to each association in which he held membership, encouraging the associations and members to strive a little higher for excellence. Jack has many assets, but one which many mentioned was his teaching skills in introducing new inspectors to the business of inspection. He was often heard to say to a new inspector, “be firm when you have to, and lenient when you can, but above all be fair and honest to them all.”

Both recipients were accompanied by their wives, Elsie Pollack and Laura Darrah.
Affiliate Officers

ALABAMA ASSOCIATION OF DAIRY & MILK SANITARIANS

Pres., Benjy Mikel Auburn
Pres. Elect, Ken Reamer Montgomery
Vice Pres., Sandy Dunlap Montgomery
Sec'y. Treas., Tollef Haley Tuscaloosa
Past Pres., Gregory B. Utley .. Tuscaloosa
Deputy, Tom McCaskey Auburn
Mail all correspondence to:
Tollef Haley
Tuscaloosa County Health Dept.
1101 Jackson Avenue
Tuscaloosa, AL 35401
(205)554-4540

ALBERTA ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Ken Yu Edmonton
Past Pres., Harry Jackson Edmonton
Pres. Elect, Rick Leyland Edmonton
Sec'y., Connie Zagrosh-Miller ... Edmonton
Treas., Mike Mavromaras Edmonton
Deputy, James Steele Edmonton
Mail all correspondence to:
AAMFES
Attn: Harry Jackson
P.O. Box 8273
Station F
Edmonton, Alberta, Canada T6H 5H3

CALIFORNIA ASSOCIATION OF DAIRY & MILK SANITARIANS

Pres., Nancy Ahern Fairfield
Past Pres., Tony Freeman ... Corona
1st Vice Pres., O. Mostafa Sherzad Turlock
2nd Vice Pres., John Jackson ... La Habra
Recording Sec., Les Wood Santa Rosa
Exec. Sec. & Delegate,
John Bruhn Davis
Mail all correspondence to:
Dr. John Bruhn
Department of Food Science & Tech.
101B Cruess Hall
University of California - Davis
Davis, CA 95616
(916)752-2191

CAROLINA'S ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Elizabeth M. Johnson.Columbia, SC
Vice Pres., Bernard Kane .Greenville, NC
Secretary, Kay Sigmon Mooresville, SC
Treasurer, Keith Glover Raleigh, NC
Delegate, Beth Johnson Columbia, SC
Mail all correspondence to:
Elizabeth M. Johnson
SC DHEC Bureau of Laboratories
PO Box 2202
Columbia, SC 29202
(803)935-6201

CONNECTICUT ASSOCIATION OF DAIRY & FOOD SANITARIANS, INC.

Pres., Colleen Mears Windsor Locks
Pres. Elect, David Herrington ... Middlefield
Sec'y., Donald Shields Hartford
Treas., Kevin Gallagher Hartford
Deputy, Satyakam Sen Bristol
Mail all correspondence to:
Kevin Gallagher
Dept. Consumer Protection (Food Div.)
State Office Bldg., Rm #167
165 Capitol Avenue
Hartford, CT 06106
(203)566-4716

ASSOCIATED ILLINOIS MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Cheryl Pieper Elmhurst
Pres. Elect, Doug Carter Rockford
1st Vice Pres., Alan Lundin Cherry Valley
2nd Vice Pres., Wayne Knudson Glenview
Sec'y., Treas., Bob Crombie Joliet
Past Pres., Marlena Bordson ... Springfield
Deputy, Charles Price Lombard
Mail all correspondence to:
Bob Crombie
Crombie Company
521 Cowles Avenue
Joliet, IL 60435
(815)726-1683

FRONT ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Kathleen Ward Jacksonville
Pres. Elect, Marisan Ryan .. Winter Haven
Vice Pres., Dean Elliott Tallahassee
Past Pres., Jack Dodd Tallahassee
Sec./Treas., Bill Thornhill Winter Haven
Deputy, Peter Hibbard Orlando
Mail all correspondence to:
Bill Thornhill
3023 Lake Alfred Road
Winter Haven, FL 33881
(813)299-6555

INDIANA ENVIRONMENTAL HEALTH ASSOCIATION, INC.

Pres., Vince Griffin Plainfield
Pres. Elect, Deanna English Danville
Vice Pres., Sylvia Garrison ... Bloomington
Treas., Angie Brown Lafayette
Sec'y., Kris Conyers Kokomo
Past. Pres., Dave McClure New Albany
Deputy, Helene Uhliman Hobart
Mail all correspondence to:
Indiana Environmental Health Assoc.
Attn: Tammi Barrett
Indiana State Board of Health
1330 W. Michigan Street
Indianapolis, IN 46206
(317)635-0168

GEORGIA ASSOCIATION OF FOOD & ENVIRONMENTAL SANITARIANS

Pres., Jim Ayres Atlanta
Pres. Elect, Larry Beuchat Griffin
Past Pres., Frank Pool Atlanta
Secretary, Mark Harrison Athens
Treas., James C. Camp Peachtree City
Deputy, David Fry Liburn
Mail all correspondence to:
Mark Harrison
GAFES Secretary
Dept. of Food Science & Tech.
Athens, GA 30602
(404)542-1088

IOWA ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS, INC.

Pres., Randy Hanson Dubuque
Pres. Elect, Glen Amada ... Charles City
1st Vice Pres., Loren Johnson ... Le Mars
2nd Vice Pres., Jeff Meyer
Past President, Vicky Streicher ... Edgewood
Sec'y. Treas., Dale R. Cooper ... Manchester
Deputy, Randy Hanson Dubuque
Mail all correspondence to:
Dale Cooper
Box 69
Manchester, IA 52057
(319)297-3212

IDAHO ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Steve Bastian Preston
Pres. Elect, Ed Hall Coeur D'Alene
Sec'y. Treas., Tom Hepworth ... Pocatello
Mail all correspondence to:
Tom Hepworth
465 Memorial Drive
Pocatello, ID 83201
(208)233-9080

KANSAS ASSOCIATION OF SANITARIANS

Pres., Ron Tubb Overland Park
1st Vice Pres., George Blish .. Topeka
2nd Vice Pres., Dan Hutchison ... Topeka
Sec,. Galen Hulsing Topeka
Treas., Ernest Barnes Wichita
Deputy, Don Bechtel Manhattan
Mail all correspondence to:
Galen Hulsing
Topeka-Shawnee County Health Agency
1615 W. 8th Street
Topeka, KS 66606
(913)233-8961 ext. 298

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993 727
KENTUCKY ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS, INC.

Pres., Anita Travis..........................Frankfort
Pres. Elect, George HeadyFrankfort
Vice Pres., Guy DeliusFrankfort
Past Pres., Rick MolohonElizabethtown
Sec'y, Cary NesselrodeFrankfort
Treas., Judy TrueFrankfort
Delegate, David KleeElizabethtown
Mail all correspondence to:
Judy True
KAMSFS, Inc.
P.O. Box 1464
Frankfort, KY 40602
(502)564-7181

LOUISIANA ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS

Vice Pres., Paul BergeronBaton Rouge
Sec/Treas.,
Dorothy ThompsonBaton Rouge
Delegate, Douglas Marshall ..Baton Rouge
Mail all correspondence to:
Baton Rouge Food Science
LSU
Baton Rouge, LA 70903
(504)388-5197

MASSACHUSETTS MILK, FOOD & ENVIRONMENTAL INSPECTORS ASSOCIATION

Pres., Max BooklessPittsfield
Past Pres., Barb KuligWest Springfield
Vice Pres., David KochanNorthampton
Sec/Treas., Fred Kowal ...Chicopee
Delegate, Barb KuligWest Springfield
Contact:
Fred Kowal
45 Beaumont Avenue
Chicopee, MA 01013
(413)592-5914

METROPOLITAN ASSOCIATION OF DAIRY, FOOD AND ENVIRONMENTAL SPECIALISTS

Pres., Donald Hammer
Vice Pres., Eileen Wachowski
Sgt at Arms, Gloria Harmon
Sec/Treas., Dennis Tidwell
Delegate, Fred WeberHamilton, NJ
Mail all correspondence to:
Fred Weber
2732 Kuser Road
Hamilton, NJ 08691-9430

MICHIGAN ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Terry AndersonLansing
Pres. Elect, Bob TaylorLansing
Treas., David WilsonFremont
Past Pres., Patrick Conklin ...Fremont
Secy/Treas., Durwood ZankDurwood Zank
Delegate, Bob TaylorLansing
Mail all correspondence to:
Durwood Zank
Barry-Easton DHD
PO Box 30161
Lansing, MI 48909
(517)543-2430

MINNESOTA SANITARIANS ASSOCIATION, INC.

Pres., Sonya GambrielSt. Paul
Pres. Elect, Dennis DeckerLitchfield
Vice Pres., Ray CherryFairbault
Sec/Treas., Paul NiermanSt. Paul
Past Pres., Greg PittmanMontgomery
Delegate, Paul NiermanSt. Paul
Mail all correspondence to:
Paul Nierman
Dairy Quality Control Institute
5205 Quincy Street
St. Paul, MN 55112-1499
(612)785-0484

MISSISSIPPI ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Robert J. PrescottMcComb
Pres. Elect, Kenneth BruceAkerman
1st Vice Pres., Dana CarsonMeridian
Sec/Treas., Tim CarrMagnolia
Past Pres., Robert RogersForrest
Delegate, Robert PrescottMcComb
Mail all correspondence to:
Robert J. Prescott
P. O. Box 796
McComb, MS 39648
(601)684-9411

MISSOURI MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Jerry BrownHillsboro
Pres. Elect, Cal BaddingJefferson City
Vice Pres., Terry LongJefferson City
Secy, Janet MurrayMoberly
Treas., David StullJefferson City
Past Pres., Charles SandersColumbia
Delegate, Terry LongJefferson City
Mail all correspondence to:
Janet Murray
Environmental Sanitarian III
Randolph County Health Department
P. O. Box 488
Moberly, MO 65270
(816)263-6643

NEBRASKA ASSOCIATION OF MILK & FOOD SANITARIANS

Pres., Fred CookOmaha
Pres. Elect, Allan AckermanLincoln
Secy/Treas., Greg HennLincoln
Past Pres., Susan SumnerLincoln
Delegate, Susan SumnerLincoln
Mail all correspondence to:
Greg Henn
NAMFS
PO Box 94771
Lincoln, NE 68509-4771

NEW YORK STATE ASSOCIATION OF MILK & FOOD SANITARIANS

Pres., Jerome A. HopcusLancaster
Pres. Elect, Kim BukowskiE. Syracuse
Past Pres., Terry B. Musson ..Keyport, NJ
Exec. Secretary, Janene Gargiulo ..Ithaca
Delegate, Terry MussonKeyport, NJ
Mail all correspondence to:
Janene Gargiulo
Cornell University
11 Stocking Hall
Ithaca, NY 14853
(607)255-2892

NORTH DAKOTA ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Allen McKayDevils Lake
1st Vice Pres., Kevin MisekRugby
Past Pres., Dan MartzenBismarck
Secy/Treas., Deb LarsonBismarck
Member-at-Large,
James SchothorstGrand Forks
Delegate, Gary HoffmanBismarck
Mail all correspondence to:
Debra Larson
PO Box 837
Bismarck, ND 58502
(701)221-6147

OHIO ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS

Pres., Roger TedrickColumbus
1st Vice Pres., Greg DeLongDayton
2nd Vice Pres., Barry Pokorny ..Cincinnati
Secy/Treas., Don BarrettColumbus
Past Pres., Gloria SwickColumbus
Delegate, Gloria SwickColumbus
Mail all correspondence to:
Donald L. Barrett
Health Dept.
181 S. Washington Blvd.
Columbus, OH 43215
(614)645-6195
ONTARIO FOOD PROTECTION ASSOCIATION
Pres., Krista Mountjoy.............Toronto
Vice Pres., Anna Lammerding.....Guelph
Sec'y., Sandra Noonan............Hamilton
Treas., Janet Avery..............Misiassauga
Past Pres., Michael Brodsky......Brampton
Delegate, Krista Mountjoy......Scarborough
Mail all correspondence to:
Krista Mountjoy
Health & Welfare Canada
Prot BR-2301 Midland Avenue
Scarborough, Ontario M1P 4R7
(416)973-1584

TENNESSEE ASSOCIATION OF MILK, WATER & FOOD PROTECTION
Pres., Wayne Crabtree.............Athens
Vice Pres., Ernest Yates.........Cross Plains
Sec'y., Genevieve Christen.......Knoxville
Treas., Dennis Lampley..........Bon Aqua
Board Member at Large,
Gail Smith.......................Chattanooga
Past Pres., Ann Draughon......Knoxville
Delegate, Ruth Fuqua...............Mt. Juliet
Mail all correspondence to:
Dennis Lampley
Rt. #1, Box 468-B
Bon Aqua, TN 37025
(615)360-0157

WASHINGTON MILK SANITARIANS ASSOCIATION
Pres., Joe Muller................Seattle
Vice Pres., Norm Hanson.........Seattle
Sec'y., Treas., Lloyd LuEdEcke...Pullman
Delegate, Lloyd LuEdEcke..........Pullman
Mail all correspondence to:
Lloyd LuEdEcke
NW 312 True Street
Pullman, WA 99163
(509)335-4016

PENN S YL V A NIA ASSOCIATION OF DAIRY SANITARIANS & DAIRY LAB. ANALYSTS
Pres., Tom Angstadt...............Erie
Pres. Elect, Clifford Kendall.....Altoona
Vice Pres., Eugene Frey...........Lancaster
Secretary, Mike John............Waynesboro
Treasurer, Robert Mock...........Gilbertsville
Past Pres., Donald Yanek.........Onwigsburg
Delegate, Mike John...............Waynesboro
Mail all correspondence to:
Mike John
Atlantic Dairies
5419 Manheim Road
Waynesboro, PA 17268
(717)762-7799

TEXAS ASSOCIATION OF MILK, FOOD & ENVIRONMENTAL SANITARIANS
Pres., Kent Roach................San Antonio
Vice Pres., Don Ritch...........Dallas
Sec'y., Janie Park................Austin
Treas., Dr. Ron Pieter...........College Station
Archivist, Joe Goddard..........Lubbock
Delegate, Kimmon Smith.........Austin
Mail all correspondence to:
TAMFES
Janie Park
P.O. Box 2363
Cedar Park, TX 78613-2363
(512)458-7281

SOUTH DAKOTA ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Pam Bonrude...............Pierre
Pres. Elect,.......................Pierre
Past President, John Robertson..Pierre
Sec./Treas., Rex Vandenbergh.....Pierre
Past Pres., Diane Worral.....Huron
Delegate, Darwin Kurttenbach...Pierre
Mail all correspondence to:
Rex Vandenbergh
SD State Department of Health
525 E. Capitol
Pierre, SD 57501
(605)773-3364

WISCONSIN ASSOCIATION OF MILK & FOOD SANITARIANS
Pres., Mark Nelson.................Oshkosh
Vice Pres., Joseph Disch.........DeForest
Pres. Elect, Erin Nutter.........Altoona
Past Pres., Fritz Buss...........Marshfield
Sec'y., Randall Dags............Madison
Treas., Neil Vassau..............Madison
Membership Chairman, Jim Dresser.....Madison
Delegate, Joseph Disch..........DeForest
Mail all correspondence to:
Neil M. Vassau
P.O. Box 7883
Madison, WI 53707
(608)267-3504

VIRGINIA ASSOCIATION OF SANITARIANS & DAIRY FIELDMEN
Pres., Alan G. Grove...............Blacksburg
Sec./Treas., Donna Iacz.........Chesterfield
Past Pres., C. Tom Owen........South Boston
Delegate, Donna Iacz...............Chesterfield
Mail all correspondence to:
Donna Iacz
9431 Dry Creek Drive
Chesterfield, VA 23832
(804)739-3071

ENVIROCON INTERNATIONAL, INC. INTRODUCES THE MICROQUIK™ SERIES OF BIOCHEMICAL TESTS

CALL 800-849-3961 FOR INTRODUCTORY OFFER!

SERIES ONE: CULTURE ASSAYS
Traditional first growth membrane filter or spread assays utilizing standard nutrient medium for 24 hour identification, along with Ell’s patented enzyme technology which allows for 4-6 hour advance read-out. Available in Gram Negative, Total Count, Total Coliforms, E. coli, and Enterococcus.

SERIES TWO: CONFIRMATION
Confirm on the spot in as little as five minutes, using methods similar to MUG and API-20E. Patent pending technology saves time and $$$.

PRODUCTS OF Envirocon International, Inc.
1110 Burnett Ave., Suite D
Concord, CA 94520, USA

MICROQUIK™ Confimnation Tests
Confirm presence/absence in minutes, on the spot. No need to replate and wait hours for results. MicroQuik™ does it now.

ENTEROCOCCUS.E.COLI
STREPTOCOCCUS TOTAL COLIFORMS CANDIDA ALBICANS

This is a replica of a confirmation test.
New IAMFES Members

Alabama
- **John Kotrola**
 - Auburn University
 - Auburn University

Arizona
- **Ralph Meer**
 - University of Arizona
 - Tucson

California
- **Glenn Davis**
 - Davis Lay, Inc.
 - Modesto
- **Janet J. Dike**
 - Student - CSUN
 - Thousand Oaks
- **John Gurrisi**
 - General Mills Restaurant, Inc.
 - Livermore
- **Kaan Gwee**
 - Pacific Cheese Co., Inc.
 - Hayward
- **Judy Ikawa**
 - Clorox Company
 - Pleasanton
- **Kurt A. Lewis**
 - Mid-America Dairymen, Inc.
 - Corona
- **Bob Manici**
 - Chem-Serv, Inc.
 - Diamond Bar
- **Mark Salimbene**
 - Baskin-Robbins National Lab
 - Burbank

Colorado
- **Michael E. Sangaline**
 - Jefferson County Dept. of Health and Environment
 - Lakewood

Connecticut
- **Lawrence Brewer**
 - Country Home Bakers
 - Milford
- **Jeff Hastings**
 - Meriden

Illinois
- **Donald R. Farris**
 - Prairie Farms
 - Granite City
- **David Graham**
 - Liquid Carbonic
 - Chicago
- **Richard V. Lechowich**
 - National Center for Food Safety
 - Illinois Institute Technology
 - Argo-Summit
- **Chuck Sizer**
 - Tetro Pack Research
 - Buffalo Grove

Iowa
- **Eureka L. Pickett**
 - Iowa State University
 - Ames

Maryland
- **Jhung-Won Colby**
 - Perdue Farms, Inc.
 - Salisbury
- **Cecilia Fernandez**
 - Rockville

Massachusetts
- **John Burke**
 - Agri-Mark Inc.
 - Lawrence
- **David Coles**
 - Amherst

Minnesota
- **Tracy A. Bridgeman**
 - University of Minnesota
 - Roseville

Nebraska
- **Julie Baron**
 - University of Nebraska
 - Lincoln
- **Lisa M. Wolfor**
 - University of Nebraska
 - Lincoln

New Hampshire
- **Richard E. Avery**
 - Avery Consulting Associates, Inc.
 - Londonderry

New York
- **Robert A. Rindo**
 - O-At-Ka Milk Products Coop, Inc.
 - Batavia

North Carolina
- **Deborah D. Noltemeier**
 - Beaufort Co. Health Department
 - Washington

Ohio
- **Duncan C. Badertscher**
 - Chemidyne Corporation
 - Macedonia
Katy Dishart
Nestlé USA
Solon

M. J. Haefs
Process Division, Inc.
Columbus

John M. Hochstrasser
Tastemaker
Cincinnati

Sandra L. Moore
John Morrell & Co.
Springdale

Kevin C. Wilson
Pillsbury
Wellston

Oregon

Randy Norlander
Portland

Lori Sampels
West Coast Food Center
Portland

Pennsylvania

David A. Bower
General Tank, Inc.
Berwick

Glenn Boyd
U.S. Dept. of Agriculture
Philadelphia

Robert Gage
Montgomery County Health Dept.
Norristown

Shira Kramer
The Sterilex Corp.
Naberth

Susan Vigen
Dalare Assoc., Inc.
Philadelphia

Texas

Richard Grigsby
Star Specialty Foods
Sulphur Springs

Utah

Keith Merrill
Casper’s Ice Cream, Inc.
Richmond

Virginia

John Walker
Piedmont Health District
Farmville

Washington

Norris Anderson
Carnation

Henry Carsberg
Anacortes

Robert F. Hennes
DHH/PHS/FDA-Pacific Region
Seattle

Max Horner
Anderson Dairy
Battleground

Wisconsin

Thomas E. Giles
Dairy Equipment Co.
Madison

Cathy Larson
Sargento Cheese
Fond du Lac

David Sullivan
Deibel Laboratories, Inc.
Madison

Australia

Ellen M. Kittson
State Health Laboratory Service
Ballajura

Belgium

Chris Michiels
K.U. Leuven
Heverlee

Canada

Daniel Brodeur
Reckitt & Colman Canada, Inc.
Lachine, Quebec

Dominique Farly
Pointe-Claire, Quebec

Susan Hall
Baxter Foods, Ltd.
Saint John, New Brunswick

Fred Hassen
Environmental Health Services
Hanna, Alberta

David Neely
Quality First
Saskatoon, Saskatchewan

Colombia

Ricardo Ramirez
BioControl, Ltd.
Bogota, C/Marca

France

Jacelyne Rocourt
Institut Pasteur
Paris
AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENGCH, H.</td>
<td>thoughts from the president, 447, 506, 559, 624, 702</td>
</tr>
<tr>
<td>BENNETT, R.</td>
<td>lead, follow or get out of the way: the new PMO SCC policy, 74; the case for improving milk quality regulations: milk somatic cell counts, 278</td>
</tr>
<tr>
<td>BLUMENTHAL, M.M.</td>
<td>(see Stier, 210, 272, 391, 454)</td>
</tr>
<tr>
<td>BLUMENTHAL, T. K.</td>
<td>(see Stier, 272)</td>
</tr>
<tr>
<td>BODYFELT, F. W.</td>
<td>identification and characterization of heat-resistant psychrotrophic bacteria in Oregon grade a raw milk, 631</td>
</tr>
<tr>
<td>BRUHN, C. M.</td>
<td>setting the record straight about food irradiation, 220</td>
</tr>
<tr>
<td>BRYAN, F. L.</td>
<td>use of the hazard analysis critical control point approach by state, provincial and local food protection agencies: results of a survey and discussion, 323</td>
</tr>
<tr>
<td>CHANDLER, R. E.</td>
<td>(see Vasavada, 510)</td>
</tr>
<tr>
<td>CHRISTEN, G.L.</td>
<td>recovery of short chain-length fatty acids from milk by several methods, 707</td>
</tr>
<tr>
<td>DOGRA, R.</td>
<td>(see Schaffner, 517)</td>
</tr>
<tr>
<td>DOYLE, M. P.</td>
<td>thoughts from the president, 6, 66, 150, 206, 267, 319, 383</td>
</tr>
<tr>
<td>DRUCKER, B. J.</td>
<td>selling public health sanitation to physicians, 336</td>
</tr>
<tr>
<td>EASTWOOD, B.R.</td>
<td>(see Jones, 8)</td>
</tr>
<tr>
<td>EL-SAMRAGY, Y. A.</td>
<td>effect of salt on the production of citric acid from whey as a means for pollution control in domiati cheese manufacture, 638</td>
</tr>
<tr>
<td>FLOH, R.</td>
<td>automatic recirculation cleaning in the 90's, 216</td>
</tr>
<tr>
<td>GELLER, E.S.</td>
<td>solving environmental problems: a behaviour change perspective, 158</td>
</tr>
<tr>
<td>GIOUVANOUDI, A.</td>
<td>(see Karakoltsidis, 712)</td>
</tr>
<tr>
<td>GRAHAM, D.J.</td>
<td>sanitary design, 25, 91, 172, 231, 291, 354</td>
</tr>
<tr>
<td>GRASSHOFF, A.</td>
<td>(see Reinemann, 462)</td>
</tr>
<tr>
<td>GUZEWICH, J. J.</td>
<td>(see Bryan, 323)</td>
</tr>
<tr>
<td>HARSMA, G.</td>
<td>the use of conductivity for controlling cleaning solution strength, 710</td>
</tr>
<tr>
<td>HULL, R. R.</td>
<td>(see Vasavada, 510)</td>
</tr>
<tr>
<td>JONES, G.M.</td>
<td>milk and dairy beef quality assurance program: where are we now?, 8</td>
</tr>
<tr>
<td>KAPLAN, D. E.</td>
<td>custard's last stand, 405</td>
</tr>
<tr>
<td>KALFA, A.</td>
<td>(see Karakoltsidis, 712)</td>
</tr>
<tr>
<td>KARAKOLTSIDIS, P.A.</td>
<td>biological effects of 137Ce uptake in carp ($cyprinus carpio, l.$) and eel ($anguilla anguilla, l.$): a comparative study, 712</td>
</tr>
<tr>
<td>LEE, M. B.</td>
<td>the reliability of pop-up timers in turkeys, 628</td>
</tr>
<tr>
<td>MARTH, E. H.</td>
<td>growth and survival of $listeria monocytogenes$, $salmonella$ species, and $staphylococcus aureus$ in the present of sodium chloride: a review, 14; occurrence of escherichia coli, $pseudomonas aeruginosa$ and $listeria monocytogenes$ in abnormal milk, 70</td>
</tr>
<tr>
<td>MARURI, J.L.</td>
<td>(see Christen, 707)</td>
</tr>
<tr>
<td>MATZKE, S.</td>
<td>(see Wendorff, 166)</td>
</tr>
<tr>
<td>MEER, R.</td>
<td>dietary risk factors for infant botulism "diet and infant botulism", 570; (see Bodyfelt, 631)</td>
</tr>
<tr>
<td>METTS, A.</td>
<td>improving inspection scores through training/certification of foodservice workers, 450; a guideline for evaluating the effectiveness of foodservice worker training/certification, 565</td>
</tr>
<tr>
<td>MOLENDA, S.</td>
<td>legionella: an environmental concern, 568</td>
</tr>
<tr>
<td>MOUNTZIS, A.</td>
<td>(see Karakoltsidis, 712)</td>
</tr>
<tr>
<td>MOUSTAFA, S. I.</td>
<td>(see Marth, 70)</td>
</tr>
<tr>
<td>MURANO, E. A.</td>
<td>irradiation of meat and meat products to ensure hygienic quality, 398</td>
</tr>
<tr>
<td>MURRAY, C. J.</td>
<td>zoonotic origins of human salmonellosis in australia, 458</td>
</tr>
<tr>
<td>OLSON, D. G.</td>
<td>(see Murano, 398)</td>
</tr>
<tr>
<td>PAULSON, D. S.</td>
<td>variability evaluation of two handwash modalities employed in the food processing industry, 332; evaluation of three microorganism recovery procedures used to determine handwash efficacy, 520</td>
</tr>
<tr>
<td>RADOMYSKI, T.</td>
<td>(see Murano, 398)</td>
</tr>
<tr>
<td>REED, G. H.</td>
<td>safe handling of potentially hazardous foods (phf) - a check list, 208; foodborne illness (part 1), staphylococcal ("staph") food poisoning, 642; foodborne illness (part 2), salmonellosis, 706</td>
</tr>
<tr>
<td>REINEMANN, D. J.</td>
<td>milkline cleaning dynamics: design guidelines and troubleshooting, 462</td>
</tr>
<tr>
<td>RODMAN, V.</td>
<td>(see Metts, 450, 565)</td>
</tr>
<tr>
<td>SCHAFFNER, D. W.</td>
<td>determining differences in microbial growth rates using linear regression, 517</td>
</tr>
<tr>
<td>SHERRY, R. T.</td>
<td>health inspections then and now, 387</td>
</tr>
<tr>
<td>SHEHATA, A. E.</td>
<td>(see El-Samragy, 638)</td>
</tr>
</tbody>
</table>
SNYDER, O.P., HACCP - an industry food safety self-control program, part XII, 27; HAZCON-based total quality management, 288, 356, 417, 473, 538, 580, 649, 720

SHEN, N., (see Christen, 707)

STIER, R.F., when the inspector arrives . . ., 210; glps - what are they? and how can they help food processors?, 272; the use of rapid methods for online monitoring, 391; safety in the processing plant, 454

TANAKA, N., food hygiene in Japan - Japanese food hygiene regulations and food poisoning incidents, 152

TODD, E.C.D., (see Bryan, 323)

TORMEY, M., importance of proper maintenance of your bulk milk cooler, 80

VASAVADA, P. C., evolving methodologies for microbiological examination of milk and dairy foods, 510

VOSNIAKOS, F.K., (see Karakoltsidis, 712)

WELBOURN, J. L., food irradiation, food irradiation where art thou?, 276

WENDORFF, W. L., phosphorus in major varieties of whey produced in Wisconsin, 166

WILKINS, B.A., mastering milk quality basics of dairy sanitation, 11

WOODBURN, J. J., (see Bodyfelt, 631)

SUBJECT INDEX

Australia, salmonellosis, 458

Bacteria in milk, 631

Beef
 quality assurance program, 8

Botulism, in infants, 579

Carp, 712

Cleaning, 216, 710

Custard, 405

Dairy
 microbiological examination, 510

Eel, 712

Escherichia coli
 in abnormal milk, 70

Environmental problems, 158

Fatty acids from milk, 707

Federal register, 30, 93, 171, 230, 293, 348, 414, 472, 536, 576, 652, 716

Food and environmental hazards to health, 31, 87, 174, 229, 286, 350, 421, 476, 534, 578, 647, 718

Food hygiene in Japan, 152

inspection through workers, 450

irradiation, 220, 276, 398

microbial growth, 517

safe handling, 208

safety at home, 168

Foodservice worker training/certification, 565

Good Laboratory Practices, 272

HACCP - an industry food safety self-control program, 27

HACCP approach by state, provincial and local agencies, 323

Handwash evaluation, 332, 520

HAZCON-based total quality management, 288, 356, 417, 473, 538, 580, 649, 720

Health inspections, 387

IAMFES
 affiliate council candidates, 362
 affiliate council winner, 427

affiliate news
 calendar, 36, 98, 181, 362, 426, 544, 583, 725
 California, 725
 Connecticut, 181, 364
 Metropolitan Association of Dairy, Food and Environmental Specialists, 583
 Missouri, 364
 New York, 583
 Ohio, 37
 Ontario, 98, 583
 Tennessee, 36, 427, 725
 Texas, 37, 544, Wisconsin, 363, 426, 545

affiliate officers, 238, 428, 727

annual meeting
 abstracts of papers presented, 585
 awards presented, 674
 call for papers, 527, middle blue section, no. 10, committee, professional development groups and task force reports, 662
 developing scientist award competitions, 501, 557, 621
 exhibitors, 256, 432, 680
 highlights, 653
 highlights of the executive board meeting, 659
 hotel registration, 111, 189, 259, 308, 368
 international life sciences institute to host symposium, 103
 meeting registration, 110, 190, 258, 308, 386
 minutes of the annual business meeting, 660
 preliminary program, 244, 299
 presidential address, 656
 preview, 105, 184
 synopsis of papers, 182, 240, 298, 365, 430
 workshop registration, 90, 191, 257, 307, 370
 audio visuals library, 42, 192
 awards
nominations, 39
past winners, 40
booklet form, 64, 143, 146, 376, 440, 556, 695, 759
committees, professional development groups and
task force chairs and members, 100, 241,
instructions for authors, 47,
membership application, 63, 144, 200, 264, 316,
new members, 38, 112, 177, 237, 310, 371, 433,
instructions for authors, 47,
membership application, 63, 144, 200, 264, 316,
new members, 38, 112, 177, 237, 310, 371, 433,
on my mind, 7, 67, 151, 207, 271, 361, 385, 449,
508, 562, 626, 704
secretary candidates, 97
secretary nominations, 525, 537,
sustaining members, 4, 68, 148, 204, 268, 320,
specifications, 14, 60, 622, 698
thoughts from the president, 6, 66, 150, 206, 267,
319, 383, 447, 506, 559, 624, 702
Industry products, 32, 94, 178, 234, 295, 351, 423, 479,
Milk
abnormal, 70
basics of dairy sanitation, 11
cleaning, 462
custard, 405
microbiological examination, 510
proper maintenance of bulk cooler, 80
quality assurance program, 8
quality regulations, 278
raw, 631
Monitoring, on-line, 391
National Mastitis Council, 19, 341
Pasteurized milk ordinance (PMO), 74
Pop-up timers in turkeys, 628,
Pollution control, 638
Pseudomonas aeruginas
in abnormal milk, 70
Rapid methods monitoring, 391
Safe handling of foods, 208
Safety in the processing plant, 454
Salmonella
growth and survival of, 14
3-A sanitary standards
for automatic positive displacement samplers for
fluid milk and fluid milk products, number 59-
00 (08-17D), 751
for equipment for packaging dry milk and dry milk
products, number 27-02, amendment to, 139
for fittings used on milk and milk products equip¬
ment and used on sanitary lines conducting
milk and milk productions, number 08-19E,
number 08-19E, 50
for multiple-use plastic materials used as product
contact surfaces for dairy equipment, number
20-17, 127
for multiple-use plastic materials used as product
contact surfaces for dairy equipment, number
20-18, 549
for plug-type valves for milk and milk products,
number 51-00 (08-17P), 687
for pressure reducing and back pressure regulating
valves for milk and milk products, number 64-
00 (08-17N), 613
for sanitary fittings for milk and milk products,
number 63-00 (09-11A), 738
for sensors and sensor fittings and connections
used on milk and milk products equipment,
number 09-09, amendment to, 54; part two,
number 09-08, 56
holders list, 114, 483
Turkeys, pop-up timers, 628
Whey
for pollution control, 638
in Wisconsin, 166

ADVERTISING INDEX

ASI Food Safety Consultants, Inc. 584
Acculab 545
Accurate Metering Corp. 389
AccuTech Machinery Company 79
American Type Culture Collection 322
AMPCO Pumps, Inc. 422
Anderson Instruments, Inc. 403
Applied Research Institute 390, 523
Atkins Technical, Inc. 2, 157, 215, 322,
407, 567, 700

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993
<table>
<thead>
<tr>
<th>Company/Service</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babson Bros. Co.</td>
<td>13</td>
</tr>
<tr>
<td>Becton Dickinson Microbiology Systems</td>
<td>Inside Back Cover (Issue 7)</td>
</tr>
<tr>
<td>Bentley Instruments, Inc.</td>
<td>644, 715</td>
</tr>
<tr>
<td>BioTrace, Inc.</td>
<td>Inside Front Cover (Issue 12)</td>
</tr>
<tr>
<td>Brevis Corp.</td>
<td>523, 717</td>
</tr>
<tr>
<td>Capitol Vial, Inc.</td>
<td>3, 223, 312, 347, Capitol Vials, Inc./Capitol Spouts, Inc.</td>
</tr>
<tr>
<td>Cargill Analytical Services</td>
<td>515</td>
</tr>
<tr>
<td>Charm Sciences, Inc.</td>
<td>Back Cover (Issues 1-12)</td>
</tr>
<tr>
<td>Church & Dwight Co., Inc.</td>
<td>Inside Back Cover (Issues 2-5)</td>
</tr>
<tr>
<td>Columbus Instruments International</td>
<td>3, 173, 277, 390, 545, 644</td>
</tr>
<tr>
<td>Dairy and Food Labs, Inc.</td>
<td>225, 275, 318, 467, 533, 563, 643, 719</td>
</tr>
<tr>
<td>Decagon Devices, Inc.</td>
<td>446</td>
</tr>
<tr>
<td>Deibel Laboratories, Inc.</td>
<td>277, 390</td>
</tr>
<tr>
<td>Double Integral Sanitation Ltd.</td>
<td>537</td>
</tr>
<tr>
<td>Dresser Industries</td>
<td>443</td>
</tr>
<tr>
<td>Eastern Crown, Inc.</td>
<td>386</td>
</tr>
<tr>
<td>Educational Foundation of the National Restaurant Association</td>
<td>75, 145, 202, 396, 448, 558, 627</td>
</tr>
<tr>
<td>Electro-Steam Generator Corp.</td>
<td>516, 637, 705</td>
</tr>
<tr>
<td>Envirocon International, Inc.</td>
<td>636, 729</td>
</tr>
<tr>
<td>Essex Inn</td>
<td>62</td>
</tr>
<tr>
<td>Fluid Metering, Inc.</td>
<td>408</td>
</tr>
<tr>
<td>Food & Dairy Expo '93</td>
<td>1, 147, 335, 413, 441</td>
</tr>
<tr>
<td>Food and Dairy Quality Management Institute</td>
<td>24, 225, 382, 519, 625, 697</td>
</tr>
<tr>
<td>Food Processors Institute</td>
<td>24, 322, 700</td>
</tr>
<tr>
<td>Foss Food Technology Corp.</td>
<td>524</td>
</tr>
<tr>
<td>Gardex Chemicals Ltd.</td>
<td>221, 416, 643, 701</td>
</tr>
<tr>
<td>GENE-TRAK Systems</td>
<td>397</td>
</tr>
<tr>
<td>Gist-brocades Food Ingredients, Inc.</td>
<td>201, 377, 442, 503</td>
</tr>
<tr>
<td>Great Lakes Scientific, Inc.</td>
<td>547</td>
</tr>
<tr>
<td>Hartel Corp.</td>
<td>457</td>
</tr>
<tr>
<td>IDEXX Laboratories, Inc.</td>
<td>223, 266, 349, 404, 509</td>
</tr>
<tr>
<td>IMC Instruments, Inc.</td>
<td>545, 705</td>
</tr>
<tr>
<td>KenAg</td>
<td>384</td>
</tr>
<tr>
<td>Klenzade, Div. of Ecolab, Inc.</td>
<td>378</td>
</tr>
<tr>
<td>Lancaster Laboratories, Inc. (Issue 10)</td>
<td>507, Inside Front Cover</td>
</tr>
<tr>
<td>Lincoln Suppliers, Inc.</td>
<td>157</td>
</tr>
<tr>
<td>McGlaughlin Oil Company</td>
<td>83, 233, 408, 533, 641, 705</td>
</tr>
<tr>
<td>Marcor Development Corp.</td>
<td>219, 415, 518, 637</td>
</tr>
<tr>
<td>Meritech, Inc.</td>
<td>421, 524, 700</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>176</td>
</tr>
<tr>
<td>Microcheck, Inc.</td>
<td>318, 397, 446, 523, 715</td>
</tr>
<tr>
<td>NASCO International</td>
<td>147, 415</td>
</tr>
<tr>
<td>Nelson-Jameson, Inc.</td>
<td>2, 89, 147, 209, 292, 318, 425, 446, 516, 563, 686, 711</td>
</tr>
<tr>
<td>New Jersey Laboratories</td>
<td>709</td>
</tr>
<tr>
<td>Northland Food Laboratory, Inc.</td>
<td>408, 461, 516, 573</td>
</tr>
<tr>
<td>Promega Corp.</td>
<td>65, 265</td>
</tr>
<tr>
<td>Prosser/Enpo (Sellers)</td>
<td>225, 420, 643</td>
</tr>
<tr>
<td>Seiberling & Associates</td>
<td>379</td>
</tr>
<tr>
<td>Smith Laboratory Service Ltd.</td>
<td>233, 524</td>
</tr>
<tr>
<td>SmithKline-Beecham Animal Health</td>
<td>Inside Front Cover (Issues 3-5, 7-9, 11)</td>
</tr>
<tr>
<td>Stainless Steel Coatings, Inc.</td>
<td>584</td>
</tr>
<tr>
<td>Stochos, Inc.</td>
<td>420</td>
</tr>
<tr>
<td>Unipath Co., Oxoid Div.</td>
<td>203</td>
</tr>
<tr>
<td>VCH Publishers, Inc.</td>
<td>317</td>
</tr>
<tr>
<td>VICAM</td>
<td>15, 71, 411, 701</td>
</tr>
<tr>
<td>Walker Stainless Equipment Co., Inc.</td>
<td>397</td>
</tr>
<tr>
<td>West Agro, Inc.</td>
<td>416, 515, 630</td>
</tr>
<tr>
<td>World Dryer Corp.</td>
<td>2, 219, 407, 533, 563, 643</td>
</tr>
<tr>
<td>Carl Zeiss, Inc.</td>
<td>Post Card Insert (Issues 9-12)</td>
</tr>
</tbody>
</table>

"BUSINESS EXCHANGE" CLASSIFIED ADVERTISING INDEX

<table>
<thead>
<tr>
<th>Company/Service</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&J Repair Service</td>
<td>260, 436, 692</td>
</tr>
<tr>
<td>Bentley Instruments, Inc.</td>
<td>197</td>
</tr>
<tr>
<td>The Crombie Company</td>
<td>59, 140, 197, 261, 372, 496, 618, 736</td>
</tr>
<tr>
<td>DQCI Services, Inc.</td>
<td>59, 140, 197, 260, 313, 372, 436, 497, 551, 618, 691, 736</td>
</tr>
<tr>
<td>Decagon Devices, Inc.</td>
<td>496</td>
</tr>
<tr>
<td>E.C. Industries, Inc.</td>
<td>140, 261, 436, 497, 550, 691</td>
</tr>
<tr>
<td>Environmental Systems Service, Ltd.</td>
<td>260, 436, 497, 550, 691, 737</td>
</tr>
<tr>
<td>Great Lakes Scientific, Inc.</td>
<td>372</td>
</tr>
<tr>
<td>IG MicroMed Environmental, Inc.</td>
<td>435</td>
</tr>
<tr>
<td>Ingman Labs, Inc.</td>
<td>59, 140, 197, 260, 312, 372, 435, 497, 550, 618, 692, 736</td>
</tr>
<tr>
<td>Kernco Instruments Co., Inc.</td>
<td>692</td>
</tr>
<tr>
<td>McDonald's Corp.</td>
<td>692</td>
</tr>
<tr>
<td>M&W Protective Coating Company</td>
<td>59, 372, 692</td>
</tr>
<tr>
<td>Michelson Laboratories, Inc.</td>
<td>260, 435, 550, 692, 737</td>
</tr>
<tr>
<td>Midwest Laboratories, Inc.</td>
<td>692</td>
</tr>
<tr>
<td>Northeast Laboratory Services</td>
<td>435, 497, 550, 618, 691</td>
</tr>
<tr>
<td>W.M. Sprinkman Corp.</td>
<td>59</td>
</tr>
<tr>
<td>Whittaker & Associates</td>
<td>436, 551</td>
</tr>
</tbody>
</table>
For Food Plant Operations

Employee Training Materials

- GMP & GSP booklets, slides and video tapes in English & Spanish

L. J. BIANCO & ASSOCIATES
(Associated with L.J.B Inc.)
FOOD PRODUCT QUALITY CONTROL AND ASSURANCE CONSULTANTS
850 Huckleberry Lane
Northbrook, IL 60062
708-272-4944 / FAX 708-272-1202
Over 40 years Food Operation Experience

CIRCLE READER SERVICE NO. 297

DOCC Services, Inc.
Bacteriological & Chemical Testing

- Component Samples for Infrared Equipment
- ESCC Control Samples
- Chemical & Bacteriological Testing of Milk & Milk Products

Moundsview Business Park
5205 Quincy Street
St. Paul, MN 55112-1400
(612) 785-0484
FAX (612) 785-0584

CIRCLE READER SERVICE NO. 356

Micheelson Laboratories, Inc.
6280 Chalet Drive, Los Angeles, CA 90068
Telephone: (310) 928-0553 / (714) 971-0673 / FAX: (310) 927-6625

COMPLETE DAIRY ANALYSIS
SPECIALIZING IN:
* Chemical
* Microbiological
* Sugar Profile
* Fatty Acid Profile
* Vitamin A & D
* Quality Assurance
* Consulting
* MS-USP/NS-FDA Approved 06143

TECHNIQUES AVAILABLE:
* Infrared Milk Analyzer
* Mass Spectrometry
* Gas Chromatography
* Atomic Absorption
* Spectrophotometry
* Spectrofluorometry
* Spiral Plater
* Laser Counter
* Microscopy
* Vitex & Bactometer
* Inductively Coupled Plasma

Also Offering: Milk Calibration Samples for Infrared Milk Analyzer and Electronic Somatic Cell Counter

CIRCLE READER SERVICE NO. 340

The CDT™ Test Device*
For testing all differential controls on H.T.S.T. pasteurizers
Model III ss x now shipping!
New adapters** connect directly to HTST's sanitary pressure sensors

The Crombie Company
521 Cowles Ave., Joliet, IL 60435-6043
815-726-1683 (Voice & FAX)

Model III ss x
*US Pat. No. 4,380,166
**Adapters may be ordered separately - fit all previous models.

CIRCLE READER SERVICE NO. 339

GOSSELIN & BLANCHET
Butter-Making Equipment
New and used.
Sales. Service. Parts.
B & J REPAIR SERVICE
• 4818 N. Bailey Rd.
• Coral, MI 49322
(616) 354-6629

CIRCLE READER SERVICE NO. 329

COMPLETE LABORATORY SERVICES
Ingman Labs, Inc.
2945-34th Avenue South
Minneapolis, MN 55406
612-724-0121

CIRCLE READER SERVICE NO. 315
Do you fit the description?

Then add your name to the growing list of industry achievers who have already become certified Foodservice Management Professionals (FMPs).
Foodservice managers, supervisors, trainers and executives who have 3 or more years of management experience and foodservice education are eligible for this distinguished credential.

Industry professionals are realizing the positive impact these three letters—FMPs—have on their careers.
Now you can, too.

If you're interested in recognition for your professional accomplishments, you owe it to yourself to call The Educational Foundation of the National Restaurant Association today for your FMP brochure and application.

1-800-765-2122

NATIONAL RESTAURANT ASSOCIATION
THE EDUCATIONAL FOUNDATION
250 S. Wacker Drive, Suite 1400
Chicago, Illinois 60606-5834

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993 737
3-A Sanitary Standards for Sanitary Fittings for Milk and Milk Products Number 63-00 (08-17 as Amended)

Formulated by
International Association of Milk, Food and Environmental Sanitarians
United States Public Health Service
The Dairy Industry Committee

It is the purpose of the IAMFES, USPHS, and DIC in connection with the development of the 3-A Sanitary Standards program to allow and encourage full freedom for inventive genius or new developments. Sanitary fittings specifications heretofore or hereafter developed which so differ in design, material, construction, or otherwise, as not to conform with the following standards, but which in the manufacturer’s or fabricator’s opinion are equivalent or better may be submitted for the joint consideration of IAMFES, USPHS, and DIC at any time.

A

SCOPE

A.1
These standards cover the sanitary aspects of fittings used on processing equipment and on equipment and lines which hold or convey milk or milk products.

A.2
In order to conform to these 3-A Sanitary Standards, fittings shall comply with the following in design, material and fabrication criteria.

B

DEFINITIONS

B.1
Product: Shall mean milk and milk products.

B.2
SURFACES

B.2.1
Product Contact Surfaces: Shall mean all surfaces which are exposed to the product and surfaces from which liquid may drain, drip, diffuse or be drawn into the product.

B.2.2
Nonproduct Contact Surfaces: Shall mean all other exposed surfaces.

B.3
Mechanical Cleaning or Mechanically Cleaned: Shall denote cleaning, solely by circulation and/or flowing chemical detergent solutions and water rinses onto and over the surfaces to be cleaned, by mechanical means.

B.4
Electrodeposition: Shall mean coated to specific dimensions or processed to specified dimensions after electrodeposited coating.†

C

MATERIALS

C.1
Product contact surfaces shall be of stainless steel of the AISI 300 Series* or corresponding ACP types (See Appendix, Section F.) or metal which is equal in cleanability to stainless steel of the foregoing types, and which under conditions of intended use is equally corrosion resistant, nontoxic and nonabsorbent except that:

C.1.1
Fittings made of materials provided for in C.1 may be covered with an electrodeposited coating of chromium.

C.1.2
Rubber and rubber-like materials may be used for gaskets, O-rings, seals and parts having the same functional purposes.

C.1.3
Rubber and rubber-like materials, when used for the above specified applications, shall conform to the applicable provisions of the current 3-A Sanitary Standards for Multiple-Use Rubber and Rubber-Like Materials Used as Product Contact Surfaces for Dairy Equipment Number 18-.

C.1.4
Plastic materials may be used for fittings, gaskets, O-rings, seals, dust covers, sight and light openings and parts, having the same functional purposes.

C.1.5
Plastic materials, when used for the above specified applications, shall comply with to the applicable provisions of the current 3-A Sanitary Standards for Multiple-Use Plastic Materials Used as Product Contact Surfaces for Dairy Equipment Number 20-.

‡ Steel Founders Society of America, Cast Metal Federation Bldg., 435 S State St., Des Plaines, IL 60016 (708-299-9160).
C.1.6 Rubber and rubber-like materials and plastic materials having product contact surfaces shall be of such composition as to retain their surface and conformational characteristics when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment or sterilization.

C.1.7 Rubber and rubber-like materials and plastic materials having product contact surfaces that are a bonded coating or a covering shall be of such composition as to retain their surface and conformation characteristics when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment or sterilization.

C.1.8 The final bond and residual adhesive, if used, on bonded rubber and rubber-like materials and bonded plastic materials shall be nontoxic. *

C.1.9 Glass or plastic may be used in sight and/or light openings and when used, shall be of a clear, heat-resistant type.

C.1.10 Glass or plastic may be used for fittings specified in the current 3-A Accepted Practices for the Design, Fabrication and Installation of Milking and Milk Handling Equipment. Number 606- and, when used, shall be of a clear or transparent, heat-resistant type.

C.1.11 In a processing system to be sterilized by heat and operated at a temperature of 250 degrees F (121 degrees C) or higher, all materials having a product contact surface(s) used in the construction of fittings, gaskets and nonmetallic component parts shall be such that they can be (1) sterilized by saturated steam or water under pressure (at least 15.3 psig or 106 kPa) at a temperature of at least 250 degrees F (121 degrees C) and (2) operated at the temperature required for processing.

C.2 All nonproduct contact surfaces shall be of corrosion-resistant material or material that is rendered corrosion resistant. If coated, the coating used shall adhere. All nonproduct contact surfaces shall be relatively nonabsorbent, durable, and cleanable. Parts removable for cleaning having both product contact and nonproduct contact surfaces shall not be painted.

D FABRICATION

D.1 All product contact surfaces shall have a finish at least as smooth as a No. 4 ground finish on stainless steel sheets and be free crevices in the final fabricated form. (See Appendix, Section G.)

D.2 All permanent joints in metallic product contact surfaces shall be continuously welded, except that rolled-on fittings may be used as defined by the current 3-A Accepted Practices for the Design, Fabrication and Installation of Milking and Milk Handling Equipment, Number 606- and the current 3-A Sanitary Standards for Farm Milk Cooling and Holding Tanks, Number 13-, and current 3-A Sanitary Standards for Farm Milk Storage Tanks, Number 30-. Welded areas on product contact surfaces shall be at least as smooth as a No. 4 ground finish on stainless steel sheets, and be free of imperfections such as pits, folds, and crevices.

D.3 The minimum thickness of an electrodeposited coating shall not be less than 0.0002 in. (0.005 mm) for all product contact surfaces when used on stainless steel. When these surfaces are other than stainless steel, the minimum thickness of the electrodeposited coating shall not be less than 0.002 in. (0.05 mm).

D.4 Fittings that are to be mechanically cleaned shall be designed so that the product contact surfaces of fittings that are to be mechanically cleaned shall be so designed.

D.5 Product contact surfaces not designed to be mechanically cleaned shall be easily accessible for cleaning and inspection. Removable parts shall be readily demountable.

D.6 All product contact surfaces shall be self-draining when properly installed.

D.7 There shall be no threads on product contact surface except for those specified in Section E.1.

D.8 Removable fittings may be used with or without gaskets or 0-rings and shall be of such design as to form substantially flush interior joints.

D.9 Plain end fittings for use in welded sanitary pipelines must conform to the provisions of these standards with respect to material, finish and construction. The inside diameter of the butt welding ends shall be the same as that of the part to which it is to be welded.

D.10 GASKETS

D.10.1 Gaskets having a product contact surface shall be removable or bonded.

D.10.2 Bonded rubber and rubber-like materials and bonded plastic materials having product contact surfaces shall be bonded in such a manner that the bond is continuous and mechanically sound so that when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment or sterilization, the rubber and rubber-like material or the plastic material does not separate from the base material to which it is bonded.

D.10.3
Grooves in gaskets shall be no deeper than their width.

D.10.4
Gasket grooves or gasket retaining grooves in product contact surfaces for removable gaskets shall not exceed 1/4 in. (6 mm) in depth or be less than 1/4 in. (6 mm) wide except those for standard 0-rings smaller than 1/4 in. (6 mm) and those for self-centering clamp-style gaskets.

D.11
Radii

D.11.1
All internal angles of 135 degrees or less on product contact surfaces shall have radii of not less than 1/8 in. (3 mm) except that:

D.11.1.1
Smaller radii may be used when they are required for essential functional reasons, such as those in flat sealing surfaces. In no case shall such radii be less than 1/32 in. (1 mm).

D.11.1.2
The radii in gasket grooves, gasket retaining grooves, or grooves in gaskets shall be not less than 1/32 in. (1 mm).

D.11.1.3
The radii in grooves for standard 1/4 in. (6 mm) 0-rings shall not be less than 3/32 in. (2 mm) and for standard 1/8 in. (3 mm) 0-rings shall be not less than 1/32 in. (1 mm).

D.12
Nonproduct contact surfaces shall have a smooth finish, free of pockets and crevices, and be readily cleanable and those surfaces to be coated shall be effectively prepared for coating.

E
SPECIAL CONSIDERATIONS

E.1
For special applications involving high pressure systems (greater than 250 psig/1750 kPa) with pipe or tube size of 1 in. (25 mm) outside diameter and under, American National Standard Unified Threads ("Vee-Threads") may be used on special fittings. Threads shall conform to ANSI B1.1 as indicated on Table 1 contained in Appendix Section H.1 of these standards. All internal angles on product contact surfaces shall have radii of not less than 1/32 in. (1 mm) except gasket recesses and grooves, in which all sharp corners shall be avoided.

E.2
Fittings used in a processing system to be sterilized by heat and operated at a temperature of 250 degrees F (121 degrees C) or higher shall comply with the following additional criteria:

E.2.1
The construction shall be such that all product contact surfaces can be sterilized by saturated steam or water under pressure (at least 15.3 psig or 106 kPa) at a temperature of at least 250 degrees F (121 degrees C). A maximum Ra of 32 micro in. (0.8 microm), when measured according to recommendations in ANSI/ASME B.46.1 - Surface Texture, is considered equivalent to a No. 4 finish.

E.2.2
Fittings that have a product contact surface(s) to be used in such a processing system, not designed so that the system is automatically shut down if the product pressure in the system becomes less than that of the atmosphere and cannot be restarted until the system is resterilized, shall have a steam or other sterilizing medium chamber surrounding the fittings at the product contact surface. The fittings shall be constructed so that the steam chamber or other sterilizing medium chamber may be exposed for inspection.

F
STAINLESS STEEL MATERIALS
Stainless steel conforming to the applicable composition ranges established by AISI for wrought products, or by ACI for cast products, should be considered in compliance with the requirements of Section C.1 herein. Where welding is involved, the carbon content of the stainless steel should not exceed 0.08 percent. The first reference cited in C.1 sets forth the chemical ranges and limits of acceptable stainless steel of the 300 Series. Cast grades of stainless steel corresponding to type 302, 303, 304, and 316 are designated CF-20, CF-16F, CF-8 and CF-8M, respectively. The chemical composition of these cast grades are covered by ASTM specifica-tions A351/A351M, A743/A743M and A744/A744M.

G
PRODUCT CONTACT SURFACE FINISH
Surface finish equivalent to 150 grit or better as obtained with silicon carbide, properly applied on stainless steel sheets, is considered in compliance with the requirements of Section D.1 herein. A maximum Ra of 32 micro in. (0.8 microm), when measured according to recommendations in ANSI/ASME B.46.1 - Surface Texture, is considered equivalent to a No. 4 finish.

H
THREAD SPECIFICATIONS

H.1
Screw Threads - High Pressure Applications
Table 1 Unified Screw Threads

<table>
<thead>
<tr>
<th>TUBE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCH</td>
</tr>
<tr>
<td>INCH</td>
</tr>
<tr>
<td>SIZE</td>
</tr>
<tr>
<td>SIZE</td>
</tr>
<tr>
<td>THREADS</td>
</tr>
<tr>
<td>THREADS</td>
</tr>
<tr>
<td>PER</td>
</tr>
<tr>
<td>PER</td>
</tr>
<tr>
<td>INCH</td>
</tr>
<tr>
<td>INCH</td>
</tr>
<tr>
<td>LENGTHS</td>
</tr>
<tr>
<td>LENGTHS</td>
</tr>
<tr>
<td>INTERNAL</td>
</tr>
<tr>
<td>INTERNAL</td>
</tr>
<tr>
<td>THREAD</td>
</tr>
<tr>
<td>THREAD</td>
</tr>
<tr>
<td>EXTERNAL</td>
</tr>
<tr>
<td>EXTERNAL</td>
</tr>
<tr>
<td>CLASS</td>
</tr>
<tr>
<td>CLASS</td>
</tr>
</tbody>
</table>

| 1/4 |
| 9/16 |
| 18, 20 |
| 2A, 3A |
| 2B |

| 3/8 |
| 3/4 |
| 20 |
| 2A, 3A |
| 2B |

| 3/8 |
| 7/8 |
| 14 |
| 2A, 3A |
| 2B |

| 1/2 |
| 7/8 |
| 14, 20 |
| 2A, 3A |
| 2B |

| 5/8 |
| 1 |
| 14, 20 |
| 2A, 3A |
| 2B |

| 3/4 |
| 1 1/4 |
| 18 |
| 2A, 3A |
| 2B |

| 3/4 |
| 1 5/16 |
| 20 |
| 2A, 3A |
| 2B |

| 1 |
| 1 1/2 |
| 20 |
| 2A, 3A |
| 2B |

NOTE: ALL THREAD DIMENSIONS AND TOLERANCES MUST COMPLY WITH AMERICAN NATIONAL STANDARD ANSI B1.1 ENTITLED "UNIFIED INCH SCREW THREADS."
DIAGRAMS

These diagrams are intended to demonstrate general principles only, and are not intended to limit individual ingenuity. The design used should conform with the sanitary requirements set forth in these 3-A Sanitary Standards. The following examples are included in this Appendix:

APPENDIX

H.2

GENERAL PURPOSE ACME THREADS - CLASS 2G

<table>
<thead>
<tr>
<th>EXTERNAL THREAD</th>
<th>INTERNAL THREAD</th>
</tr>
</thead>
</table>

EXTERNAL THREAD

<table>
<thead>
<tr>
<th>SIZE</th>
<th>ACME THREADS PER INCH</th>
<th>P</th>
<th>Q</th>
<th>PITCH DIA. P, Q and P.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>1.317</td>
<td>1.462</td>
<td>1.3995</td>
</tr>
<tr>
<td>1-1/2</td>
<td>B</td>
<td>1.848</td>
<td>1.994</td>
<td>1.9315</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2.381</td>
<td>2.526</td>
<td>2.4635</td>
</tr>
<tr>
<td>2-1/2</td>
<td>B</td>
<td>2.913</td>
<td>3.058</td>
<td>2.9965</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>3.445</td>
<td>3.590</td>
<td>3.5275</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>4.509</td>
<td>4.695</td>
<td>4.6120</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>5.579</td>
<td>5.765</td>
<td>5.7680</td>
</tr>
</tbody>
</table>

INTERNAL THREAD

<table>
<thead>
<tr>
<th>SIZE</th>
<th>ACME THREADS PER INCH</th>
<th>P</th>
<th>Q</th>
<th>PITCH DIA. P, Q and P.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>1.552</td>
<td>1.497</td>
<td>1.4146</td>
</tr>
<tr>
<td>1-1/2</td>
<td>B</td>
<td>1.884</td>
<td>2.029</td>
<td>1.9466</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2.416</td>
<td>2.561</td>
<td>2.4785</td>
</tr>
<tr>
<td>2-1/2</td>
<td>B</td>
<td>2.948</td>
<td>3.093</td>
<td>3.0105</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>3.480</td>
<td>3.625</td>
<td>3.5425</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>4.544</td>
<td>4.730</td>
<td>4.6270</td>
</tr>
</tbody>
</table>

THREAD DIMENSIONS

These standards are effective on November 21, 1993, at which time the 3-A Sanitary Standards for Fittings Used on Milk and Milk Products Equipment and Used on Sanitary Lines Conducting Milk and Milk Products, Number 08-17 are rescinded, and become null and void.

Available from American Society of Mechanical Engineers, 345 East 47th Street, New York, NY 10017 (212-705-7722) (Use most current edition).
3-A Standard Sanitary Fittings

3-A-6300-02

![Diagram of 2-CG Bend, 7-G Tee, and 9-G Cross](image)

3-A Standard Sanitary Fittings

3-A-6300-03

![Diagram of 2F Bend and 2FG Bend](image)

TUBE GAUGE

ACME THREADS PER INCH

<table>
<thead>
<tr>
<th>SIZE</th>
<th>TUBE GAGE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>G_{\text{max}}</th>
<th>J</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>18</td>
<td>8</td>
<td>1-7/8"</td>
<td>1-1/2"</td>
<td>3-3/8"</td>
<td>1-11/16"</td>
<td>.062</td>
<td>902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>18</td>
<td>8</td>
<td>2-3/4"</td>
<td>2-1/4"</td>
<td>4-1/2"</td>
<td>2-1/4"</td>
<td>.062</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
</tr>
<tr>
<td>2"</td>
<td>16</td>
<td>8</td>
<td>3-9/16"</td>
<td>3"</td>
<td>5-1/4"</td>
<td>2-5/8"</td>
<td>.062</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>16</td>
<td>8</td>
<td>4-21/32"</td>
<td>4"</td>
<td>6"</td>
<td>3"</td>
<td>17/32"</td>
<td>.062</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.913"</td>
</tr>
<tr>
<td>3"</td>
<td>16</td>
<td>8</td>
<td>5-23/32"</td>
<td>5"</td>
<td>6-5/8"</td>
<td>3-5/16"</td>
<td>.062</td>
<td>2.870"</td>
<td>3.312"</td>
<td>3.445"</td>
<td>3.590"</td>
</tr>
<tr>
<td>4"</td>
<td>14</td>
<td>6</td>
<td>7-7/8"</td>
<td>7"</td>
<td>8-15/16"</td>
<td>4-15/32"</td>
<td>.062</td>
<td>3.834"</td>
<td>4.312"</td>
<td>4.509"</td>
<td>4.695"</td>
</tr>
</tbody>
</table>

2F Bend and 2FG Bend

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Tube Thickness</th>
<th>B</th>
<th>AG</th>
<th>Ground Seat Type</th>
<th>Gasket Type</th>
<th>A</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>Ground Seat Type</th>
<th>Gasket Type</th>
<th>W</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>1-1/2"</td>
<td>1-7/8"</td>
<td>1/8"</td>
<td>9/16"</td>
<td>1-3/16"</td>
<td>3/32"</td>
<td>7/16"</td>
<td>.062"</td>
<td>2"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>1.160"</td>
<td>3/16"</td>
<td>9/64"</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>8</td>
<td>2-3/4"</td>
<td>5/32"</td>
<td>9/16"</td>
<td>1-25/32"</td>
<td>3/32"</td>
<td>7/16"</td>
<td>.062"</td>
<td>2-1/8"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>1.676"</td>
<td>3/16"</td>
<td>9/64"</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>8</td>
<td>4-21/32"</td>
<td>15/32"</td>
<td>23/32"</td>
<td>3-3/16"</td>
<td>17/32"</td>
<td>.062"</td>
<td>4-27/32"</td>
<td>3.370"</td>
<td>3.875"</td>
<td>3.985"</td>
<td>4.102"</td>
<td>3.676"</td>
<td>3.978"</td>
<td>4-23/32"</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>8</td>
<td>5-23/32"</td>
<td>31/32"</td>
<td>3-5/16"</td>
<td>3-3/16"</td>
<td>9/16"</td>
<td>.062"</td>
<td>5-29/32"</td>
<td>3.870"</td>
<td>4.312"</td>
<td>4.445"</td>
<td>4.590"</td>
<td>4.224"</td>
<td>4.444"</td>
<td>9/32"</td>
<td>1/4"</td>
</tr>
<tr>
<td>4"</td>
<td>6</td>
<td>7-7/8"</td>
<td>1/4"</td>
<td>7/8"</td>
<td>4-1/4"</td>
<td>7/64"</td>
<td>11/64"</td>
<td>.062"</td>
<td>8-1/16"</td>
<td>3.834"</td>
<td>4.312"</td>
<td>4.509"</td>
<td>4.695"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>5/16"</td>
</tr>
</tbody>
</table>

742 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993
No. 2P BEND
Ground Seat Type

![Diagram of No. 2P BEND]

No. 2PG BEND
Gasket Seat Type

![Diagram of No. 2PG BEND]

No. 2K BEND
Ground Seat Type

![Diagram of No. 2K BEND]

No. 2KG BEND
Gasket Seat Type

![Diagram of No. 2KG BEND]

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Acme Threaded Per Inch</th>
<th>Ground Seat</th>
<th>Gasket Seat</th>
<th>B</th>
<th>Ground Seat</th>
<th>Gasket Seat</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>Ground Seat</th>
<th>Gasket Seat</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>8</td>
<td>2-1/8"</td>
<td>1-5/16"</td>
<td>2-3/16"</td>
<td>1-3/16"</td>
<td>1-1/2"</td>
<td>.662</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>3/32"</td>
<td>7/16"</td>
<td>.045</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>8</td>
<td>2-1/8"</td>
<td>1-19/32"</td>
<td>2-1/8"</td>
<td>1-19/32"</td>
<td>2-1/8"</td>
<td>.662</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>3/32"</td>
<td>7/16"</td>
<td>.045</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>8</td>
<td>2-9/16"</td>
<td>2-5/16"</td>
<td>2-7/16"</td>
<td>2-7/16"</td>
<td>4"</td>
<td>.662</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>3/32"</td>
<td>7/16"</td>
<td>.045</td>
</tr>
<tr>
<td>3"</td>
<td>8</td>
<td>2-29/32"</td>
<td>3-1/8"</td>
<td>2-5/32"</td>
<td>2-5/32"</td>
<td>5"</td>
<td>.662</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>3/32"</td>
<td>9/16"</td>
<td>.045</td>
</tr>
<tr>
<td>4"</td>
<td>6</td>
<td>3-7/16"</td>
<td>4-1/4"</td>
<td>3-5/16"</td>
<td>4-1/4"</td>
<td>7"</td>
<td>.662</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>.622</td>
<td>3/16"</td>
<td>11/16"</td>
<td>.045</td>
</tr>
</tbody>
</table>

Dimensions in Above Table are Shown in Inches.
Dimensions Not Specified Are Not Standardized Since They Bear No Relation to Interchangeability.

3-A Standard Sanitary Fittings

3-A-6300-04
Avoid Sharp Corners

No 7-B TEE

Avoid Sharp Corners

No 7-A TEE

3-A Standard Sanitary Fittings
3-A-6300-05

Dimensions in Above Table are Shown in Inches.
Dimensions Not Specified Are Not Standardized Since They Bear No Relation to Interchangeability.

No 7BG-TEE

Avoid Sharp Corners

No 7AG-TEE

3-A Standard Sanitary Fittings
3-A-6300-06

Dimensions in Above Table are Shown in Inches.
Dimensions Not Specified Are Not Standardized Since They Bear No Relation to Interchangeability.

744 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993
#31-15 REDUCER

<table>
<thead>
<tr>
<th>SIZE</th>
<th>AB 1"</th>
<th>V 1/4"</th>
<th>Gxaxx</th>
<th>H 1/4"</th>
<th>N 1/4"</th>
<th>O 1/4"</th>
<th>P 1/4"</th>
<th>Q 1/4"</th>
<th>R 1/4"</th>
<th>S 1/4"</th>
<th>U 1/4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" x 1/2"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4" x 1/2"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Special Order Only

Minimum 15° Radius

3-A Standard Sanitary Fittings

3-A-6300-07

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993 745
#32-15G REDUCER

<table>
<thead>
<tr>
<th>SIZE</th>
<th>V</th>
<th>G MAX</th>
<th>J</th>
<th>K</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>U</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/8" x 1"</td>
<td>.062"</td>
<td>.250"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>1.676"</td>
<td>1.843"</td>
<td>.994"</td>
<td>1.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" x 1"</td>
<td>.062"</td>
<td>.250"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>2.192"</td>
<td>2.380"</td>
<td>.792"</td>
<td>2.218"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" x 1-1/8"</td>
<td>.062"</td>
<td>.234"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>2.192"</td>
<td>2.380"</td>
<td>.792"</td>
<td>2.218"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3 1/2" x 1-1/8"</td>
<td>.062"</td>
<td>.234"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>2.708"</td>
<td>2.912"</td>
<td>.792"</td>
<td>2.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" x 2"</td>
<td>.062"</td>
<td>.250"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>2.708"</td>
<td>2.912"</td>
<td>.792"</td>
<td>2.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 1"</td>
<td>.062"</td>
<td>.964"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 1-1/8"</td>
<td>.062"</td>
<td>.734"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 2"</td>
<td>.062"</td>
<td>.500"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 2-1/8"</td>
<td>.062"</td>
<td>.250"</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.913"</td>
<td>3.058"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 1"</td>
<td>.062"</td>
<td>1.466"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 1-1/8"</td>
<td>.062"</td>
<td>1.216"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 2"</td>
<td>.062"</td>
<td>.982"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 2-1/8"</td>
<td>.062"</td>
<td>.732"</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.913"</td>
<td>3.058"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 3"</td>
<td>.062"</td>
<td>.482"</td>
<td>2.870"</td>
<td>3.312"</td>
<td>3.445"</td>
<td>3.590"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Special Order Only

#32-15 REDUCER

<table>
<thead>
<tr>
<th>SIZE</th>
<th>V</th>
<th>G MAX</th>
<th>J</th>
<th>K</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>U</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/8" x 1"</td>
<td>.062"</td>
<td>.250"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>1.676"</td>
<td>1.843"</td>
<td>.994"</td>
<td>1.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" x 1"</td>
<td>.062"</td>
<td>.250"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>2.192"</td>
<td>2.380"</td>
<td>.792"</td>
<td>2.218"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2" x 1-1/8"</td>
<td>.062"</td>
<td>.234"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>2.192"</td>
<td>2.380"</td>
<td>.792"</td>
<td>2.218"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3 1/2" x 1-1/8"</td>
<td>.062"</td>
<td>.234"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>2.708"</td>
<td>2.912"</td>
<td>.792"</td>
<td>2.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2" x 2"</td>
<td>.062"</td>
<td>.250"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>2.708"</td>
<td>2.912"</td>
<td>.792"</td>
<td>2.718"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 1"</td>
<td>.062"</td>
<td>.964"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 1-1/8"</td>
<td>.062"</td>
<td>.734"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 2"</td>
<td>.062"</td>
<td>.500"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3" x 2-1/8"</td>
<td>.062"</td>
<td>.250"</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.913"</td>
<td>3.058"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>1/4"</td>
<td>3.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 1"</td>
<td>.062"</td>
<td>1.466"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 1-1/8"</td>
<td>.062"</td>
<td>1.216"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 2"</td>
<td>.062"</td>
<td>.982"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.381"</td>
<td>2.526"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 2-1/8"</td>
<td>.062"</td>
<td>.732"</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.913"</td>
<td>3.058"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 3"</td>
<td>.062"</td>
<td>.482"</td>
<td>2.870"</td>
<td>3.312"</td>
<td>3.445"</td>
<td>3.590"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>9/32"</td>
<td>4.280"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Special Order Only

3-A Standard Sanitary Fittings
3-A-6300-08
Specified are not standardized since they bear no relation to interchangeability.
This portion of union may be coupled to threaded end of any sanitary fitting of corresponding size and thread.

RECESSLESS SANITARY UNIONS

Recessless ferrule is attached to pipe with end of pipe projecting slightly through ferrule. End of pipe and ferrule are then faced flush with facing tool.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>ACME THREADS PER INCH</th>
<th>OL</th>
<th>HS</th>
<th>K</th>
<th>M</th>
<th>P</th>
<th>Q</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>6</td>
<td>.750</td>
<td>1.187</td>
<td>1.812</td>
<td>1.015</td>
<td>1.352</td>
<td>1.497</td>
<td>.312</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>8</td>
<td>.812</td>
<td>1.703</td>
<td>2.407</td>
<td>1.515</td>
<td>1.884</td>
<td>2.029</td>
<td>.343</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>.875</td>
<td>2.203</td>
<td>3.000</td>
<td>2.015</td>
<td>2.416</td>
<td>2.561</td>
<td>.406</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>8</td>
<td>.968</td>
<td>2.703</td>
<td>3.595</td>
<td>2.515</td>
<td>2.948</td>
<td>3.093</td>
<td>.406</td>
</tr>
<tr>
<td>3"</td>
<td>8</td>
<td>1.015</td>
<td>3.203</td>
<td>4.191</td>
<td>3.015</td>
<td>3.480</td>
<td>3.625</td>
<td>.406</td>
</tr>
<tr>
<td>4"</td>
<td>6</td>
<td>1.156</td>
<td>4.203</td>
<td>5.420</td>
<td>4.015</td>
<td>4.544</td>
<td>4.730</td>
<td>.500</td>
</tr>
</tbody>
</table>

13 SH HEX NUT

3-A Standard Sanitary Fittings
3-A-6300-10

3-A Standard Sanitary Fittings
3-A-6300-11
7AXG TEE

<table>
<thead>
<tr>
<th>SIZE</th>
<th>AG</th>
<th>AAG</th>
<th>AGY</th>
<th>B</th>
<th>G_max</th>
<th>J</th>
<th>L</th>
<th>Q</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>8</td>
<td>1-7/8"</td>
<td>3-3/4"</td>
<td>3-5/8"</td>
<td>1-1/2"</td>
<td>7/16"</td>
<td>0.062"</td>
<td>.902"</td>
<td>1.219"</td>
<td>1.317"</td>
<td>1.462"</td>
<td>1.663"</td>
<td>1.760"</td>
<td>.902"</td>
<td>3/32"</td>
<td>1.187"</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>8</td>
<td>3-3/8"</td>
<td>5-7/8"</td>
<td>5-15/32"</td>
<td>1-13/32"</td>
<td>7/16"</td>
<td>0.062"</td>
<td>1.402"</td>
<td>1.750"</td>
<td>1.849"</td>
<td>1.994"</td>
<td>2.197"</td>
<td>2.373"</td>
<td>.902"</td>
<td>3/32"</td>
<td>1.715"</td>
</tr>
<tr>
<td>2"</td>
<td>8</td>
<td>3-9/16"</td>
<td>7-1/8"</td>
<td>7-3/16"</td>
<td>3"</td>
<td>7/16"</td>
<td>0.062"</td>
<td>1.870"</td>
<td>2.250"</td>
<td>2.391"</td>
<td>2.650"</td>
<td>2.919"</td>
<td>2.919"</td>
<td>.902"</td>
<td>3/32"</td>
<td>2.380"</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>8</td>
<td>4-21/32"</td>
<td>9-1/16"</td>
<td>9-3/16"</td>
<td>4"</td>
<td>17/32"</td>
<td>0.062"</td>
<td>2.370"</td>
<td>2.750"</td>
<td>2.919"</td>
<td>3.058"</td>
<td>2.708"</td>
<td>2.912"</td>
<td>.902"</td>
<td>3/32"</td>
<td>2.715"</td>
</tr>
<tr>
<td>3"</td>
<td>8</td>
<td>5-23/32"</td>
<td>11-7/16"</td>
<td>11-1/2"</td>
<td>5"</td>
<td>9/16"</td>
<td>0.062"</td>
<td>2.870"</td>
<td>3.312"</td>
<td>3.445"</td>
<td>3.590"</td>
<td>3.224"</td>
<td>3.444"</td>
<td>.902"</td>
<td>3/32"</td>
<td>3.280"</td>
</tr>
<tr>
<td>4"</td>
<td>6</td>
<td>7-7/8"</td>
<td>15-3/4"</td>
<td>15-15/32"</td>
<td>7"</td>
<td>11/16"</td>
<td>0.062"</td>
<td>3.834"</td>
<td>4.312"</td>
<td>4.509"</td>
<td>4.695"</td>
<td>4.256"</td>
<td>4.508"</td>
<td>.902"</td>
<td>7/32"</td>
<td>4.280"</td>
</tr>
</tbody>
</table>

7BXG TEE

3-A Standard Sanitary Fittings

3-A-6300-13
3-A Sanitary Standards for Automatic Positive Displacement Samplers for Fluid Milk and Fluid Milk Products, Number 59-00 (08-17D)

Formulated by
International Association of Milk, Food and Environmental Sanitarians
United States Public Health Service
The Dairy Industry Committee

It is the purpose of the IAMFES, USPHS, and DIC in connection with the development of the 3-A Sanitary Standards Program to allow and encourage full freedom for inventive genius or new developments. Automatic positive displacement samplers specifications heretofore or hereafter developed which so differ in design, materials, and fabrication or otherwise as not to conform to the following standards but which, in the fabricator's opinion, are equivalent or better, may be submitted for the joint consideration of the IAMFES, USPHS, and DIC at any time.

A

SCOPE

A.1 These standards cover the sanitary aspects of air operated or electrically operated automatic positive displacement samplers (reference revised 3-A drawings, numbers 3-A-100D-1, 3-A-100D-2, 3-A-100D-3, 3-A-100D-4, 3-A-100D-5 and 3-A-100D-6) used on processing equipment and on equipment and lines which hold or convey fluid milk or fluid milk products. The sampler assembly may consist of a body, plunger, head, O-rings, seals, cylinder valves, diaphragm, springs and an air or electrically operated mechanism. It shall also include a closure plug or sample discharge port closure suitable for sealing the sample discharge opening when the sampler is not in use. These standards shall not cover automatic positive displacement samples used in aseptic or ultra pasteurization systems.

A.2 In order to conform to these 3-A Standards, air operated or electrically operated positive displacement samplers shall comply with the following in design, material and fabrication.

B

DEFINITIONS

B.1 Product: Shall mean the fluid milk and fluid milk products.

B.1.1 Sample: Shall mean that portion of the product removed for analytical purposes.

B.2 Surfaces

B.2.1 Product Contact Surfaces: Shall mean all surfaces that are exposed to the product or from which liquid may drain, drop or be drawn into the product.

B.2.2 Sample Contact Surfaces: Shall mean all product surfaces that are exposed exclusively to the sample once removed from the product stream or from which liquid may drain, drop or be drawn into the sample.

B.2.3 Nonproduct Contact Surfaces: Shall mean all other exposed surfaces.

B.3 Mechanical Cleaning or Mechanically Cleaned: Shall denote cleaning, solely by circulation and/or flowing chemical detergent solutions and water rinses onto and over the surfaces to be cleaned, by mechanical means.

B.4 Electrodeposition: Shall mean coated to specific dimensions or processed to specified dimensions after coating.

C

MATERIALS

C.1 Product contact surfaces shall be of stainless steel of the AISI 300 Series or corresponding ACT types (See Appendix Section F.) or metal which under conditions of intended use is at least as corrosion resistant as stainless steel of the foregoing types and is nontoxic and nonabsorbent, except that:

C.1.1 Rubber and rubber-like materials may be used for gaskets, diaphragms, O-rings, seals and parts used in similar applications.

Rubber and rubber-like materials when used shall conform to the applicable provisions of the current 3-A Sanitary Standards for Multiple-Use Rubber and Rubber-Like Materials Used as Product Contact Surfaces in Dairy Equipment, Number 18-

C.1.3 Plastic materials may be used for gaskets, diaphragms, O-rings, seals and parts used in similar applications.

C.1.4 Plastic materials, when used, shall conform the applicable provisions of the current 3-A Sanitary Standards for Multiple-Use Plastic Materials Used as Product Contact Surfaces for Dairy Equipment Number 20.-

C.1.5 Rubber and rubber-like materials and plastic materials having product contact surfaces shall be of such composition as to retain their surface and conformational characteristics when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment.

C.1.6 The final bond and residual adhesive, if used, of bonded rubber and rubber-like materials and bonded plastic materials shall be nontoxic.2

C.1.7 Rubber and rubber-like materials and plastic materials having product contact surfaces that are a bonded coating or a covering shall be of such composition as to retain their surface and conformational characteristics when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment.

C.1.8 Plungers of air operated positive displacement samplers made of materials provided for in subsection C.1 may be covered with an electrodeposited coating of chromium.

C.2 All nonproduct contact surfaces shall be of corrosion-resistant material or material that is rendered corrosion resistant. If coated, the coating used shall adhere. All nonproduct contact surfaces shall be relatively nonabsorbent, durable and cleanable. Parts removable for cleaning having both product contact and nonproduct contact surfaces shall not be painted.

D FABRICATION

D.1 All product contact surfaces shall have a finish at least as smooth as a No. 4 ground finish on stainless steel sheets and be free of imperfections such as pits, folds and crevices in the final fabricated form. (See Appendix Section G).

D.2 The minimum thickness of electrodeposited coatings on plungers (see C.1.8) shall be not less than 0.0002 in. (0.005 mm). When these surfaces are other than stainless steel, the minimum thickness of electrodeposited coatings shall not be less than 0.002 in. (0.05 mm).

D.3 Automatic positive displacement samplers that are to be mechanically cleaned shall be designed so that the product and sample contact surfaces of the sampler, and all nonremovable appurtenances thereto can be mechanically cleaned and are easily accessible for inspection.

D.4 Appurtenances having product and sample contact surfaces shall be removable or they shall be mechanically cleanable in place and accessible for inspection employing simple hand tools available to operating or cleaning personnel.

D.5 Product contact surfaces not designed to be mechanically cleaned shall be easily accessible for cleaning and inspection either when in an assembled position or when removed. Removable parts shall be demountable using simple hand tools used by operating or cleaning personnel.

D.6 The primary seal or seat shall be located as close as possible to the product entry point and the passage length shall not exceed two times (2x) the nominal product-entry port diameter.

D.7 All sanitary fittings and connections shall conform with those applicable provisions of current 3-A Sanitary Standards for Sanitary Fittings for Milk and Milk Products, Number 63-. except as provided in Section E.1.

D.8 GASKETS

D.8.1 Gaskets having a product contact surface shall be removable or bonded.

D.8.2 Bonded rubber and rubber-like materials and bonded plastic materials having product contact surfaces shall be bonded in a manner that the bond is continuous and mechanically sound so that when exposed to the conditions encountered in the environment of intended use and in cleaning and bactericidal treatment or sterilization the rubber and rubber-like material or the plastic material does not separate from the base material to which it is bonded.

D.8.3 Gasket grooves or gasket retaining grooves in product contact surfaces for removable gaskets shall not exceed 1/4 in. (6 mm) in depth or be less than 1/4 in. (6 mm) wide except those for standard 0-rings smaller than

3 Steel Founders Society of America, Cast Metal Federation Bldg., 455 State St., Des Plaines, IL 60016 (708-299-9160).

To receive information on membership with IAMFES Circle 360 on this card

This second Reader Service Card is provided to allow co-workers to also respond to companies of interest.

Reader requests for information are sent to the appropriate company. Follow-up on reader requests are the responsibility of the company advertising.

Name ____________________________ Title______________________________
Company __________________________ Address __________________________
City __________________________________ State/Prov. ______ Zip__________
Phone Number ________________________

Please send information on items circled below: Deadline 60 days from issue date

101 114 127 140 153 166 179 192 205 210 251 257 270 279 280 290 300 310 320 330 340 350
102 115 128 141 154 167 180 193 206 219 232 245 258 271 284 297 310 323 336 349 352 363
103 116 129 142 155 168 181 194 207 220 233 246 259 272 285 298 311 324 337 350 363 376
104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351 364 377
105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378
106 119 132 145 158 171 184 197 210 223 236 249 262 275 288 301 314 327 340 353 366 379
107 120 133 146 159 172 185 198 211 224 237 250 263 276 289 302 315 328 341 354 367 380
108 121 134 147 160 173 186 199 212 225 238 251 264 277 290 303 316 329 342 355 368 381
110 123 136 149 162 175 188 201 214 227 240 253 266 279 292 305 318 331 344 357 370 383
111 124 137 150 163 176 189 202 215 228 241 254 267 280 293 306 319 332 345 358 371 384
112 125 138 151 164 177 190 203 216 229 242 255 268 281 294 307 320 333 346 359 372 385
113 126 139 152 165 178 191 204 217 230 243 256 269 282 295 308 321 334 347 360 373 386

Reader requests for information are sent to the appropriate company. Follow-up on reader requests are the responsibility of the company advertising.

Name ____________________________ Title______________________________
Company __________________________ Address __________________________
City __________________________________ State/Prov. ______ Zip__________
Phone Number ________________________

Please send information on items circled below: Deadline 60 days from issue date

101 114 127 140 153 166 179 192 205 210 251 257 270 279 280 290 300 310 320 330 340 350
102 115 128 141 154 167 180 193 206 219 232 245 258 271 284 297 310 323 336 349 352 363
103 116 129 142 155 168 181 194 207 220 233 246 259 272 285 298 311 324 337 350 363 376
104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351 364 377
105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378
106 119 132 145 158 171 184 197 210 223 236 249 262 275 288 301 314 327 340 353 366 379
107 120 133 146 159 172 185 198 211 224 237 250 263 276 289 302 315 328 341 354 367 380
108 121 134 147 160 173 186 199 212 225 238 251 264 277 290 303 316 329 342 355 368 381
110 123 136 149 162 175 188 201 214 227 240 253 266 279 292 305 318 331 344 357 370 383
111 124 137 150 163 176 189 202 215 228 241 254 267 280 293 306 319 332 345 358 371 384
112 125 138 151 164 177 190 203 216 229 242 255 268 281 294 307 320 333 346 359 372 385
113 126 139 152 165 178 191 204 217 230 243 256 269 282 295 308 321 334 347 360 373 386
1/4 in. (6 mm) and those provided for fittings specified by Section D.7.

D.9
Radii
D.9.1
All internal angles of 135 degrees or less on product contact surfaces shall have radii of not less than 1/8 in. (3 mm) except that:

D.9.1.1
Smaller radii may be used when they are required for essential functional reasons such as pop-valve spring interfaces. In no case shall such radii be less than 1/32 in. (1 mm).

D.9.1.2
The radii in gasket grooves, gasket retaining grooves or, grooves in gaskets, except for those for standard 1/4 in. (6 mm) and smaller 0-rings, shall be not less than 1/8 in. (3 mm) and those provided for fittings specified by Section D.7.

D.9.1.3
The radii in grooves for standard 1/4 in. (6 mm) 0-rings shall not be less than 3/32 in. (2 mm) and for standard 1/8 in. (3 mm) 0-rings shall be not less than 1/32 in. (1 mm).

D.10
There shall be no threads on product or sample contact surface.

D.11
Any coil spring having product contact surfaces shall have at least 3/32 in. (2 mm) openings between coils including the ends when the spring is in the free position.

D.12
All product and sample contact surfaces shall be self-draining except for normal clinging when properly installed.

D.13
The sampler shall be capable of being automatically controlled in a manner that will prevent overfilling of the sample bottle.

D.14
Nonproduct contact surfaces shall have a smooth finish, free of pockets and crevices, and be readily cleanable and those surfaces to be coated shall be effectively prepared for coating.

E
SPECIAL CONSIDERATIONS
E.1
Special sanitary fittings may be used on samplers where interchangeability is not required. These special fittings must conform to the provisions of this standard with respect to material, finish, construction, thread dimensions (if used) and use of gaskets, but may have dimensions less than the face-to-face or center line-to-face dimensions in the drawings of current 3-A Sanitary Standards for Sanitary Fittings Used Number 63. All product contact surfaces of such fittings shall be accessible for cleaning and inspection.

E.2
Automatic displacement samplers used in a processing system to be sterilized by heat and operated at a temperature of 250 degrees F (121 degrees C) or higher shall comply with the following additional criteria:

APPENDIX

F
STAINLESS STEEL MATERIALS
Stainless steel conforming to the applicable composition ranges established by AISI for wrought products, or by ACI for cast products, should be considered in compliance with the requirements of Section C.1 herein. Where welding is involved, the carbon content of the stainless steel should not exceed 0.08 percent. The first reference cited in C.1 sets forth the chemical ranges and limits of acceptable stainless steel of the 300 Series. Cast grades or stainless steel corresponding to types 303, 304, and 316 are designated CF-16F, CF-8, and CF-8M, respectively. The chemical compositions of these cast grades are covered by ASTM specifications A351/A351M, A743/A743H and A744/A744M.

PRODUCT CONTACT SURFACE FINISH
Surface finish equivalent to 150 grit or better as obtained with silicon carbide, properly applied on stainless steel sheets, is considered in compliance with the requirements of Section 0.1 herein. A maximum Ra of 32 micro in. (0.8 microm), when measured according to the recommendations in ANSI/ASME B46.1 - Surfaces Texture, is considered to be equivalent to a No. 4 finish.55

D.45
DRAWS
These drawings are intended to demonstrate general principles only, and are not intended to limit individual ingenuity. The design used should conform with the sanitary requirements set forth in these 3-A Sanitary Standards. The following examples are included in this Appendix:

<table>
<thead>
<tr>
<th>Fitting Name</th>
<th>Page</th>
<th>3-A Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Sampler</td>
<td>754</td>
<td>3-A-59-00-01</td>
</tr>
<tr>
<td>Positive Displacement Sampler</td>
<td>755</td>
<td>3-A-59-00-02</td>
</tr>
<tr>
<td>Positive Displacement Sampler</td>
<td>756</td>
<td>3-A-59-00-03</td>
</tr>
<tr>
<td>Line Sampler</td>
<td>756</td>
<td>3-A-59-00-04</td>
</tr>
<tr>
<td>Line Sampler</td>
<td>757</td>
<td>3-A-59-00-05</td>
</tr>
<tr>
<td>Line Sampler</td>
<td>757</td>
<td>3-A-59-00-06</td>
</tr>
</tbody>
</table>

These standards are effective November 21, 1993 at which time the 3-A Sanitary Standards for Fittings Used on Milk and Milk Products Equipment and Used on Sanitary Lines Conducting Milk and Milk Products, Number 08-17D Rev. 08-19D, (Automatic Positive Displacement Sampler) Parts I and I are rescinded and become null and void.

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993 753
1. BODY
2. SEAL - PLUNGER
3. PLUNGER
4. SEAL - ROD REAR
5. SEAL - HEAD
6. HEAD
7. CLAMP
8. BARRELL
9. PISTON
10. CAPSCREW
11. SEAL - PISTON
12. LOCK WASHER

NOTE:
THE INTERNAL DESIGN SHOWN IS INTENDED TO DEMONSTRATE GENERAL PRINCIPLES ONLY AND IS NOT INTENDED TO LIMIT INDIVIDUAL INGENUITY. THE DESIGN SHALL CONFORM WITH THE GENERAL SANITARY REQUIREMENTS SET FORTH IN THIS 3-A SANITARY STANDARD AND SPECIFIC REQUIREMENTS FOR AIR OPERATED positive DISPLACEMENT SAMPLERS.

POSITIVE DISPLACEMENT SAMPLER
PLUNGER RETRACTED — DWELL POSITION BETWEEN CYCLES

PLUNGER EXTENDED — DURING SAMPLE COLLECTION CYCLE

POSITIVE DISPLACEMENT SAMPLER
POSITIVE DISPLACEMENT SAMPLER

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURING CAP</td>
<td>1</td>
</tr>
<tr>
<td>DIAPHRAGM</td>
<td>2</td>
</tr>
<tr>
<td>CHECK VALVE</td>
<td>3</td>
</tr>
<tr>
<td>CLAMP</td>
<td>4</td>
</tr>
<tr>
<td>BODY</td>
<td>5</td>
</tr>
<tr>
<td>SEAL</td>
<td>6</td>
</tr>
<tr>
<td>SET SCREW</td>
<td>7</td>
</tr>
<tr>
<td>ADJUSTMENT NUT</td>
<td>8</td>
</tr>
<tr>
<td>POP VALVE</td>
<td>9</td>
</tr>
<tr>
<td>SPRING</td>
<td>10</td>
</tr>
<tr>
<td>DISCHARGE CAP SPRING TENSIONER</td>
<td>11</td>
</tr>
</tbody>
</table>

3-A Standard
Sanitary Fittings
3-A-59-00-04
DESCRIPTION |
ITEM
MEASURING CAP | 1 |
DIAPHRAGM | 2 |
CHECK VALVE | 3 |
CLAMP | 4 |
BODY | 5 |
SEAL | 6 |
SET SCREW | 7 |
ADJUSTMENT NUT | 8 |
POP VALVE | 9 |
SPRING | 10 |
DISCHARGE CAP SPRING TENSIONER | 11 |

End view of valve #9 in place showing bevels for passage of fluid.

End view of valve #3 in place showing bevels for passage of fluid.
Coming Events

1994

January

•3-5, Milling for Cereal Chemists, sponsored by the American Association of Cereal Chemists, will be held in Manhattan, KS. For more information, contact Marie McHenry, AACC Short Course Coordinator, 3340 Pilot Knob Road, St. Paul, MN 55121-2097, USA. Telephone: (612)454-7250; FAX (612)454-0766.

•12-15, 1994 U.S. Dairy Forum, sponsored by the International Dairy Foods Association, will be held at the Doral Resort and Country Club, Miami, FL. For more information contact IDFA, 888-16th Street, NW, 2nd Floor, Washington, DC 20006; (202)296-4250; FAX (202)331-7820.

•25-28, Water Activity: Theory, Management, and Food Applications, sponsored by the American Association of Cereal Chemists, will be held in St. Paul, MN. For more information, contact Marie McHenry, AACC Short Course Coordinator, 3340 Pilot Knob Road, St. Paul, MN 55121-2097, USA. Telephone: (612)454-7250; FAX (612)454-0766.

February

•22, Georgia Association of Food and Environmental Sanitarians Annual Meeting will be held at the Holiday Inn Airport North in Atlanta, Georgia. The subject for the meeting will be “Hot Topics in Food Safety.” For more information contact Mark Harrison at (706)542-2286.

March

•7-10, Better Process Control School. For more information please contact Robert Price (916/752-2194) or Pamela Tom (916/752-3837), Food Science and Technology Department, University of California, Davis, CA 95616-8598, FAX (925)752-4759.

•16, Annual Food Industry Conference will be sponsored by the Food Science Department at Purdue University. For more information contact James V. Chambers, Food Science Department, Smith Hall, Purdue University, West Lafayette, IN 47907, Phone: (317)494-8279.

April

•11-13, Microbiology and Engineering of Sterilization Processes will be given at the St. Paul Campus of the University of Minnesota. For further information, contact Dr. William Schafer, course coordinator, Department of Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN 55108, (612)624-4793.

•12-13, Carolina’s Association of Milk, Food and Environmental Sanitarians will meet in Greenville, SC. For more information, contact Beth Johnson at (803)935-6201.

•18-21, Purdue Better Process Control School will be sponsored by the Food Science Department at Purdue University. For more information contact James V. Chambers, Food Science Department, Smith Hall, Purdue University, West Lafayette, IN 47907, Phone: (317)494-8279.

May

•7-12, Food Structure Annual Meeting will be held at the Holiday Inn Downtown City Hall, Toronto, Ontario, Canada. For more information, please contact Dr. Om Johari, SMI, Chicago (AMF O’Hare), IL 60666-0507, USA (or call 708-529-6677, FAX: 708-980-6698).

•18-21, Purdue Better Process Control School will be sponsored by the Food Science Department at Purdue University. For more information contact James V. Chambers, Food Science Department, Smith Hall, Purdue University, West Lafayette, IN 47907, Phone: (317)494-8279.

•25-27, International Conference on Food Physics, sponsored by the International Society of Food Physicists and the Editorial Board of Journal of Food Physics, will be held at the University of Horticulture and Food Industry, Budapest, Hungary. For further information contact A. S. Szabo, President of the Organizing Committee, H-1118 Budapest, Somloi Street 14-16, Phone: 361-1850-666/470, Fax: 361-166-6220.

July

•8-15, Rapid Methods and Automation in Microbiology International Workshop XIV, to be held at Kansas State University, Manhattan, KS. For more information contact Dr. Daniel Y. C. Pung at (913)532-5654, FAX (913)532-5681. A mini-symposium will occur on July 8th and 9th.

•31-August 3, 81st Annual Meeting of the International Association of Milk, Food and Environmental Sanitarians will be held at the Hyatt Regency Hotel, San Antonio, TX. For more information contact: Julie Heim — Registration; Scott Wells — Exhibits: at (800)369-6337 (US), (800)284-6336 (Canada), or (515)276-3344.

October

•12-13, Iowa Association of Milk, Food and Environmental Sanitarians Annual Meeting will be held at the Best Western Starlite Village (formerly the Ramada Hotel), Waterloo, IA. For more information call Dale Cooper at (319)927-3212.

To insure that your meeting time is published, send announcements at least 90 days in advance to: IAMFES, 200W Merle Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322.

ADVERTISING INDEX

Atkins Technical, Inc. ... 700
Bentley Instruments, Inc. 715
BioTrace, Inc. .. 717
Brevis Corp. .. 717
Charm Sciences, Inc. ... Back Cover
Dairy and Food Labs, Inc. 719
Electro-Steam Generator Corp. 715
Environcon International, Inc. 729
Food and Dairy Quality Management Institute 697
Food Processors Institute 700
Gardex Chemicals Ltd. 701
IMC Instruments, Inc. 705
MCLA OIl Company ... 705
Meritex, Inc. .. 700
Microcheck, Inc. ... 715
Nelson-Jameson, Inc. .. 711
New Jersey Laboratories 709
VICAM .. 701

BUSINESS EXCHANGE “CLASSIFIEDS”

L. J. Bianco & Associates 736
The Crombie Company 736
DQCI Service Inc. ... 736
Environmental Systems Service, Ltd. 737
Ingram Labs, Inc. ... 736
Michelson Laboratories, Inc. 737
IAMFES

International Association of Milk, Food and Environmental Sanitarians, Inc.

IAMFES Booklets

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Item Description</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedures to Investigate Waterborne Illness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.00/member; $7.50/non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures to Investigate Foodborne Illness - new 4th Edition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.00/member; $7.50/non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures to Investigate Arthropod-borne and Rodent-borne Illness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.00/member; $7.50/non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures to Implement the Hazard Analysis Critical Control Point System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.00/member; $7.50/non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pocket Guide To Dairy Sanitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$.50/member; $.75/non-member (minimum order of 10) ($2.50 shipping for each order of 10)</td>
<td></td>
</tr>
</tbody>
</table>

Multiple copies available at reduced prices.

<table>
<thead>
<tr>
<th>Subtotal</th>
<th>Shipping</th>
<th>Booklet Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-A Sanitary Standards

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Item Description</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete set 3-A Dairy Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$33 member; $49.50 non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete set 3-A Dairy & Egg Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$48 member; $72 non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-A Egg Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$28 member; $42 non-member</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Five-year Service on 3-A Sanitary Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-A Dairy & Egg Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$44 member; $66 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subtotal</th>
<th>U.S. Shipping</th>
<th>3-A Sanitary Standards Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Payment Information

PRINT OR TYPE . . . ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

Name __ Company Name ________________

Job Title __ Office Phone # ________________

Address __

City ______________________ State/Province __________ Country __________ Zip __________

MAIL ENTIRE FORM TO:

IAMFES
200W MERLE HAY CENTRE
6200 AURORA AVENUE
DES MOINES, IA 50322

($25.00 minimum Charge Card Order)

OR USE YOUR CHARGE CARD 1-800-369-6337 (US)
1-800-284-6336 (Canada)

515-276-3344 FAX 515-276-8655

PAYMENT MUST BE ENCLOSED IN ORDER TO PROCESS

CHECK OR MONEY ORDER
MASTER CARD
VISA
AMERICAN EXPRESS

U. S. FUNDS on U. S. BANK

CARD # ____________ EXP. DATE ____________

YOUR SIGNATURE __

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/DECEMBER 1993 759
MEMBERSHIP APPLICATION

MEMBERSHIP

- Membership Plus $80
 (Includes Dairy, Food and Environmental Sanitation and the Journal of Food Protection)
- Membership with Dairy, Food and Environmental Sanitation $50
- Check here if you are interested in information on joining your state/province chapter of IAMFES

SUSTAINING MEMBERSHIP

- Membership with BOTH journals $450
 Includes exhibit discount, July advertising discount, company monthly listing in both journals and more.

STUDENT MEMBERSHIP

- Membership Plus including BOTH journals $40
- Membership with Dairy, Food and Environmental Sanitation $25
- Membership with the Journal of Food Protection $25
 *Student verification must accompany this form

POSTAGE CHARGES: Outside the U.S. add $22.50 per journal shipping OR
$95 per journal AIRMAIL rate. U.S. funds only, drawn on U.S. Bank.

PRINT OR TYPE . . . ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

Name_________________________ Company Name_________________________
Job Title_________________________ Office Phone #_________________________
Address_________________________ FAX #_________________________
City_________________________ State/Province_________________________ Country_________________________ Zip_________________________
Renewal_________________________ New Membership/Subscription___________

PAYMENT MUST BE ENCLOSED IN ORDER TO PROCESS

CHECK OR MONEY ORDER
MASTER CARD
VISA
AMERICAN EXPRESS
U.S. FUNDS on U.S. BANK

MAIL ENTIRE FORM TO:
IAMFES
200W MERLE HAY CENTRE
6200 AURORA AVENUE
DES MOINES, IA 50322

OR USE YOUR CHARGE CARD (800)369-6337 (US)
(800)284-6336 (Canada)
515-276-3344
FAX 515-276-8655

CARD #_________________________ EXP. DATE_________________________
YOUR SIGNATURE_________________________
This publication is available in microform.
How Does It Feel When You’re Always Right?

...Ask Any Charm Test User.

Because after all the years, after millions of tests, only Charm Tests are consistently accurate, repeatable, and reliable. No extra testing. No second guessing.

When you have to rely on a single test, there’s only one test to rely on.

Nothing works like a Charm.

CHARM SCIENCES INC.
36 FRANKLIN STREET MALDEN MA 02148 USA
617 322-1523 FAX 617 322-3141

Please circle No. 185 on your Reader Service Card