The mission of IAMFES is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply.
Are You Pouring Out Profit?

You're pouring out profit when you dump antibiotic contaminated milk into your bulk tank. And you're sacrificing profit when you keep a treated cow out of the milking herd one minute longer than necessary. So, put your milk to the test.

With Delvotest P and SP, you can detect virtually all antibiotic residues in milk before it ever hits the bulk tank. Delvotest is simple to use, and the best part is Delvotest can be conducted right there on your farm at your convenience.

With an inexpensive Delvotest farm block heater and a few minutes of your time, the test will yield easily interpreted and conclusive readings. And with the use of the automatic Delvotest timer, you can read the test results at your convenience, up to 12 hours from the start of the incubation period.

Delvotest saves you time and money, and assures you that the milk going into the bulk tank is antibiotic free.

Ask about Delvotest P and SP, and stop letting antibiotics milk your profits.

For complete information, write to:
Gist-brocades Food Ingredients, Inc.
2200 Renaissance Blvd.
King of Prussia, PA 19406
1-800-662-4478
VIDAS® automatically screens pathogens from enriched samples in as little as 45 minutes!

VIDAS® is a time-saving breakthrough in automated microbiology testing. Now QA/QC personnel can quickly screen food samples for Salmonella, Listeria and Staphylococcal enterotoxin.

Operate VIDAS® in concert with the Vitek® System or Bactometer® with the multi-tasking Nerve Center computer, or as a stand-alone system.

Glowing Reviews

Designed for direct antigen detection and serological testing of infectious disease agents, VIDAS® utilizes the Enzyme-Linked Fluorescent Immunoassay (ELFA), a version of the well-known ELISA technology.

Testing produces a fluorescent product that's read by a special optical scanner within the instrument.

The SPR and Reagent Strip

Our patented Solid Phase Receptacle (SPR) and special Reagent Test Strips contain all pre-dispensed reagents required for on-line processing.

Process assays simultaneously or initiate them at various times. You may even mix and match quantities and types of assays!

Testing Speed and Capacity

Run up to 30 tests from enriched samples with results automatically printed in as little as 45 minutes! Additional readers can expand system capacity to 120 tests.

Call today for more information: 800-638-4835

mini VIDAS® is available for laboratories with smaller testing volumes.

bioMérieux

bioMérieux Vitek, Inc. 595 Anglum Drive, Hazelwood, MO 63042-2395, USA • 314/731-8500, 800/638-4835 • FAX: 314/731-8700

Please circle No. 232 on your Reader Service Card
Thoughts From the President . . .

By
Harold Bengsch
IAMFES President

In my January (1994) column, I reported to you that the IAMFES Executive Board had voted to change the paper used in printing *Dairy, Food and Environmental Sanitation* and the *Journal of Food Protection*. You may recall that at that time, our compelling reason for making the change was one of economy.

Simply stated, by using the uncoated paper, we could save about $11,000 a year in printing costs. At a time when saving money is on everyone’s mind, that seemed too good an opportunity to pass up.

I invited you to contact me with your comments concerning the change. Several of you did, but the conclusions were inconclusive, in that some thought it was a good idea. Others didn’t like the change and expressed concern over what we had done.

Three main ideas seemed to surface: 1. That the new paper would not have the ability to withstand the ravages of time as well as the old paper had; 2. That the pictures, line drawings and graphics would not be as “sharp” as what we were accustomed to with the old paper; and 3. That it “cheapened” the journals. Let me address each of these concerns.

1. Archival Quality: It is very important that the paper used in our journals will hold up over time. We certainly don’t want them fading, yellowing, cracking or disintegrating prematurely. According to paper suppliers, the archival quality of any paper is driven by its pH. The closer the paper is to neutral, the longer it will last under similar conditions. The new paper we are using has essentially the same pH as the coated paper we were using.

 The supplier went on to point out that all papers in use today are “100 times better than what we were using just 10 years ago.” Take a look at some of your old JFPs and see if they aren’t in pretty good shape. I think that we can conclude that changing the paper will have no significant effect on the archival value of the journals.

2. Picture Reproduction: We know that the two types of papers will, in fact, accept the ink differently. With a coated paper, the ink resides more on the surface while with the uncoated papers, the ink soaks in. Thus, we might expect to see some differences and you can – under magnification. Far more critical is the quality of the originals. Their quality will have more to do with the sharpness of the reproduction than will the fact that the paper is coated or uncoated.

 There is very little that the editors can do if the quality is lacking in the originals.

3. Cheapened the Journals: I can’t really argue with this, because this is a judgement call. I personally like the uncoated papers better – I find them easier to read and easier to make notes on. The uncoated papers also seem to be cleaner and whiter to me.

 On the other hand, we have come to associate coated papers with class or richness. Newsprint may well be at one end of the spectrum and the fashion magazines at the other, and those fashion magazine are most definitely printed on coated papers. Again, it is in the eye of the beholder. Do the journals look cheaper on the uncoated papers than they did on the coated papers? It’s up to you.

 You will shortly be receiving (if you haven’t already) a journal readership survey. In it are two questions regarding the use of coated/uncoated papers for printing the journals. Our decision as to whether to go back to using coated papers will be based on what we learn from these questions. Please help us by completing your survey and returning it.
Please circle No. 210 on your Reader Service Card

VUS OUT.

- Only manufacturer dedicated solely to producing over 300 dehydrated media formulations.
- Only supplier not utilizing national distribution chain-store systems. Contact directly or with a select group of regional independent companies.
- As we do not have to support $ absorbing projects unrelated to dehydrated media, our prices are substantially lower than others.
- Quality products are a given... or your money back.
- Us out for media ingredients (1 lb. or 1 ton) or specially formulated complete media.

acumedia

Acumedia Manufacturers, Inc.
3651 Clipper Mill Rd.
Baltimore, MD 21211

Call (410) 467-3200 • (800) 783-3212 Fax (410) 366-8563 • (800) 875-8563 or TLX 904059 WSH
IAMFES Sustaining Members

ABC Research, PO Box 1557, Gainesville, FL 32602; (904)372-0436

ABELL Pest Control, 246 Attwell Drive, Etoibicoke, ON M9W 5B4; (416)675-6060

Accurate Metering Systems, Inc., 1651 Wilkening Court, Schaumburg, IL 60173; (708)882-0690

Alfa-Laval Agri, Inc., 11100 North Congress Avenue, Kansas City, MO 64153; (816)891-1565

AMPCO Pumps, Inc., 4000 W. Burnham St, Milwaukee, WI 53215; (414)643-1852

Applied Microbiology, Inc., 170 53rd Street, Brooklyn, NY 11232; (212)578-0851

Babson Bros. Co., 1880 Country Fann Drive, Chaska, MN 55318; (612)448-7600

Becton Dickinson Microbiology Systems, PO Box 243, Cockeysville, MD 21030; (301)584-7188

Bentley Instruments, Inc., 327 Lake Hazeltine Drive, Chaska, MN 55318; (612)448-7600

Biolog, Inc., 3447 Investment Blvd., Suite 2, Hayward, CA 94545; (415)785-2585

bioMérieux Vitek, Inc., 595 Anglum Drive, Hazelwood, MO 63042-2395; (314)636-4835

Borden, Inc., 180 E. Broad Street, Columbus, OH 43215; (614)225-6139

Capitol Vial Corp., PO Box 446, Fultonville, NY 12072; (518)835-3377

Charm Sciences, Inc., 36 Franklin Street, Malden, MA 02148; (617)322-1523

Cherry-Burrell Corp., 2400 6th Street, SW, Cedar Rapids, IA 52406; (319)399-3236

Custom Control Products, Inc., 1300 N. Memorial Drive, Racine, WI 53404; (414)637-9225

Dairy and Food Labs, Inc., 3401 Crow Canyon Road, Suite 110, San Ramon, CA 94583-1307; (510)830-0350

Dairy Quality Control Inst., 5205 Quincy Avenue, W., Seattle, WA 98118; (206)281-6047

Dean Foods, 1126 Kilburn Avenue, Rockford, IL 61101; (815)862-0647

Decagon Devices, PO Box 835, Pullman, WA 99163; (509)332-2756

Difco Laboratories, PO Box 331058, Detroit, MI 48223; (313)462-8478

Diversity Corp., 12025 Tech Center Drive, Livonia, MI 48150-2122; (313)458-5000

Eastern Crown, Inc., PO Box 216, Vernon, NY 13476; (315)829-3505

Electro Specialties Company, 441 Clark Street, South Beloit, IL 61080; (815)389-2291

F & H Food Equipment Co., PO Box 398595, Springfield, MO 65008; (417)881-6114

FRM Chem, Inc., PO Box 207, Washington, MD 20309; (301)343-4800

Alex C. Ferguson, Inc., Spring Mill Drive, Frazer, PA 19355; (215)647-3300

Foss Food Technology Corporation, 1035 W. 70th Street, Eden Prairie, MN 55344; (612)941-8870

H.B. Fuller Co., 3900 Jackson Street, NE, Minneapolis, MN 55421; (612)781-8071

Gardex Chemicals, Ltd., 441 Clark Street, South Beloit, IL 61080; (815)389-2291

GENE-TRAK Systems, 31 New York Avenue, Framingham, MA 01701; (508)872-3113

General Mills Restaurants, Inc., PO Box 16100, University Park, PA 16802; (412)296-4250

Hess & Clark, Inc., 11415 Main Street, Sacramento, CA 95814; (916)443-7620

IBA, Inc., 27 Providence Road, Milbury, MA 01527; (508)866-6911

IDEXX Laboratories, Inc., 1 Idexx Drive, Westbrook, ME 04092; (207)832-0207

Integrated BioSolutions, Inc., 4270 US Route One, Monmouth Junction, NJ 08892; (908)274-1778

International Dairy Foods Association, 316 18th Street, NW, Washington, DC 20006; (202)296-4250

Kienzle Division, Ecolab Inc., Ecolab Center North, St. Paul, MN 55102; (612)293-2233

Land O'Lakes Inc., PO Box 116, Minneapolis, MN 55440-0116; (612)481-2870

Maryland & Virginia Milk Prod. Assn., Inc., 31 New York Avenue, Framingham, MA 01701; (508)872-3113

Mid America Dairymen, Inc., 325 E. Chestnut Expressway, Springfield, MO 65802-2584; (417)885-7100

Minnesota Valley Testing Laboratories, PO Box 249, New Ulm, MN 56073-0249; (507)354-8317

Nabisco Foods Group, 75 North Arlington Avenue, East Orange, NJ 07017; (201)503-2080

Nasco International, 901 Janesville Avenue, Fort Atkinson, WI 53538; (414)563-2446

National Mastitis Council, 1840 Wilson Boulevard, Suite 400, Arlington, VA 22201; (703)243-8268

Nelson-Jameson, Inc., 2400 E. Fifth Street, PO Box 647, Marshfield, WI 54449-0647; (715)387-1151

NESTLE USA, Inc., 800 N. Brand Blvd., Glendale, CA 91203; (818)949-6159

Northland Food Lab., 2415 Western Avenue, PO Box 160, Manistowoc, WI 54221-0160; (414)682-7998

Norton Company Transflow Tubing, PO Box 3660, Akron, OH 44309-3660; (216)786-9240

Organon Teknika, 100 Akzo Avenue, Durham, NC 27704; (919)620-2000

Pall Ultrafine Corp., 2200 Northern Boulevard, East Hills, NY 11548; (516)484-5400

Penn State Creamery, 12 Borland Laboratory, University Creamery, University Park, PA 16802; (814)865-7535

Ralston Analytical Laboratories, 2RS Checkboard Square, St. Louis, MO 63164; (314)982-1680

Rio Linda Chemical Co., Inc., 410 N. 10th Street, Sacramento, CA 95814; (916)443-4939

Ross Laboratories, 625 Cleveland Avenue, Columbus, OH 43216; (614)227-3333

Seiblering Associates, Inc., 14115 Main Street, Roscoe, IL 61073; (815)623-7311

Seillerk Laboratories Group, Inc., 900 Maple Dr, New Lisbon, WI 53950; (608)562-3151

Starr Laboratories Group, Inc., PO Box 317, Sparta, WI 53956; (608)269-2151

Tekmar Co., PO Box 371856, Cincinnati, OH 45222-1856; (513)761-0633

3M/Medical-Surgical Div., 3M Center, St. Paul, MN 55144-1000; (612)736-9593

Unipath Co., Oxoid Div., P.O. Box 691, Ogdenburg, NY 13669; (800)567-8378

Viatran Corporation, 300 Industrial Drive, Grand Island, NY 14072; (716)773-1700

VICAM, 313 Pleasant Street, Watertown, MA 02172; (617)926-7045

Walker Stainless Equipment Co., 618 State Street, New Lisbon, WI 53950; (608)562-3151

192 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994
Dairy, Food and Environmental Sanitation

Vol. 14 No. 4 APRIL 1994

CONTENTS

Articles:

Listeria monocytogenes and Food:
The U. K. Approach .. 198
Diane Roberts

Australian Perspectives on Listeria monocytogenes:
205
Michael J. Eyles

Foodborne Illness (Part 6): Vibrios:
210
George H. Reed

European Perspectives on Listeria monocytogenes:
212
Paul Teufel

Updates ... 215

News .. 216

Federal Register ... 217

Food and Environmental Hazards to Health 218

HAZCON-Based Total Quality Management 219

Association News:

Thoughts From the President:
190

Sustaining Members:
192

On My Mind:
196

New IAMFES Members:
222

Affiliate News:
223

81st IAMFES Annual Meeting
Preliminary Program 229
81st IAMFES Annual Meeting Tours
and Special Events ... 238
81st Annual Meeting Registration Forms 240

Industry Products ... 224

Business Exchange ... 242

"Classifieds" ... 243

Coming Events .. 245

Advertising Index ... 246

IAMFES Booklet Form 247

IAMFES Membership Application 248

ABOUT THE COVER ... Artwork courtesy of VICAM, 313 Pleasant Street, Watertown, MA 02172, (617)926-7045, FAX (617)923-8055. Artist's rendition of VICAM's quantitative 24 hour Listeria test results from Listerest™.

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.

Dairy, Food and Environmental Sanitation (ISSN 0271-5682) is published monthly beginning with the January number by the International Association of Milk, Food and Environmental Sanitarians, Inc. executive offices at 200W Merte Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Each volume comprises 12 numbers. Printed by House Printing, Inc. 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Orders for Reprints: All orders should be sent to DAFY, FOOD AND ENVIRONMENTAL SANITATION, IAMFES, Inc., 200W Merte Hay Centre, 6200 Aurora Ave., Des Moines, IA 50322-2838. Note: Single copies of reprints are not available from the address; address reprint requests to principal author.

Business Matters: Correspondence regarding business matters should be addressed to Steven K. Halstead, CAE, IAMFES, 200W Merte Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Orders: Send address changes to Dairy, Food and Environmental Sanitarians, Inc. executive offices at 200W Merle Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Manuscripts: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Correspondence regarding business matters should be addressed to Steven K. Halstead, CAE, IAMFES, 200W Merte Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Address reprint requests to principal author.

Manuscripts and other reading materials should be sent to DAIRY, FOOD AND ENVIRONMENTAL SANITATION, IAMFES, Inc., 200W Merte Hay Centre, 6200 Aurora Ave., Des Moines, IA 50322-2838. Note: Single copies of reprints are not available from the address; address reprint requests to principal author.

Business Matters: Correspondence regarding business matters should be addressed to Steven K. Halstead, CAE, IAMFES, 200W Merte Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Orders: Send address changes to Dairy, Food and Environmental Sanitarians, Inc. executive offices at 200W Merle Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Manuscripts and other reading materials should be sent to DAIRY, FOOD AND ENVIRONMENTAL SANITATION, IAMFES, Inc., 200W Merte Hay Centre, 6200 Aurora Ave., Des Moines, IA 50322-2838. Note: Single copies of reprints are not available from the address; address reprint requests to principal author.

Business Matters: Correspondence regarding business matters should be addressed to Steven K. Halstead, CAE, IAMFES, 200W Merte Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.

Orders: Send address changes to Dairy, Food and Environmental Sanitarians, Inc. executive offices at 200W Merle Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322-2838, USA. Manuscript: Correspondence regarding manuscripts and other reading materials should be addressed to Jeanne A. Lightly, 911 N. Second Street, Ames, IA 50010, USA. Second Class Postage paid at Des Moines, IA 50318 and additional entry offices.
Detect *E. coli* before you can say
4-Methylumbelliferyl-β-D-glucuronide

Well...maybe not that fast. But when traditional tests for the presence of *E. coli* often take a week or longer, Marcor's overnight MUG (4-Methylumbelliferyl-β-D-glucuronide) testing reagent seems awfully fast.

How does it work? Almost all strains of *E. coli* produce β-glucuronidase, an enzyme which hydrolyzes MUG. The result is 4-methylumbelliferone, a fluorogenic product which can be easily detected under long wave UV or 366-nm light. When MUG is incorporated into a modified MacConkey Agar or Lauryl Sulfate Broth, seeded with a single *E. coli* cell, fluorescence is usually detectable in 12 to 20 hours.

Plan now for future QC speed and economy. Perform both gas production and fluorescent tests simultaneously, and compare the results. For recommended test procedures and complete product specification, Marcor is just a phone call away.
On My Mind . . .

By
Steven K. Halstead, CAE
IAMFES
Executive Manager

is association membership...

I found myself in a strange situation the other afternoon – someone was encouraging me to join an association and was listing all the benefits of membership like I had never heard about associations before. Like I said, it felt weird.

Several months ago, James, my budding cowboy, convinced me that he needed a quarter horse that he could show in “western pleasure” and “maybe run some barrels.” A friend of his from the stable knew of a nine-month-old palomino quarter horse colt that the owner was willing to sell. Suddenly James came to the realization that he could have a colt (“they’re so cute!”) AND a quarter horse at the same time.

The deal was struck that we would pay the owner half now and the rest when the owner delivered the registration papers. If colts can have “terrible twos and threes,” this one is right in the middle of them. He has done everything but kick out the side of the barn – but he is cute.

Well, that was several months ago and we hadn’t heard a word from the former owner. I was beginning to think that maybe we had gotten the colt half price when we got a call from him saying that he had finally gotten the registration papers and that he would be out the next day. (So much for bargain horses!)

Upon arriving with the papers, he apologized – all the blame going to the American Quarter Horse Association – for being so late. I lost track of the number of times he commented on how slow they were in registering the colt. In my mind, I was defending the AQHA staff with thoughts about how the holidays slow everything down; the volume of work involved in registering all the quarter horses in the country; the myriad of things that an association has to do beside the one thing he wanted them to do and how all association staffs are overworked.

I was just about to jump to their defense when he asked if we were members of AQHA. When I replied that we weren’t, he began to extol the virtues of membership. I was amazed. He talked about the benefits of membership; about their journal and all the good information it contains; about the insurance programs available to members; about the buy and sell program; about the annual convention; and about the state group. He even knew the price of the various levels of membership. Alas, the only thing lacking was a membership application.

After he left, I got to thinking. Why was he so zealous about us joining AQHA? He isn’t an officer. He isn’t a big time operator. He has absolutely nothing to gain by my decision. Yet, he wanted me to join. Why?

I guess it was because he felt strongly that AQHA is a good organization and that he receives value for his dues dollar. He wanted me to experience the same satisfaction he gets from his membership.

We all like to share our good experiences and I hope that your IAMFES membership is a good experience. When was the last time you talked to someone about joining IAMFES? Were you as knowledgeable as my friend? Did you have an application form? (I know I would have joined on the spot had my friend had an application blank with him.)

I sincerely hope that each of you feel as strongly about IAMFES as this man felt about AQHA. And I hope you have an application form with you!
Procedures to Implement the HAZARD ANALYSIS at CRITICAL CONTROL POINT System (HACCP) Manual

This manual, the latest in a series of procedural manuals developed by the IAMFES Committee on Communicable Diseases Affecting Man, provides vital information, including, how to:

- Implement the HACCP System
- Analyze Hazards and Assess Risks
- Determine Critical Control Points
- Monitor Critical Control Points
- Collect Samples
- Test Samples for Pathogens
- Evaluate Processing Systems for Hazards
- Diagram Processing Systems

TO ORDER: Complete this card, place in envelope, and return it, with check or money order, to IAMFES.

MANUAL PRICES

<table>
<thead>
<tr>
<th>IAMFES Member: $6.00 (U.S. each)</th>
<th>Non-member: $9.00 (U.S. each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIPPING AND HANDLING: U.S.</td>
<td>$2.00 first item, $1.00 each additional item</td>
</tr>
<tr>
<td>Outside the U.S.</td>
<td>$4.00 first item, $2.00 each additional item</td>
</tr>
</tbody>
</table>

Please send _____ HACCP Manuals | Amount Enclosed $ ________ (US Funds - US Bank)
To:

<table>
<thead>
<tr>
<th>NAME</th>
<th>COMPANY</th>
<th>STREET ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY/STATE/ZIP</td>
<td>or CHARGE to: VISA/MASTERCARD/AMERICAN EXPRESS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARD #</th>
<th>EXP. DATE</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

IAMFES Members

INVITE A COLLEAGUE TO JOIN THE ASSOCIATION

You, as a member of IAMFES, can contribute to the success of the Association and the professional advancement of your colleagues by inviting them to become a part of IAMFES. On your behalf, we would be happy to send a colleague a membership kit, including complimentary copies of *Dairy, Food and Environmental Sanitation* and the *Journal of Food Protection* and an invitation to join IAMFES. It's easy, just fill in the following information and return this card to IAMFES. (Please Print)

Name:________________________ Company:________________________
Address:______________________ City:__________________________
State/Prov.:__________________ Zip:____________ Phone:____________
Your Name:__________________ Your Phone:__________________
SERVSAFE...
IT'S ALL ABOUT
PEOPLE.

THE NATIONAL FOOD SAFETY CERTIFICATION PROGRAM

The Educational Foundation of the National Restaurant Association believes that we, as an industry, have an obligation to provide complete food safety for consumers dining away from home. The best way to meet this obligation is through a comprehensive employee training program, covering a broad spectrum of foodservice sanitation practices. Our goal is to ensure, through the SERVSAFE program, that every foodservice establishment in America makes an ongoing commitment to effective food safety practices.

Find out more today!
For ordering information, call 1-800-765-2122.

National Restaurant Association
THE EDUCATIONAL FOUNDATION
250 S. Wacker Dr., Suite 1400, Chicago, IL 60606-5834 312-715-1010

Please circle No. 124 on your Reader Service Card
Listeria monocytogenes and Food: The U.K. Approach

Diane Roberts, Public Health Laboratory Service, Food Hygiene Laboratory, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, United Kingdom

As presented at the IAMFES 80th Annual Meeting, Atlanta, Georgia, August 2, 1993, in the symposium “Listeria monocytogenes: Current Issues and Concerns” sponsored by the International Life Sciences Institute

SUMMARY

In the late 1980s the United Kingdom saw a sharp increase in the number of reports of cases of human listeriosis and also of the presence of Listeria monocytogenes in a wide variety of foods. Public concern was raised, there were some rather ‘hysterical’ items in the media, action was, therefore, taken by the Government. Three areas are examined in this short review: a) the recent pattern of human listeriosis in the U.K.; b) the occurrence of L. monocytogenes in foods; and c) the response by Government and the food industry.

INTRODUCTION

In the U.K. there is a statutory requirement for the notification of certain infectious diseases, but this does not include most forms of listeriosis. However, as all deaths and meningitis of all causes must be notified there will be some statutory notifications of the disease. Surveillance of human listeriosis in the U.K. is undertaken by the Public Health Laboratory Service (PHLS) Communicable Disease Surveillance Centre, the Listeria Reference Unit at the Central Public Health Laboratory and the Communicable Diseases (Scotland) Unit through the national voluntary reporting scheme. Strains of L. monocytogenes from throughout the country are sent to the PHLS for confirmation and serotyping. Thus the pattern of the disease can be followed.

HUMAN LISTERIOSIS IN THE U. K.

Figure 1 shows the annual totals of laboratory reports of human listeriosis in England, Wales and Northern Ireland for the period 1967 to 1992, (mother and baby pairs are counted as one case). The number of cases, including those reported from Scotland, rose slowly until the 1980s to 131 cases in 1983. There followed a sharp upsurge in numbers with a doubling between 1986 and 1987 to a peak of 327 in 1988. From mid-1989 to 1990 and 1991 there was a dramatic decline to 131 (1990) and 143 (1991) cases (18) and reports for 1992 remained at this low level.

Much of the upsurge between 1987 and mid-1989 was caused by 366 cases (out of a total of 823 cases) due to two subtypes of L. monocytogenes, serotype 4b phage type 6,7 and serotype 4bX probe type cc, i,ee,dd, which accounted for 30 to 54% of the annual totals (16). These two strains were much less common both before 1987 and after July 1989. Contaminated imported paté was identified as the most likely source of these strains. In a nationwide survey (13) of retail samples of paté carried out in July 1989 some 162 (10%) were shown to be contaminated with the organism. Paté from a single plant were more likely to be contaminated with L. monocytogenes and at a higher level than those from other producers. The organism was recovered from 51 of 107 (48%) samples from this one plant and 98% of the strains were indistinguishable from the strains responsible for the 1987-89 upsurge. The strains were uncommon in the product of other manufacturers and in a wide variety of other foods. The decline in cases from mid-1989 coincided with a health warning issued by the Government to vulnerable groups concerning the consumption of paté (5,6) and the removal of the product from one manufacturer from the market. It seems probable that contamination of paté was an important contributory cause of the increase in the incidence of listeriosis in the U.K. between 1987 and 1989.

A 2-year national case-control study undertaken by the PHLS Communicable Disease Surveillance Centre has been completed. Data is currently being analyzed and should shed light on some of the risk factors for cases of listeriosis, which are still occurring.
Temperature is critical to food safety and quality inspections—rely on Atkins Thermometers and Recorders! Ideal for wet processing environments, they are O-ring sealed against moisture. These rugged, high accuracy digital thermometers have several probe designs available.

Atkins 330 Series with Probe
Priced from $115

Recorder Thermometer with Probe
Priced from $325

1-800-284-2842 ext. 510

Protect Against Food-Borne Illnesses

Atkins
Thermometer Manufacturing
Gainesville, FL USA • (904) 378-5555
FAX to (904) 335-6736 • Dept. 510

24 Hour Auto-Faxed Information
Call 1-800-888-1335, key in Info Pak #510, information will be immediately faxed to you.

Know your product is Listeria-free the day after you make it. Be confident that your production environment is clean with Listertest from VICAM—the only test which gives you accurate, confirmed quantitative results within 24 hours.

Listertest eliminates enrichment which is not only time consuming, but can produce false negatives if the Listeria are killed by harsh selective agents. And, Listertest won't produce false positives either—eliminating the need and cost of confirmation. In our test, live Listeria are bound to antibodies on microscopic magnetic beads. These beads are then isolated from the rest of the food/environmental sample, and live Listeria are confirmed immunologically and biochemically. All in 24 hours.

Best of all, because the test is simple, it can be run in house. No other Listeria test is this fast, simple, sensitive, or competitively priced.

So, for more information, give us a quick toll-free call at 800-338-4381 (in Massachusetts, call 617-926-7045) and we'll respond even faster than our test.

Listertest
Accurate, quantitative results in 24 hours

No Prior Enrichment Needed

Listeria

Listertest

LISTERIA
BOUND TO BEADS ARE ISOLATED BY MAGNETS

MAGNET

Listertest

LISTERIA IN SAMPLE

Listertest

Listertest

MAGNET

313 PLEASANT STREET
WATERTOWN, MA 02172

VICAM

Your Silent Partner
In Food Safety

313 PLEASANT STREET
WATERTOWN, MA 02172

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994 199
LISTERIA, SALMONELLA SAMPLING MADE EASY

The Whirl-Pak® "Speci-Sponge" Bag contains a \(\frac{1}{2} " \times 3" \) sterile, non-inhibitory sponge for surface sampling to test for foodborne pathogens. Add our DE Neutralizing Broth to moisten the sponge, or use the dry sponge when wiping in a wet area.

After collecting the sample, return sponge to the bag, and send to lab for testing. Growth media may also be added after collection if desired. The DE broth will neutralize several sanitizers which may be present on the surface.

For a free sample of the "Speci-Sponge" Bag and a copy of our Sampling Products Catalog, write NASCO, Dept. WL404, or call toll free.

Free Phone Order Service: 1-800-558-9595

FAX: 1-414-563-8296

Nasco

Fort Atkinson, WI 53538-0901

Modesto, CA 95352-3837

LISTERIA MONOCYTOGENES IN FOODS

Although the association between listeriosis and foods did not become prominent until the 1980s there is a description of foodborne listeriosis dating back as far as 1936 (1). Food is now considered the major source of *L. monocytogenes* causing human infection, but there are other less common routes of transmission such as direct contact with infected animals and cross infection between neonates shortly after delivery. The series of large outbreaks of foodborne listeriosis, which occurred in North America and Europe in the 1980s (12), brought about a general interest in the disease and its food sources. Isolation methods have been greatly improved and many samples have been examined for the presence of the organism. The PHLS and other U.K. laboratories have examined a large number of samples either as part of planned surveys on specific foods or as part of the routine surveillance of foods. Between 1987 and 1990 *L. monocytogenes* was isolated from 740 of 10,434 samples (7.1%) examined as part of surveys and from 1159 (6.1%) of 18,337 surveillance samples (10). Results from some of the surveys are given in Table 1.

Strains of serogroup 1/2 were isolated more frequently than serogroup 4 from most foods apart from meat paté in which serogroup 4 predominated. Levels of contamination were, on the whole, low, foods most likely to be heavily contaminated (10^2 to 10^7/g) were meat paté and cows’ milk soft ripened cheese. Of the wide range of samples examined during routine microbiological surveillance of foods those which most frequently yielded *L. monocytogenes* included raw meat and poultry and their products (34%), raw fish and fish products (37%), meat paté (17%), fried rice (17%), ready-to-eat meat and poultry (9%) and unprocessed vegetables, salads, fruit, nuts and herbs (9%) (10). In 798 of 1,159 foods containing *L. monocytogenes* the level of the organism was determined and in 42 (5%) it exceeded 10^7/g (15).

In a large coordinated survey conducted in the North of England in 1989 and 1990 (19) a wide variety of dairy, catering cook-chill and commercial chilled foods were examined. *Listeria monocytogenes* was isolated from 342 of 7,273 samples (4.7%), many of which would probably have been eaten without further heating. Samples sold loose, e.g. unpackaged, were more likely to be contaminated than packaged products.

The range of foods from which *L. monocytogenes* has been isolated is extensive and it would appear that the only exceptions are those which receive a stringent heat treatment within their final packaging.

Tests for the presence of *L. monocytogenes* in foods are now carried out by most food microbiology laboratories in the U.K. and with the development and refinement of methods performance has improved. The PHLS Food Microbiology External Quality Assessment Scheme (21), which issues simulated food samples to participants every 2 months, has included *L. monocytogenes* as the target organism in three of its distributions since the Scheme was launched in September 1991. Performance improved from 69% to 88% isolation for the first two distributions (20) and this improvement was maintained in the third.
When Sanitation Is A Must...

Choose Sellers

- 3 models - Drum Major® and 2" & 3" Troll Ball®
- Rotating action cleans smaller tanks up to 20' in diameter
- Choice of 4 high-impact, cleaning patterns
- Stainless steel construction for portable and CIP installation

Made in the U.S.A.

For a FREE brochure of Sellers® Cleaning Systems Products, call TODAY!

420 Third St. Piqua, OH 45356
Tel. (513) 773-2442
Fax: (513) 773-2238

1994 Exhibitor
IAMFES Sustaining Member
Please circle No. 165 on your Reader Service Card

BENTLEY INSTRUMENTS, INC.

** Milk Testing Instruments **

Somacount 300
A somatic cell counter controlled by a personal computer. State of the art technology.

Bentley 2000
Infrared milk analyzer for fat, protein, lactose, and solids in milk and milk products.

Bentley Instruments Inc. is an American manufacturer of quality instruments for the dairy industry.

Call for more information

Bentley Instruments, Inc.
P.O. Box 150
Chaska, MN 55318
Tel. (612) 448-7600
Fax. (612) 368-3355

1994 Exhibitor
IAMFES Sustaining Member
Please circle No. 139 on your Reader Service Card

BENTLEY INSTRUMENTS, INC.

** Milk Testing Instruments **

Somacount 300
A somatic cell counter controlled by a personal computer. State of the art technology.

Bentley 2000
Infrared milk analyzer for fat, protein, lactose, and solids in milk and milk products.

Bentley Instruments Inc. is an American manufacturer of quality instruments for the dairy industry.

Call for more information

Bentley Instruments, Inc.
P.O. Box 150
Chaska, MN 55318
Tel. (612) 448-7600
Fax. (612) 368-3355

1994 Exhibitor
IAMFES Sustaining Member
Please circle No. 122 on your Reader Service Card

Just when you need it
A leading supplier of pest control chemicals and equipment is only 10 finger-taps away:

800-563-4273
(or fax 416-675-6727)

- Sprayers, misters, loggers and dusters.
- Application, detection and safety equipment.
- Flying insect eliminators.
- Baits, traps and monitoring systems.
- Insecticides and rodenticides.

Ask for our 300-item catalog

GARDEX CHEMICALS LTD

1994 Exhibitor
IAMFES Sustaining Member
Please circle No. 222 on your Reader Service Card

MicroQuik™ RAPID RESULT MICRO TESTS ARE HERE

IS FOUR TO SIX HOURS FROM SAMPLE TO RESULT FAST ENOUGH?
ASK ABOUT OUR CULTURE ASSAYS

WOULD YOU LIKE A FIVE MINUTE CONFIRMATION TEST THAT IS TAKEN DIRECTLY FROM A MIXED CULTURE?
ASK ABOUT OUR CONFIRMATIONS

WOULD SANITARIANS LIKE A TWENTY MINUTE DIRT INDICATOR WHICH CAN BE DONE ON SITE BY THE CREW?
ASK ABOUT MoniTek™

PHONE (800) 849-3961 ENVIROCON FAX (510) 676-2734

SAVE TIME
Table 1. Occurrence of *L. monocytogenes* in foods examined as part of planned surveys 1987-1990. UK*

<table>
<thead>
<tr>
<th>Food</th>
<th>Number of samples examined</th>
<th>Number of samples containing L. monocytogenes</th>
<th>range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry (2 surveys)</td>
<td>125</td>
<td>74 (59)</td>
<td>56-60</td>
</tr>
<tr>
<td>Pork sausages</td>
<td>59</td>
<td>29 (49)</td>
<td>-</td>
</tr>
<tr>
<td>Prepacked salads (2 surveys)</td>
<td>102</td>
<td>12 (12)</td>
<td>7-19</td>
</tr>
<tr>
<td>Salad ingredients</td>
<td>108</td>
<td>2 (2)</td>
<td>-</td>
</tr>
<tr>
<td>Foods to be reheated before consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook-chill from retail premises (2 surveys)</td>
<td>95</td>
<td>18 (19)</td>
<td>18-14</td>
</tr>
<tr>
<td>Cook-chill from catering units (2 surveys)</td>
<td>736</td>
<td>12 (2)</td>
<td>-</td>
</tr>
<tr>
<td>Cooked or ready-to-eat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken (2 surveys)</td>
<td>629</td>
<td>90 (14)</td>
<td>12-27</td>
</tr>
<tr>
<td>Salami and continental sausage</td>
<td>67</td>
<td>11 (16)</td>
<td>-</td>
</tr>
<tr>
<td>Prepacked sliced meats</td>
<td>772</td>
<td>23 (3)</td>
<td>-</td>
</tr>
<tr>
<td>Pâté (3 surveys)</td>
<td>2076</td>
<td>287 (11)</td>
<td>4-35</td>
</tr>
<tr>
<td>Prawns, shrimps and cockles</td>
<td>40</td>
<td>0 (0)</td>
<td>-</td>
</tr>
<tr>
<td>Prepacked sandwiches</td>
<td>91</td>
<td>16 (17)</td>
<td>-</td>
</tr>
<tr>
<td>Dairy Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Cows' milk (2 surveys)</td>
<td>901</td>
<td>27 (3)</td>
<td>3-4</td>
</tr>
<tr>
<td>Pasteurized cows milk</td>
<td>1039</td>
<td>11 (1)</td>
<td>-</td>
</tr>
<tr>
<td>Cow's milk cheese soft ripened (2 surveys)</td>
<td>991</td>
<td>98 (9)</td>
<td>8-10</td>
</tr>
<tr>
<td>Cow's milk cheese soft unripened</td>
<td>366</td>
<td>4 (1)</td>
<td>-</td>
</tr>
<tr>
<td>Cow's milk hard cheese</td>
<td>66</td>
<td>1 (1.5)</td>
<td>-</td>
</tr>
<tr>
<td>Yogurt</td>
<td>108</td>
<td>4 (2)</td>
<td>-</td>
</tr>
<tr>
<td>Ice cream</td>
<td>150</td>
<td>2 (2)</td>
<td>-</td>
</tr>
</tbody>
</table>

*Adapted from Gilbert (10).

RESPONSE OF THE GOVERNMENT AND THE FOOD INDUSTRY

The response of the Government to the increase in cases of listeriosis and reports of *L. monocytogenes* in food was not to introduce legislation requiring the absence of the organism in specific products — although it is now required to incorporate into U.K. food law the microbiological standards included in Directives issued by the European Community (EC). An example of the latter is the EC Directive on milk and milk based products (2), which comes into force in January 1994. The Directive lists a number of microbiological criteria including one for *L. monocytogenes*. The organism must be absent in 25 g (n = 5, c = 0) of soft cheese and absent in 1 g of other products.

In order to assist local authorities in judging the microbiological quality of food samples submitted for examination, the PHLS has produced provisional guidelines for some cooked ready-to-eat foods at point of sale (11). The criteria for *L. monocytogenes* are given in Table 2. However, it should be emphasized that these are guidelines only and have no statutory power.

Table 2. *Listeria monocytogenes*: Provisional guidelines for microbiological acceptability of some ready-to-eat foods (11).

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory (The Aim)</td>
<td>Not detected in 25 g</td>
</tr>
<tr>
<td>Fairly satisfactory</td>
<td>Present in 25 g < 100/g</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>100 - 1000/g</td>
</tr>
<tr>
<td>Unacceptable/potentially hazardous</td>
<td>>100/g</td>
</tr>
</tbody>
</table>

The Government’s response, which has been actively supported by the PHLS, has been to establish the facts about *L. monocytogenes*, provide clear advice to vulnerable groups, initiate research and introduce new legislation, which will help control the growth of organisms in food. In an amendment to the Food Hygiene Regulations (14) the lower temperature at which high-risk foods must be held has been reduced from 10°C to 8°C or 5°C depending on the product.

When it was recognized that specific foods were frequently contaminated with *L. monocytogenes* and sometimes at high levels the Government acted by issuing warnings to the vulnerable groups. Early in 1989 warnings were issued concerning soft cheese, cook-chill meals and ready-to-eat poultry (4) and in July 1989 a further warning that pregnant women and immunocompromised patients should avoid eating paté (5,6). The decline in cases during 1989 (Fig. 2) may reflect compliance with these warnings.
Attack Air Quality Problems

The RCS Air Sampler detects air quality problems days or even weeks before typical sampling methods. Giving you time to prevent spoilage in your products. Shouldn't it be a part of your quality control program?

Features

- Impinges airborne microorganisms onto agar strips using centrifugal force -- eliminates chance associated with sedimentation methods.
- Pulls air from the environment at a precisely controlled rate -- necessary for detecting trends in microbial populations.
- Employs selective agar strips -- identify problem organisms immediately.
- Travels with the technician on routine plant inspections -- no delays due to setup or operator training.
- Has the respect of health, pharmaceutical, cosmetic and food industry professionals -- gain immediate credibility among your customers and regulators.

Nelson-Jameson, Inc.
2400 E. 5th St., Marshfield, WI 54449
Phone 715/387-1151 • FAX 715/387-8746

In its efforts to improve food safety, including the prevention of listeriosis, the U.K. Government issued a leaflet (9) aimed at educating the general public, which was widely distributed through supermarkets, pharmacies and doctors surgeries. More recently a booklet 'While you are pregnant: Safe eating and how to avoid infection from food and animals' (8) has been distributed, which gives clear advice in relation to certain foods (cheese, paté, cook-chill meals and ready-to-eat poultry) and contact with animals which are likely to be infected such as sheep and lambs.

The response of the food industry to adverse publicity about L. monocytogenes in their products and the occasional recalls of contaminated foods has been to look closely at its own food production and control procedures. Voluntary Codes of Practice have been produced by some sectors of the food industry, for example the Creamery Proprietors Association which includes many of the soft and fresh cheese manufacturers. Their Code of Practice (3) also gives a microbiological end-product specification in relation to L. monocytogenes of not found in 15 x 25 g samples per lot. A similar code and specification has been produced for small farm based production units (17).

Similarly in their revised 'Guidelines on Cook-chill and Cook-freeze Catering Systems' (7) the Department of Health include absence of L. monocytogenes in 25 g as a microbiological criterion for such meals examined immediately before heating.

There is also more widespread introduction of Hazard Analysis Critical Control Point Procedures within the food industry, which should help in the production of safer foods. Greater numbers of tests on end-products and factory environment are also being carried out.

Listeria monocytogenes is widespread in the environment and seems well suited to persist in food production areas. The conclusions of the World Health Organization (WHO) Working Group on Foodborne Listeriosis (22) are seen to be eminently sensible — 'The elimination of L. monocytogenes from all food is impractical and probably impossible ... the critical issue is not how to prevent its presence but how to control its survival'.

REFERENCES

NEW TAMPER EVIDENT, LEAK PROOF, AIR TIGHT, HINGED CAP, STERILE SAMPLE VIALS

Passes all FDA and USDA leak proof tests. Available in 2 oz., 3 oz., 4 oz. and 10 oz. FDA approved polypropylene.

Call or Write for a Free Sample of our New Snap Seal
800-836-5520
Capitol Vial, Inc.
Union Street Extension, Fultonville, NY 12072
Australian Perspective on
Listeria monocytogenes

Michael J. Eyles, Ph.D., Project Manager, CSIRO Division of Food Science and Technology and Director, Dairy Industry Quality Centre, PO Box 52, North Ryde NSW 2113, Australia.

As presented at the IAMFES 80th Annual Meeting, Atlanta, Georgia, August 2, 1993, in the symposium “Listeria monocytogenes: Current Issues and Concerns” sponsored by the International Life Sciences Institute.

Although the number of cases of listeriosis that have been identified as foodborne in Australia is relatively small, the food industry and its associated regulatory agencies have been very active in performing research and developing appropriate responses to the hazards associated with Listeria monocytogenes in food products. There have been significant changes to industry practices during the last 5 years. The high priority given to the microbiological quality of Australian foods is due in part to the need to protect important export markets for some of our products.

INCIDENCE OF LISTERIOSIS IN AUSTRALIA

Data on the incidence of listeriosis in Australia have been available only since 1991, when the infection became a notifiable infectious disease in most of our eight states and territories. Since then, cases of listeriosis have been reported at the rate of about 40 per year (Table 1). These figures almost certainly differ significantly from the true rate of infection, partly because data on listeriosis are not collected in all states and also because our reporting system suffers from the same limitations that exist elsewhere in the world.

Table 1. Number of Cases of Listeriosis Reported in Australia (Population 17 million, 1).

<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>44</td>
</tr>
<tr>
<td>1992</td>
<td>37</td>
</tr>
<tr>
<td>1993 (Jan-Mar)</td>
<td>12</td>
</tr>
</tbody>
</table>

FOODBORNE LISTERIOSIS INCIDENTS

Transmission of listeriosis by a specific food has been described on only two occasions. The foods that were implicated were paté and smoked mussels.

The outbreak associated with paté occurred in Western Australia, where a cluster of nine perinatal cases of listeriosis was detected at a maternity hospital from March to September of 1990 (10). There were 6 deaths among the 11 fetuses or infants affected. Paté was first implicated when one patient was found to have eaten a certain brand of paté in the 2 weeks before she delivered a stillborn child. There was evidence that at least two of the other patients had eaten the same brand of paté. Listeria monocytogenes was detected in the implicated brand of paté, including a sample from the refrigerator of the patient mentioned above. The mean count of L monocytogenes in paté samples collected from the manufacturer was 8.8 x 10^7 CFU/g (3). After examination of the factory it was concluded that the major source of L monocytogenes in the product was a mincer that came into contact with cooked ingredients.

Isolates from the outbreak were serotype 1/2a and were not typable by phage typing. The isolates have also been characterized by random amplified polymorphic DNA (RAPD) and multilocus enzyme electrophoresis (MEE) techniques. Both have shown a relationship between isolates from the paté and the patients (3).

Multilocus enzyme electrophoresis compares the relative electrophoretic mobility of a number of enzymes and provides a measure of genetic relatedness between strains of bacteria. A recent study compared strains from a variety of human, animal and food sources with strains from this outbreak (9). Thirteen electrophoretic types were identified. Isolates obtained from the cases of perinatal listeriosis, the samples of paté and the mincer mentioned above were all the same electrophoretic type. Isolates from the feces of two patients who had suffered food poisoning after consuming the same brand of paté were also the same electrophoretic type.

The implicated products were withdrawn from sale and there was a community education program aimed particularly at pregnant women. The incidence of Listeria infections in pregnant women declined after these measures were taken.

The outbreak associated with smoked mussels occurred in 1991 in the State of Tasmania (6). Three healthy people aged 83, 37 and 10 years became ill in two separate incidents. Symptoms were malaise, chills, fever and headache, followed by diarrhea. Samples of implicated mussels from both incidents contained over 10^8 L monocytogenes per gram. Listeria monocytogenes was also isolated from feces. The mussels had been imported to Australia, re-packaged illegally by a retail outlet and labelled with date.
Applied Research Institute

- The ARI Scharer Rapid Phosphatase Test complete with apparatus, reagents and case.
- To determine whether dairy products are fully pasteurized.

141 Lewis Street
Perth Amboy, New Jersey 08861-4635
Phone (908)442-1888 Fax (908)442-1688

INDUSTRIAL ECONOMY - through Research

codes that overestimated their shelf-lives by 3 months or more.

Another recent incident involving smoked mussels in the Southern Hemisphere has important implications for the food industry. Newborn twin babies died as a result of Listeria infection in Auckland, New Zealand in November 1992. Their death has been attributed to the consumption by their mother of smoked mussels contaminated with L. monocytogenes. Reports from New Zealand have indicated that the company that produced the mussels had detected contamination with Listeria several weeks before the death of the babies. In May, 1993 the owner of the company and a consultant to the company were charged with manslaughter by New Zealand police. The cases have not been completed.

INDUSTRY RESPONSES TO THE EMERGENCE OF LISTERIA AS A FOODBORNE PATHOGEN

The Australian food industry has responded to the emergence of Listeria as an important pathogen with a substantial amount of research, on which changes in industry practices have been based. The following comments are concerned principally with the dairy industry. Four areas of research have received particular attention.

Predictive microbiology is perceived to have the potential to improve substantially our control of Listeria in food products. A collaborative program of research on predictive modelling involving four Australian institutions includes work on L. monocytogenes, particularly in relation to its survival and growth in processed meat products.

Research on rapid methods for the detection of L. monocytogenes has been given a high priority by industry and regulatory agencies. Effective methods based on enzyme immunoassays and the polymerase chain reaction have been developed (e.g., the TECRA immunoassay). This immunoassay and others have received widespread acceptance in Australian dairy industry and regulatory laboratories.

Typing techniques that improve our ability to identify sources and mechanisms of spread of L. monocytogenes in the community during outbreaks and in factory environments will provide substantial benefits for industry and health authorities. Techniques that are being used include multispecies enzyme electrophoresis and various techniques based on nucleic acids.

The area which has been the focus of most research has been the ecology and distribution of L. monocytogenes in food processing environments. The dairy, meat and egg industries have all performed a substantial amount of research in this area. In the dairy industry the findings of this research have been used in the development of quality systems, frequently HACCP-based, by the major companies. The Australian Manual for Control of Listeria in the Dairy Industry, which was published in May 1991 and revised when necessary, is accepted nationally (2). The manual describes procedures for preventing contamination, guidelines for cleaning and sanitizing, and sampling for laboratory analysis. The action to be taken when Listeria is detected in the factory or product, including detailed sampling and testing programs that must be followed before product can be released, is also described. The Manual generally describes minimum standards that are surpassed by major processors.

The industry's efforts to keep Listeria out of dairy products have generally been successful. Extensive monitoring programs show that the incidence of product contamination is very low (Table 2).

Table 2. Surveys of L. monocytogenes in Australian Dairy Products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Number of samples Tested</th>
<th>Number of samples Positive</th>
<th>Year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft & surface-ripened cheese</td>
<td>255</td>
<td>5 (ricotta)</td>
<td>Pre-1989</td>
<td>7</td>
</tr>
<tr>
<td>Soft cheeses</td>
<td>193</td>
<td>2 (type unspecified)</td>
<td>1989-91</td>
<td>3</td>
</tr>
<tr>
<td>Ice cream</td>
<td>277</td>
<td>16</td>
<td>Pre-1989</td>
<td>7</td>
</tr>
<tr>
<td>Soft-serve confection</td>
<td>255</td>
<td>1</td>
<td>1991</td>
<td>3</td>
</tr>
<tr>
<td>Dairy products</td>
<td>2200</td>
<td>32 (most ricotta or ice cream)</td>
<td>1989-93</td>
<td>8</td>
</tr>
<tr>
<td>Pasteurized milk</td>
<td>3252</td>
<td>0</td>
<td>1989-93</td>
<td>8</td>
</tr>
</tbody>
</table>

Early work on the incidence of Listeria in dairy products in Australia identified some problem areas that required attention. Ricotta and other fresh soft cheeses from several factories were found to be contaminated and there were...
QMI helps you identify the source of product contamination

AND helps you avoid it!

With its patented QMI Aseptic Sampling System and Aseptic Transfer System, QMI is a fast, sure and easy solution for the threat of contamination. More importantly, QMI goes a long way to help avoid an even bigger threat—the threat of product recall due to spoiled or unsafe products.

• Using the QMI Aseptic Sampling System, you can effectively document microbiological process control, which is critical to an effective HACCP system.
• Using the QMI Aseptic Transfer System, you can avoid contamination during inoculation.

Don’t take chances. Take action against contamination. Get all the facts on our aseptic sampling and transfer systems now.
public recalls of these products. The method of manufacture and the nature of fresh soft cheeses make them particularly susceptible to contamination with *L. monocytogenes*. Reusable containers used for packaging ricotta-style cheese, and perforated containers in which the cheese was allowed to drain during production, were among the sources of contamination identified. Contamination of ice cream also caused significant losses for the industry.

Although the Australian dairy industry has a good record with respect to *L. monocytogenes*, the Australian Dairy Research and Development Corporation is supporting a substantial study of the ecology of *L. monocytogenes* in dairy factories, in order to improve the efficiency of the industry’s quality assurance programs. Australian dairy factories producing a wide-range of dairy products are being examined to determine the distribution and mechanisms of dissemination of *L. monocytogenes* in their environment, with particular emphasis on routes of entry for *L. monocytogenes*. As expected, the major locations from which *L. monocytogenes* has been isolated are drains, floors, pooled liquid and conveyor systems. Important routes of entry for *Listeria* include milk and crate receipt areas, employee entrances, and non-processing personnel such as workshop staff (8).

When *Listeria* was detected in the factory environment, there was usually only a single species present at sites positive for *Listeria*. A single species was isolated from 94% of positive sites. About 60% of the *Listeria* isolates have been *L. monocytogenes*.

Strains of *L. monocytogenes* isolated from dairy factories during this study are being typed by a variety of techniques. So far, most progress has been made with typing by MEE. Three-hundred strains of *L. monocytogenes* from dairy, other food, clinical, and environmental sources have been analyzed. Twenty-six electrophoretic types have been identified and split into two genetically distinct groups (8).

Analysis of collections of strains isolated from seven dairy factories has indicated that very few electrophoretic types are generally present in the environment of a dairy factory. Only a single type has been detected in the majority of the factories and the types present differ from factory to factory. Nine electrophoretic types have been detected in the seven factories and only two of these types were detected in more than one factory. These results suggest that MEE may be a very useful tool for typing *L. monocytogenes* and determining whether or not a particular food processing factory is the source of infection in a listeriosis outbreak. The clinical isolates that have been examined are grouped into uncommon electrophoretic types and a close relationship between dairy and clinical isolates has not been observed.

I think it is reasonable to conclude from the preceding discussion that dairy products are very unlikely to be a significant vehicle for listeriosis in Australia at present, but the industry must remain highly vigilant.

AUSTRALIAN REGULATORY APPROACHES TO LISTERIA IN FOODS

In Australia the responsibility for developing and enforcing food standards is shared between the national and state governments. Australia is a federation of six states and two territories. Microbiological standards are contained within the Food Standards Code, which is developed by the National Food Authority. The code is enforced by various regulatory agencies of the state and territory governments.

A different set of requirements, the Export Control (Processed Food) Orders, applies to foods exported from Australia, which are under the control of a different Australian government agency. The roles of the FDA and the USDA are reasonably comparable to the Australian arrangements in this context.

Standards limiting *L. monocytogenes* contamination of foods have not been incorporated into the Food Standards Code yet; the National Food Authority has proceeded cautiously on this issue. The Export Control Orders are more stringent than the Food Standards Code in some respects. They already require absence of *L. monocytogenes* from 5 x 25 g samples of many cheeses.

Despite the absence of specific standards requiring the absence of *L. monocytogenes* from foods on the domestic market, state government agencies intervene in the marketplace to prevent the sale of foods that are found to be contaminated with *L. monocytogenes*. In doing so they act under general provisions of the law, which prohibit the sale of foods that may be injurious to health or dangerous. Reliance on these general provisions, rather than specific requirements for *L. monocytogenes*, creates a problem in that different policies and attitudes have developed in the various state agencies.

Some food processors are required to notify regulatory authorities if *L. monocytogenes* is detected in a food product. This applies to all foods in the State of Victoria, where the action taken in response to a contamination incident is determined essentially on a case by case basis. Dairy authorities in all states must be notified if the organism is isolated from a dairy product. The response to contamination of dairy products is outlined in the manual that were mentioned earlier.

The National Food Authority is considering the introduction of standards for *L. monocytogenes* to the Food Standards Code at present. The decisions that the Authority has made so far indicate clearly that its policies on *L. monocytogenes* will have a sound basis in science and will be aimed at minimizing the health hazards associated with this organism, without imposing unnecessary and unrealistic burdens on the industry.

The Authority recently rejected an application for the inclusion in the Code of a nil tolerance for *L. monocytogenes* in milk, cream and milk powder. Major reasons for rejection of the application included:

1. These foods have not been shown to present a public health hazard for *L. monocytogenes* in Australia.
2. *Listeria* is inactivated by properly controlled pasteurization processes.
3. Other requirements imposed on these products by the Code, including phosphatase and coliform requirements, give a rapid indication of the efficiency of pasteurization and the procedures in place to prevent post-pasteurization contamination.
4. The imposition of end-product testing would add to
production costs without reasonable justification.

5. The dairy industry is adhering to a code of practice.

The Authority is proposing to introduce a nil tolerance for *L. monocytogenes* in foods associated with *Listeria* outbreaks and capable of supporting growth of the organism. Draft microbiological standards for these foods have been promulgated very recently and are presently being subjected to a process of public review. The proposed standards would require absence of *L. monocytogenes* from 5 × 25 g samples of product.

The foods to which the Authority is proposing to apply a nil tolerance are certain cheeses, manufactured meats and smoked seafood products that support growth of *L. monocytogenes*. The products will be defined in terms of parameters such as water activity and pH. The Authority is investigating the feasibility of basing limits for these parameters on predictive models for growth of *Listeria* that have been developed in Europe, the United States and Australia. This approach is a milestone in Australian food microbiology, in that it is the first attempt to use predictive models in the development of food regulations.

The proposed requirements are only a part of the Authority’s strategy to minimize the incidence of listeriosis. The strategy will include the amendment of existing Australian codes of practice and the development of new codes of practice for foods considered to present a high risk of transmission of listeriosis. The codes will be based on the HACCP principles. The proposed strategy also includes the further development of education and awareness programs for members of the community who are at particular risk of listeriosis.

COMMUNITY EDUCATION

Some Australian health authorities have taken steps aimed at educating the community about the risks associated with foodborne listeriosis and the means by which it can be prevented. The first substantial step was taken by the Health Department of the State of Western Australia, which issued a brochure containing advice to pregnant women. The brochure names the foods that have been associated with listeriosis and advises pregnant women to avoid them. It also offers more general advice. For example, it recommends that foods that are close to their “use-by” dates should not be consumed and that only homemade salads and cold meats be consumed, within 12 h of preparation. The Department also circulated advice on listeriosis to medical practitioners and other health professionals.

The Australian National Health and Medical Research Council subsequently issued two bulletins. One contained special dietary advice for pregnant women, transplant patients and other immunocompromised patients (4). The other provides information for medical practitioners on diagnosis, treatment, advice to patients and so on (5). The dietary advice is broadly similar to that in the brochure from Western Australia.

ACKNOWLEDGMENT

I thank Ellen M. Kittson, Peter S. Sutherland and Robert J. Porritt for providing unpublished data used in the preparation of this paper.

REFERENCES

3. Kittson, E.M. Health Department of Western Australia. Personal communication.
Foodborne Illness (Part 6)

Vibrios

George H. Reed, Services Manager,
University of Massachusetts/Amherst,
Environmental Health & Safety (EH&S),
Environmental Health Services,
N 414 Morrill Science Center,
Amherst, MA 01003

Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae have been associated with foodborne illness in the United States.

Vibrio parahaemolyticus is the member of this genus usually associated with foodborne illness in the United States; it was first recognized in this country in 1971. In Japan it is the most frequent cause of all foodborne illness.

This bacteria is halophilic (requires NaCl for growth) and is widely distributed in the estuarine and coastal environment. It has been isolated from sediments, plankton and fish and shellfish. It has a seasonal and temperature-related cycle: during the cold season it is found in the marine silt, while in the warm season it is found free in coastal waters and in seafoods. Most outbreaks due to this organism have occurred in Atlantic and Gulf states.

The illness is primarily transmitted through consumption of contaminated seafoods. These could be raw or inadequately cooked seafood, or food cross-contaminated by improper handling, or by rinsing with seawater. Temperature abuse is usually involved with an outbreak, with a period of time at room temperature necessary to allow multiplication of the organisms to an infective level (about 10). Raw seafood dishes prepared in the traditional Japanese culinary style have been associated with the illness.

This illness is a gastroenteritis characterized by watery diarrhea and abdominal cramps in most cases, with nausea, headache, fever and vomiting sometimes present. It is typically an illness of moderate severity, lasting about 3 days (range, 1 to 7 days), with death being rare. Fluid replacement may be indicated. The incubation period is usually 12 to 24 h (range, 4 to 96 h).

Pathogenicity is thought to occur by some strains possessing a thermostable hemolysin that produces a beta hemolysis reaction in red blood cells on a selective medium; reaction called “Kanagawa phenomenon” and the organism is Kanagawa-positive. Most isolates of V. parahaemolyticus are Kanagawa-negative and therefore avirulent.

CONTROL. To minimize the hazard, food protection and sanitation practices should emphasize the following:

- Thoroughly cook (heat/reheat) seafoods to destroy the bacteria, which is highly sensitive to heat; 15 min at 158°F (70°C) will kill the organism.
- Prevent cross-contamination by physical separation and separate handling of raw and cooked product. Emphasize handwashing between handling raw and cooked items.
- Keep all seafoods, raw and cooked, adequately refrigerated before preparing/serving, below 41°F (5°C).
- Educate consumers of the risks associated with eating raw seafood.

In summary, proper cooking and refrigeration, with careful handling, are the important factors in preventing V. parahaemolyticus gastroenteritis.

Vibrio vulnificus is also halophilic and is commonly found in the warmer Gulf states and is probably part of the normal marine flora. It has been found in water, sediments, oysters, clams, crabs and plankton.

Two distinct clinical syndromes seem to be involved with this bacterium, with transmission seeming to be seawater and shellfish:

- Wound infections — superficial wounds, from cleaning/harvesting shellfish or crabs, contaminated with seawater or seafood containing the organism; lesions often extend into adjacent body areas; most patients have a fever; a rapidly progressive cellulitis (inflammation of connective tissue) often requires amputation of an affected limb.
- Primary septicemia — ingestion of contaminated water or raw/undercooked seafood; chills, fever and malaise, with occasional diarrhea, develop in this group of patients; in this form, this marine bacterium is unusually virulent, with a death rate of around 40%; persons with preexisting liver disease are especially at risk.

PREVENTION/CONTROL.

- Avoid exposure of wounds/cuts to seawater.
- Careful handling of raw/undercooked seafood by persons with superficial cuts.
- Avoid eating raw/undercooked seafood, especially persons with liver disease.

Vibrio cholerae is widely distributed in marine environments. Since January 1991 there has been an epidemic in parts of South America. It is usually a waterborne illness but can be spread by foods.
There is concern that dumping of bilge water from a ship from Central or South America in a Gulf port will release the bacteria into a harbor area, with seafood being contaminated. A 1978 outbreak in Louisiana was traced to undercooked crab. More recently, raw oysters from Gulf waters have been involved in outbreaks.

CONTROL. Avoid raw/undercooked crabs/shellfish from contaminated waters.

REFERENCES

Part seven of the Foodborne Illness Series will be published in the May 1994 issue of Dairy, Food and Environmental Sanitation.
European Perspectives on
Listeria monocytogenes

Paul Teufel, Robert von Ostertag-Institute,
Bundesgesundheitsamt Diedersdorfer Weg 1, 12277 Berlin, Germany

INTRODUCTION

In Europe research on listeriosis has a long history. Evidence of Listeria monocytogenes in animals, feed, raw milk and meat and its presence in the excretions of a high percentage of healthy human beings enlivened time and time again the discussion in the Sixties and at the beginning of the Seventies as to whether contaminated food could be the cause of listeria infections in human beings. In those days, no definitive answer to this question could be found.

It was not before 1986 when Europe realized that the listeria problem in foods reported from Canada and the United States does also affect the food production in Europe. Since then three major events in Switzerland (1), United Kingdom (2) and France (3) have confirmed an unmistakable connection between contaminated food and illness. The Vacharin Mont d'Or outbreak in Switzerland was at that time in line with the common statement that particularly soft cheeses might be the most important source for human listeriosis. The cases caused by Paté in the United Kingdom and the dramatic listeriosis outbreak in France, probably due to cured, cooked pork tongue in jelly showed that meat products are at least as important as fermented milk products.

The development of better methods for the detection of L. monocytogenes in foods has led to the detection in a large variety of raw and processed foods. These findings caused considerable problems for food inspection authorities with respect to the legal classification and actions to be taken.

THE DILEMMA

An important task of the national food inspection authorities in Europe is the examination of foods at the retail level, e.g., as the consumer buys it. The detection of a pathogen in a ready-to-eat food usually results in penalty consequences, recalls, and when the product is already widely distributed, in a public warning. This happened in 1986 particularly with soft cheeses that were traded within the European Community. As a rule, the presence of L. monocytogenes in 25 g samples of an imported cheese triggered already the public warning through the EEC Alert System.

At the same time large and small food processors were suddenly faced with complaints, unwanted publicity and considerable financial losses. Measures to reduce the Listeria contamination during food processing were not known. Actions to reduce the Listeria contamination were frequently rendered void by the fact that incoming raw materials such as meat, are permanently introducing L. monocytogenes into the food plant. Smaller enterprises (e.g., butcheries) saw no possibility to arrange the processing in such a way that listeria could be definitely excluded. Even when the food was listeria free, recontamination could occur in the sales rooms due to cutting machines and handling.

Under the pressure of the publicity about foodborne listeriosis several countries drafted microbiological criteria asking for the absence of the organism in 25 or 10 g. It is not known whether these criteria were always used. A first step to solve the problems was done when the EEC drafted in 1986 the so-called "Gentleman Agreement" for cheeses by which a positive result in an importing country was referred back to the food inspection authorities in the exporting country for further action. The introduction of criteria for cheeses spurred cheese manufacturers to draft specific hygiene plans to reduce and eliminate the Listeria contamination.

With increasing knowledge about contamination rates of food with L. monocytogenes it became obvious that a consequent application of the so called "zero tolerance" which means in this connection the absence of the agent in 25 g would lead to the rejection of many foods. Some would even vanish from the market.

This dilemma underlined the need for a strategy that could be supported by both the producers and the food inspection authorities. It should aim to prevent contamination by L. monocytogenes as far as possible and should subject the apparently short-term contamination of some foods to a standardized assessment.

Unfortunately, there is no common EEC strategy. Up to now the EEC has set criteria for L. monocytogenes only within the Milk Hygiene Directive (Council Directive 92/46/EEC, 16 June 1992) asking for the absence of L. monocytogenes in 25 g at the end of production. The newly published Food Hygiene Directive (92/c24/13,) focuses on the application of the HACCP-concept but a strategy for the evaluation of positive results from foods at the retail level is lacking.

Individual European countries addressed food industry to develop specific hygiene plans based on the HACCP-concept to reduce the Listeria contamination. At the same
The fixation of a numerical microbiological limit is disputed at the point of sale to the consumer or at the end of the shelf-life as given by the "use-by-date". Similarly, positive results in products intended for consumption without further heating lead to the request to reduce the recommended shelf-life. The fixation of a numerical microbiological limit is disputed as it includes the acceptance of a certain number of a pathogenic agent. In the following, the arguments for this procedure and feasibility of the quantitative assessment are explained.

BASIS FOR THE QUANTITATIVE APPROACH

Data from investigations show the wide distribution of *Listeria* in both the living and inanimate environment. These data have to be seen against the low incidence of listeriosis in man. In middle Europe the incidence of listeriosis is between 1 and 2 cases per 100,000 inhabitants per year. The notified cases occur sporadically and pregnant women and people with underlying diseases are affected. From microbiological investigations of specific food items that have caused outbreaks of listeriosis is known that mostly high *L. monocytogenes* counts were reported and in all cases *Listeria* has multiplied during storage at retail and in homes. In the Paté outbreak as well as in France 1992 samples exceeded frequently 10⁴ *L. monocytogenes* per gram. Available data are not sufficient to calculate the Minimum Infectious Dose but it can be assumed that high numbers increase the health risk. On the contrary low numbers could be considered as indicator for a hygiene problem rather than a health risk. Therefore, the presence of *L. monocytogenes* in a product that has received a listericidal treatment indicates a hygiene defect which can turn into a possible health risk in cases where growth during storage occurs. This possibility implies a different and balanced reaction of food inspection authorities, ranging from enforcement of certain hygiene regulations to specific measures regulating health hazards.

The basis for the drafting of criteria follows closely the general principles as explained by the ICMSF. In order to apply a quantitative assessment of the *Listeria* contamination one has to consider particularly the wide distribution of *Listeria* in certain foods and its absence in others. A stratification of foods must take into account:

- Food intended for highly susceptible individuals (food for babies and infants, dietary food).
- The possibility of growth of *Listeria* during storage.

THE GERMAN EXAMPLE

As an example for the quantitative approach the German recommendations are presented. These are recommendations to be used by food inspection authorities. Food processors are obliged to take all necessary measures to stay below these limits. The recommendations consist of a food catalogue, a set of microbiological limits, a standardized microbiological method for the detection of *L. monocytogenes* and measures and legal consequences when the criteria are not met.

The limits are grouped as follows:

1. Absence of *L. monocytogenes* of 25 g or ml.
2. Less than 100 CFU but positive in 1 g or ml.
3. 100-10,000 CFU per or ml.
4. Above 10,000 CFU per g or ml.

These criteria are applied to the different food categories and are aligned to specific measures and health regulations. The figures have caused considerable confusion in other countries, believing that Germany tolerates up to 10,000 cfu of *L. monocytogenes* in 1 g of food. This is, however, not the case. The figures are not tolerance values but determine the type of action to be taken by food inspection authorities.

Group I contains foods for infants and small children as well as dietary foods. Group II contains foods such as pasteurized milk and aseptically packed foods. The criterion is absence of *L. monocytogenes* in 25 g.

Group III comprises foods such as prepakced sausages, cheese made from heat-treated milk (at least pasteurized), shrimps and prawns, and frozen meals. These are products which often display a distinct difference between the level of *Listeria* contamination at the production level and that at the sales point. *Listeria* contamination happens after application of a *Listeria* destroying process (heat treatment). With many of the products in this group there is no possibility that *Listeria* multiply in the course of subsequent storage, ripening and the like. The essential limit for these products is less than 100 per gram (equals positive in 1 g). Low level contamination require follow-up actions in order to check the hygiene in the food establishment where the food was produced or the sample was drawn. Results revealing a higher contamination are evaluated as "unfit for human consumption" or in substantiated cases as health hazard.

Group IV comprises three different food groups which are (i) otherwise stabilized food (e.g., fermented sausages, smoked fish); (ii) raw food that is consumed raw (e.g., raw milk cheese); (iii) raw food that is heated before consumption. The latter is included to prevent highly contaminated food to enter the kitchen. These food groups are combined as the limits are almost identical. A contamination of less than 100 per gram is usually permissible, whereas in cases of higher contamination levels the food plant or food shop is subjected to an official hygiene check. In cases when food of category IV is expected to be free of listeria (e.g., raw milk cheese) even more stringent regulations can be applied. Should any of the products in this group — for example, delicatesen salads — comprise several components, it should be verified whether the catalogue of...
measures and evaluation techniques for Group III is to be applied in the individual case.

The catalogue of measures comprises essentially four steps:

1. Reappraisal of suspicious findings by drawing up to five additional samples of the same batch or if not available of the same product. The batch must be evaluated on the basis of the worst result.
2. Hygiene checks by food inspection.
3. Internal information of other states within Germany or the EEC and internal recalls by food processors when the food is not yet at the retail level.
4. Public warnings and public recalls.

DOES IT WORK?

In 1992 a survey was made with the aim to evaluate the recommendations that were issued in May 1991. Forty-one food inspection laboratories of Germany participated and provided quantitative results of approximately 17,000 examinations. The survey was done against a constant background of 30 to 40 notified cases of sporadic newborn listeriosis which can be calculated to a total of 1 to 2 cases of listeriosis per 100,000 inhabitants per year in Germany.

An overview over the quantitative results from the main food groups that were found contaminated are presented in Fig. 1. Only very few food items revealed a contamination of more than 10,000 CFU per gram. Fish products, especially prepacked smoked fish, which has in Europe not yet a history of having caused listeriosis showed a considerable share of highly contaminated products. For selected product categories such as soft cheeses and certain sausages (Brühwurst) the percentage of positive samples has decreased since 1986 (Fig. 2). This tendency has to be considered cautiously and cannot be applied to all food categories. These data reflect more the overall awareness of cheese makers and larger meat processors. Notwithstanding, the fact that problems still occur in these industries. Data from few producers show the well-known correlation of recontamination and subsequent growth of *L. monocytogenes*, due to an overestimated shelf-life of the product (Fig. 3 and 4).

The results obtained so far justify to lower the upper limit of 10,000 to 1,000 *L. monocytogenes* per gram or milliliter without changing the legal consequences. The survey has also shown that a quantitative approach is feasible and contributes to a decrease of listeria contamination in foods. It provides a more realistic view on *L. monocytogenes* and helps food inspection authorities to focus on products under suspicion. It also reminds food producers and food handlers to keep the contamination level as low as possible in order to prevent that a hygiene problem turns into an actual health hazard. The complete exclusion of *L. monocytogenes* from our foods is unrealistic and will not be accomplished within the foreseeable future, not even by application of the most stringent criteria.

REFERENCES

Editor's Note: In 1958 Carl A. Mohr was honored as the winner of the Sanitarian's Award. Mr. Mohr was given the award at the annual meeting in New York, NY. Recently it was brought to our attention that Mr. Mohr's name has been inadvertently left off of the list of past winners. Our deepest apologies are extended to Mr. Mohr for the disservice we have done by not listing his name. We have decided to congratulate Mr. Mohr once again for his outstanding achievement by reprinting the following article and photograph, which originally appeared in the 1958 Journal of Milk and Food Technology, p. 265.

Mr. Mohr was cited for his accomplishments in the field of milk and food sanitation in Green Bay and for his contributions and influence, state wide, in the sanitary control of milk, meat and other foods. His work in organizing and promoting the Wisconsin Conference on Intrastate Milk Shipments has been outstanding and has resulted in the solution of intrastate milk shipment problems in some 25 Wisconsin cities. He serves presently as chairman of the Conference.

He has been instrumental in the enactment of modern milk, food and meat ordinances in his home city and has greatly improved the sanitary quality of these products. Another outstanding contribution has been his program of environmental sanitation education in the high schools in Green Bay. When the Board of Education was retrenching its program in health education, Mr. Mohr personally offered his services with a planned program of sanitation education for the students. This has continued to be most successful, in fact has been expanded to the point where students carry on special field studies, take examinations and receive credit for the work.

In his home city, Mr. Mohr is active in city affairs and serves actively in clubs and associations whose objectives are civic improvement. He is looked upon in his native city as a man of outstanding organizational ability and with perseverance qualities to carry through to completion programs of public health improvement.

In addition to being awarded the Annual Sanitarian's Award by International, Mr. Mohr was also honored by the Wisconsin Association of Milk and Food Sanitarians at their recent meeting by being named outstanding sanitarian in Wisconsin for the year 1958.

Mr. Mohr is married and has three children.

Erratum

Printing errors on page 21.
* Initial count: 107 500 CFU/100 cm² (number broken by end of line).
* Figure 2 Y-axis logarithmic scale; lowest number 10 not 0.
* Table 3 Median for season swab results; Left Barrier 15; Right Barrier 27.
News

No Scientific Evidence to Support Labeling of Milk from Cows not Given BST

A national alliance of four food science and nutrition organizations today stated that voluntary labels on dairy products claiming to be made with milk free of supplemental BST are neither meaningful nor verifiable on scientific grounds.

“The drawbacks to an ‘rBST-Free’ or ‘rBGH-Free’ label are, first, that it might be misleading by giving the impression that the labeled milk is substantially different, which it is not,” said Dr. M. Susan Brewer on behalf of the Food and Nutrition Science Alliance (FANSA).

“Second, it might suggest that unlabeled milk poses a possible health risk, which it does not.”

The sale of milk from cows given supplemental bovine somatotropin (BST, also called BGH) becomes legal on February 4. The Food and Drug Administration in November concluded, after a decade-long review of scientific evidence, that such milk poses no human health or safety risk. Food and Drug Administration (FDA) also found that there was no scientific basis for compulsory labeling of the milk. However, FDA will permit voluntary labeling of milk from cows not treated with BST, as long as such labels meet the two standard guidelines of being truthful and not misleading.

BST is a naturally occurring protein hormone that is secreted by a cow’s pituitary gland and helps the cow produce milk. By supplementing cows with additional BST, dairy farmers can increase milk yield without altering the milk’s nutrient content or hormone composition.

“Label claims concerning supplemental BST allow consumers to buy milk based on their personal beliefs about how milk should be produced, not on the scientific evidence,” said Brewer, assistant professor of foods and nutrition at the University of Illinois at Urbana - Champaign. “There are no laboratory tests to distinguish between milk from cows given BST and cows not given BST; thus, label claims are not verifiable.”

Besides FDA, other leading scientific institutions in the United States and Europe have concluded that milk from BST-supplemented cows is safe. They include the National Institutes of Health, the U.S. Congress Office of Technology Assessment, the American Medical Association, and the American Academy of Pediatrics.

The Food and Nutrition Science Alliance (FANSA) represents the Institute of Food Technologists, the American Dietetic Association, the American Society for Clinical Nutrition, and the American Institute of Nutrition.

For more information contact Dr. M. Susan Brewer, University of Illinois at (217)244-2867.

Food Store Sanitation Correspondence Course Offered by Cornell University Stresses HACCP Approach

Since food safety, food sanitation and Hazard Analysis Critical Control Points (HACCP) have been in the news lately, food retailers may be interested in knowing more about Food Store Sanitation, a correspondence course offered by the Cornell University Food Industry Management Home Study Program.

The textbook used in this course was extensively revised by Robert B. Gravani, a Cornell University professor of food science, and is designed specifically for retail food store employees and managers. All aspects of a sanitation program — from food temperature control to pest control — are presented with practicality and the food retailer in mind.

A chapter on the HACCP system includes a detailed HACCP plan for the preparation, display and storage of fried chicken in a supermarket deli department. The fried chicken example illustrates how a store’s food safety assurance team can develop HACCP plans for all potentially hazardous foods sold in today’s supermarket.

Revisions throughout the textbook’s following 15 chapters also reinforce the HACCP system:

- Introduction to Food Store Sanitation
- The Comprehensive Food Store Safety Assurance Program
- Sanitation and Store Profits
- The Microbial World
- Foodborne Illness
- The Hazard Analysis Critical Control Point (HACCP) System
- Food Temperature Control
- Principles of Cleaning and Sanitizing
- Personal Hygiene and Employee Practices
- Effective Pest Control: Rodents and Birds
- Effective Pest Control: Insects
- Construction and Maintenance of Facilities and Equipment
- Food Laws, Regulatory Agencies and Inspections
- Departmental Sanitation
- Designing and Implementing a Sanitation Program

The enrollment fee for Cornell Home Study’s Food Store Sanitation course is $60, which covers the costs of the textbook and study guide, grading and the certificate of completion. The course requires enrollees to complete five assignments and a final examination. It does not carry Cornell University credit.

To request more information, to enroll in the Food Store Sanitation course, or to obtain a copy of the textbook for your library, contact the Cornell Home Study Program, 250 Warren Hall, Cornell University, Ithaca, NY 14850-7801, or call (607)255-3028 / FAX (607)255-9984.
The FDA is in the process of developing a guidance document entitled "Fish and Fishery Products Hazards and Controls Guide." The draft guide is now available to the public through NTIS.

The guide is designed to serve several purposes. First, FDA anticipates that it will help members of the commercial fish and fishery products industry identify and control potential hazards associated with the fish and fishery products that they handle and process. In addition to human food safety hazards and controls, the guide will address controls associated with quality, marketability and economic fraud.

The guide also is designed to help members of the seafood industry develop and implement Hazard Analysis Critical Control Point (HACCP) plans for their operations, as will be required if FDA adopts the proposed regulations. The proposed regulations provide that seafood processors and importers must establish HACCP systems of preventive controls to ensure the safety of the food they produce. The guide provides information that processors and importers can use in the development of their HACCP plans. This information consists largely of an identification of hazards that can affect seafood and a discussion of the control measures that can keep these hazards from actually occurring or that can at least minimize the likelihood of their occurrence.

Another purpose of the guide is to help consumers and the public to understand seafood safety in terms of the hazards that are presented by seafood and the controls that can be applied to those hazards.

The FDA believes that the guide will assist Federal and State regulatory officials in developing uniform and consistent regulatory strategies and controls for seafood. This guide should be useful in the evaluation of HACCP plans and systems by both State and Federal regulatory officials.

Comments concerning the draft guide were solicited with the announcement of the proposed regulations in the Federal Register of January 28, 1994. The FDA will study the comments it receives, revise the draft guide as warranted, and then issue the guide. The agency intends to issue the guide by the time that the proposed HACCP regulations for seafood are issued in final form, should the agency decide to do so.

Interested persons may, on or before April 28, 1994, submit to the Dockets Management Branch written comments regarding this draft guide. Two copies of any comments are to be submitted. Comments are to be identified with the docket number found in brackets in the heading of this document. The "Fish and Fishery Products Hazards and Controls Guide" and received comments are available for public examination in the Dockets Management Branch between 9 a.m. and 4 p.m., Monday through Friday.

The FDA will publish subsequent editions based on public comments and as circumstances warrant, e.g., as new knowledge on hazards is obtained or new types of controls are developed.
Imported Cholera Associated with a Newly Described Toxigenic Vibrio cholerae 0139 Strain — California, 1993

Epidemics of cholera-like illness caused by a previously unrecognized organism occurred recently in southern Asia. This report documents the first case of cholera imported into the United States that was caused by this organism, the newly described toxigenic Vibrio cholerae 0139 strain.

On February 5, 1993, a 48-year-old female resident of Los Angeles County sought care at a local outpatient health-care facility for acute onset of watery diarrhea and back pain. A few hours before seeking medical care, she had returned to the United States from a 6-week visit with relatives in Hyderabad, India.

Her diarrheal illness began in India on February 4 and increased in severity while she traveled to the United States. She reported a maximum of 10 watery stools per day but no vomiting, visible blood or mucus in her stools, or documented fever. The patient was prescribed trimethoprim-sulfamethoxazole without rehydration treatment and recovered uneventfully. Duration of illness was approximately 4 days. No secondary illness occurred among family members.

When the patient sought medical care, the physician suspected cholera, and a culture of a stool specimen obtained from the patient at that time yielded colonies suspected of being V. cholerae. This was confirmed by the Los Angeles County Public Health Laboratory. The isolate was identified as V. cholerae non-O1. The isolate produced cholera toxin by Y-1 adrenal cell assay and latex agglutination in the California State Public Health Laboratory. Testing at Centers for Disease Control (CDC) identified the isolate as toxigenic V. cholerae serogroup 0139, resistant to trimethoprim-sulfamethoxazole.

Before this illness, the patient had been in good health. In Hyderabad, she stayed with relatives and did not travel outside the city. Although the source of her infection was not confirmed, on January 30, the patient had eaten fried shrimp and prawns purchased from a local market and prepared by relatives. She also recalled drinking a half glass of unbottled water in Hyderabad on February 3.

Editorial Note: In October 1992, an epidemic of cholera-like illness began in Madras, India, associated with an atypical strain of V. cholerae. In early 1993, similar epidemics began in Calcutta (with more than 13,000 cases) and in Bangladesh (with more than 10,000 cases and 500 deaths) caused by similarly atypical strains of V. cholerae. These strains could not be identified as any of the 138 known types of V. cholerae and have been designated as a new serogroup, 0139. Although the extent of the ongoing epidemic in southern Asia is unclear, this strain is now associated with epidemic cholera-like illness along a 1,000-mile coastline of the Bay of Bengal (from Madras, India, to Bangladesh) and appears to have largely replaced V. cholerae O1 strains in affected areas.

The emergence of this new strain has at least three other major public health implications. First, it expands the definition of cholera beyond the illness caused exclusively by toxigenic V. cholerae serogroup O1. Because it appears to cause the same illness and to have similar epidemic potential, the World Health Organization has asked all nations to report illnesses caused by this strain as choler.

In the United States, clinicians, laboratorians and public health authorities should report infections with toxigenic V. cholerae O139 as cholera, in addition to cases of toxigenic V. cholerae O1 infection.

Second, the rapid spread of the V. cholerae O139 epidemic in southern Asia, even among adults previously exposed to cholera caused by V. cholerae O1, suggests that preexisting immunity to toxigenic V. cholerae O1, whether the result of natural infection or cholera vaccine, offers little or no protective benefit. Travelers to areas affected by this epidemic should exercise particular care in selecting food and drink and should not assume that cholera vaccination is protective against the V. cholerae O139 strain.

Third, laboratory identification methods for V. cholerae O1 depend on detection of the O1 antigen on the surface of the bacterium, and therefore, do not identify this new strain. A specific diagnostic antiserum for V. cholerae O139 is being prepared for use in U.S. public health laboratories and will be distributed soon. Without such antiserum, this strain might be confused with other non-O1 V. cholerae isolates unrelated to the newly described O139 strain that occasionally cause infections in the United States.

In 1989, a pilot surveillance effort in four states determined that the reported infection rate for non-O1 V. cholerae was 1 per 1-million population. Although non-O1 strains can cause illness, non-O1 strains other than the newly described O139 have not been implicated as a cause of epidemics and are not considered a major public health problem. Accordingly, CDC recommends that:

1. Sporadic clinical isolates of non-O1 V. cholerae should be referred to a state public health laboratory for further characterization if there is an epidemiologic link to areas of the world known to be affected by O139 (currently India and Bangladesh); if the disease is typical of severe cholera (e.g., watery diarrhea with life-threatening dehydration); or if the isolate has been linked to an outbreak (e.g., more than one linked case) of diarrheal illness.

2. Physicians should ask that specimens from persons with suspected cholera be cultured on thiosulfate-citrate-bile salts-sucrose (TCBS) medium for isolation of V. cholerae. All cases of suspected cholera should be reported immediately to local and state health departments.
HAZCON-Based Total Quality Management

Retail Food Operation Food Hazard Control Checklist

O. Peter Snyder, Jr., Ph.D.
Hospitality Institute of Technology and Management,
830 Transfer Road, Suite 35,
St. Paul, MN 55114

The following is the second installment of the Retail Food Operation Food Hazard Control Checklist mentioned in the October 1993 column. This checklist will be continued over the next several months to cover its entirety.

RETAIL FOOD OPERATION FOOD HAZARD CONTROL CHECKLIST

[40°F - 150°F (4.4°C - 65.6°C)]

FOOD SAFETY CONTROL REQUIREMENTS

<table>
<thead>
<tr>
<th>PERFORMANCE EVALUATION</th>
<th>NEEDED TO ASSURE SAFETY</th>
</tr>
</thead>
</table>

- At 40°F (4.4°C), food is held < 5 days.
- If refrigerated food is to be held > 5 days, it is stored < 40°F (4.4°C) using the rules in the above table.
- Hot food is held above 130°F (54.4°C) for safety; 150°F (65.6°C) regulatory requirement.
- To conserve nutritional value, food (especially vegetables) maintained above 130°F (54.4°C) for safety; 150°F (65.6°C) regulatory requirement, is not held for more than 30 min.
- Food safety control is also extended with pathogenic microbiological growth inhibitors in the food such as a and pH, or GRAS additives when shown to be effective by laboratory analysis. A HACCP recipe is used in each case by the cook for control.

Container disposal (Reg)
- All empty containers and packing boxes are disposed of promptly and properly in order to deprive pests of hiding and nesting places.
- All staples, plastic binders and pieces of wire are accounted for, in order to prevent these items from finding their way into foods.

Pre-Preparation

Ingredient inspection and control (Haz)
- All ingredients are inspected as they are used in food preparation.
- Any ingredients that are off-color, have strange odors, appear to have bubbles when they should not, show evidence of insect or rodent contamination, or are suspect in any other manner are rejected and returned to suppliers or discarded.
- If there is any doubt about the safety of food or how it was prepared, the food is discarded.
 - The suspect food is shown to a manager/supervisor before disposal and a record of this type of food disposal is recorded on the waste control sheet.

Food thawing (Reg)
- Thawing is accomplished by one of the following methods:
 1. In a conventional or rapid thaw refrigerator at 40°F.
 2. Under flowing, potable water at a temperature of 70°F or below, with sufficient velocity to agitate and float off loose food particles into the overflow.
 3. In a microwave oven only when the food will be immediately transferred to conventional cooking facilities as part of a continuous cooking process or when the entire, uninterrupted cooking process takes place in the microwave oven.
 4. As part of the conventional cooking process, about 40% longer cooking time is allowed for the thawing process at the beginning of the cook cycle.

Abbreviations: (Haz) = Hazard; (Reg) = Regulatory; (Qual) = Quality; (OSHA) = Occupational Safety and Health Agency

1 Temperatures, unless otherwise stated, are food temperatures. They are measured both 1/16-inch below the surface as well as at the center of food in order to determine the degree of control and stability of hot and cold systems.
Chemical Additives (Haz)
- Sulfates and sulfites are not used in the preparation of food.
- No more than 1/8 teaspoon (1.7 g) MSG is used per 12 ounce (340 g) portion of food.
- Any food containing yellow No. 5 is identified to the customer on the menu.
- Nitrates and nitrates are used at a concentration of <200 ppm.
- HACCP recipe procedures are used for all recipes using food chemicals that are dangerous when used in excess.

Raw food handling (Haz)
- All government inspected raw food is expected to have some degree of pathogenic microorganism, chemical and hard foreign object contamination.
- After touching raw food and containers, employees wash their hands.

Separate raw and cooked food (Haz)
- Raw and cooked foods are kept separate.
- Separate, freshly cleaned and sanitized cutting boards and knives are used for raw foods and for cooked foods.
- Equipment with any raw food contamination never contacts cooked food without first being cleaned and sanitized.

Food washing (Haz)
- All raw fruits and vegetables, after trimming are thoroughly washed before preparation using the following method.
 - Immerse the items in a sanitized sink of cold water kept flowing with an overflow pipe.
 - Agitate.
 - A vegetable brush is used when appropriate.
 - Transfer the food to a second sink containing an adequate supply of clean cold water and agitate once more.
 - Drain items.

Cutting up raw food (Haz)
- Raw food is prepared in small enough quantities to maintain the temperature below 50°F.
- Preparation is not done more than 24 h in advance of use.

Potentially hazardous food (Haz)
- All food is considered to be potentially hazardous unless it has a pH < 4.6 (to control growth of *Clostridium botulinum*), or a $a_{w} < .86$ (to control growth of *Staphylococcus aureus*), or is commercially sterilized in a sealed, approved container.
- Food that is not pasteurized has a pH of < 4.1 to control *Salmonella* spp.

Hard foreign objects (Haz)
- Food is inspected for the presence of any extraneous material that could cause disgust, alarm or injury to consumers.
- The following procedures are used to prevent or minimize the presence of hard foreign objects and other unwanted material in food.
 - Can opener blades are kept dull and are replaced when they get sharp.
 - Whole spices, herb seeds and leaves are wrapped in cheesecloth bags before adding to food so they can be removed.
 - Toothpicks with pants are used.
 - Food is inspected for bones, bone chips, glass.
 - All metal staples, twist-ties and nails used in packaging are accounted for.
 - All packaging material is removed from products.
 - Metal scrubbing pads are not used for cleaning food utensil or food preparation work surfaces.
 - Metal ice scoops are used for getting ice from ice machine. Beverage glasses are never used to scoop ice.
 - Fresh fruits and vegetables are washed and inspected for the presence of insects and worms.
FOOD SAFETY CONTROL REQUIREMENTS

Food Pasteurization (Haz)
All food can be pasteurized according to the 3D-7D *Salmonella* inactivation (kill). However, in some cases, old government regulations still specify higher end-point temperatures. Unless the company or facility has government approval for a lower time-temperature standard, specified foods must be cooked to government specified temperatures.

- Raw meat, poultry and fish pieces are cooked to assure that the center temperature in the item’s thickest part reaches a pasteurization temperature for an established period of time.
- The following Food Pasteurization Table indicates the center temperature and the amount of time required at that temperature to reduce *Salmonella* in beef, pork, poultry and fish by at least 1,000:1/g for immune-complete people and 10:1/g for immune compromised people.

<table>
<thead>
<tr>
<th>Temperature °F (°C)</th>
<th>HITM 3D (10³:1)/g</th>
<th>USDA / FDA 7D (10⁴:1)/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130°F (54.4°C)</td>
<td>51.9 min</td>
<td>121 min</td>
</tr>
<tr>
<td>135°F (57.2°C)</td>
<td>16.4 min</td>
<td>38.3 min</td>
</tr>
<tr>
<td>140°F (60.0°C)</td>
<td>5.19 min</td>
<td>12.1 min</td>
</tr>
<tr>
<td>145°F (62.2°C)</td>
<td>98.4 s</td>
<td>3.8 min</td>
</tr>
<tr>
<td>150°F (65.5°C)</td>
<td>31.1 s</td>
<td>72.6 s</td>
</tr>
<tr>
<td>155°F (68.3°C)</td>
<td>9.84 s</td>
<td>23.0 s</td>
</tr>
<tr>
<td>160°F (71.1°C)</td>
<td>3.1 s</td>
<td>7.3 s</td>
</tr>
<tr>
<td>Pork, Fish:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150°F (65.6°C)</td>
<td>31.1 s</td>
<td>72.6 s</td>
</tr>
<tr>
<td>165°F (73.8°C)</td>
<td>.984 s</td>
<td>2.3 s</td>
</tr>
<tr>
<td>Poultry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150°F (65.6°C)</td>
<td>31.1 s</td>
<td>72.6 s</td>
</tr>
<tr>
<td>165°F (73.8°C)</td>
<td>.984 s</td>
<td>2.3 s</td>
</tr>
</tbody>
</table>

Safe preparation of multi-portion, thick, >2-inch items (Haz)
- Rare roast beef is removed from the oven when the center temperature is above 130°F and transferred to a hot holding device that is set at a temperature and at an adequate relative humidity to keep the center and surface temperature at 130°F or above.
- Other meat, fish, and poultry is kept in a hot holding device where the center temperature can be maintained at > 130°F for safety and > 150°F in order to meet customer satisfaction standards and Minnesota regulatory standards.
- Slow cooked food products with a starting center temperature of 40°F reach 130°F within < 6 h to prevent hazardous growth of pathogenic microorganisms.
- Commercial hams and pasteurized, pre-cooked crab are maintained at temperatures below 40°F, or are heated and maintained > 150°F after removal from the container.
- The facility plans to have little or no leftover roasts or other thick items, because of the hazardous possibility of spore outgrowth in these items during cooling.
- Any leftovers from thick pieces of meat (roasts) are cut into pieces <2 inches thick and chilled to 40°F in 11 h or less (in 4 h, if facility has a blast chiller).

This Retail Food Operation Food Hazard Control Checklist will continue in subsequent issues of Dairy, Food and Environmental Sanitation. The May installment will cover: Preparation (cont.).
New IAMFES Members

Alabama

Phillip Jarnigan
Rudy Farm Co.
Florence

California

Margaret Andersen
US Army
Long Beach

Debbi Leuer
San Bernardino Co. Env. Health
San Bernardino

Karen Okusu
Thomas J. Payne Market Development
Burlingame

Nina Parkinson
National Food Processors Association
Dublin

Peter Barnes
Hyatt on Sunset
W. Hollywood

Colorado

Annette M. Campbell
Imperial Holly Corp.
Colorado Springs

Florida

Lori Milanesi
General Mills Restaurants
Orlando

Illinois

Royal Delegge
Winn Co. Health Department
Rockford

Iowa

Karla J. DeBower
Carroll County Environmental Health
Carroll

Christopher E. Nelson
Kemin Industries
Des Moines

Silas Strother
General Foods
Mason City

Kansas

Jeff Frank
Resers Fine Foods
Topeka

Kentucky

Karen L. Asher
Aquionics
Erlanger

Louisiana

India (McLin) Graham
Louisiana State Dept. of Health
Baton Rouge

Maryland

Michael Ellison
Food and Drug Administration
Rockville

Patti Nedoluha
University of Maryland
College Park

Gary W. Thompson
Balt County Health Department
Towson

Minnesota

Brian J. Anderson
Davisco International
Le Sueur

Dan Erickson
Minnesota Dept. of Agriculture
St. Paul

Jay Juergens
Rosemount, Inc.
Eden Prairie

Missouri

Paul J. Bronander
Good Humor-Breyers Ice Cream
Sikeston

New York

Kevin Dunnigan
Rich Products Corporation
Buffalo

Scott Hall
Leprino Foods
Waverly

Bill Holmberg
Dellwood Foods, Inc.
Yonkers

Kathleen O’Donnell
Wegman’s Food Markets, Inc.
Rochester

Ohio

Kurt Kausch
HIXSON
Cincinnati

Oklahoma

Laura Fenton
Oklahoma State University
Stillwater

Pennsylvania

Lisa Kafferlin
Erie County Health Department
Erie

Texas

Araceli Caudle
Tarrant County Health Dept.
Fort Worth

Nancy Turnage
Tarrant County/Ft. Worth Health Dept.
Azle

Virginia

Kelly J. Karr
American Meat Institute
Arlington

Wisconsin

Chris Herrmann
Northland Food Lab, Inc.
Ft. Atkinson

Argentina

Susana Binotti De Piaggio
Veterinarian
Buenos Aires, Capital Federal

Canada

Edie Ashton
University of Alberta
Edmonton, Alberta

Kelly E. Buckley
Burger King Canada
Mississauga, Ontario

Brian P. Gregory
North Okanagan Health Unit
Enderlay, British Columbia

Stephen B. Wilson
Kraft General Foods Canada, Inc.
Ingleside, Ontario

Denmark

Susanne Knoechel
RVAU Center for Food Research
Frederiksborg

222 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994
Ontario Food Protection Association Holds Annual Meeting

"Total Quality Confusion ... What's It All About?" was the topic of the Annual Meeting of the Ontario Food Protection Association, held November 17, 1993, at the Valhalla Inn, Toronto, Ontario. The meeting was convened by Debbie Labelle, J. M. Schneider Inc., and Anna Lamarmerding, Agriculture and Agri-Food Canada. The audience of 140 listened to speakers discuss ISO 9000, TQM and HACCP and their applications in manufacturing, food service and regulatory fields. Dr. Subhash Puri, Chief Statistician with Agriculture and Agri-Food Canada, and author of several books, began the program with his talk on ISO 9000 + TQM + HACCP — the Trilogical Connection — an excellent overview of how these programs complement each other to ensure quality in manufacturing. Maximizing Value from ISO 9000 Using TQM followed the theme, presented by Mr. Dennis Beecroft, Managing Director of the Institute for Improvement in Quality and Productivity at the University of Waterloo, Ontario. ISO 9000 Registrations in North America were discussed by Mr. Terry Ascott of the Quality Management Institute, one of the Registrars for ISO 9000 certification in Canada. Maureen Howes, Special Projects Inspector of the York Regional Health Department, provided insights from her experiences in the food service arena — The Good, the Bad and the Ugly — The Positives and Pitfalls of Implementing HACCP. Ms. Howes noted that successful implementation of HACCP requires internal staff training programs as well as general education of the food establishment operators. She also emphasized that data collection from HACCP pilot programs can provide a direction for manufacturing.

The Good, the Bad and the Ugly — The Positives and Pitfalls of Implementing HACCP

The OFPA business portion of the annual meeting featured the presentation of OFPA Awards. The Sanitarian of the Year Award was presented to John Lytwyn, Auditor/Food Processing, Health Protection Branch, Health Canada. Together they presented an overview of programs designed to coordinate and streamline the federal inspection systems for food manufacturers. Comments from the audience underlined the value of the meeting as an industry-government forum, and that ISO 9000, TQM and HACCP are current key concerns of food industry professionals.

The OFPA promotes excellence in food safety education through an undergraduate scholarship program, funded in part by OFPA sustaining member companies. The 1994 OFPA Scholarships of $500 each and a 1-year OFPA membership were presented to:

- Michael Brodsky, Ontario Ministry of Health, for his contributions to the objectives of the OFPA through his many years of active service with the organization.
- John Shelvey of Centennial College.
- John Lytwyn, Auditor/Food Processing, Health Protection Branch, Health Canada. John has been instrumental in conveying the concepts of HACCP to regulatory agencies and industry.
- Peter Boleszczuk, Ontario Ministry of Health, was presented with the Award of Merit for his many outstanding contributions to the OFPA as a past member of the Board of Directors and as an Executive Officer.

For more information, contact Deb Larson at (701)221-6147.

Michael Brodsky, Ontario Ministry of Health, was presented with the Lifetime Achievement Award to acknowledge his many contributions to the objectives of the OFPA through his many years of active service with the organization.

The OFPA promotes excellence in food safety education through an undergraduate scholarship program, funded in part by OFPA sustaining member companies. The 1994 OFPA Scholarships of $500 each and a 1-year OFPA membership were presented to:

- Kelley Leclair, Dept. of Food Science, University of Guelph; Sandra Abram, in the Food and Drug Technology program at Durham College, Oshawa; Kevin Haley, of Ryerson Polytechnical; Cathy Inkster, a student in the Food Service Supervision program at George Brown College, Toronto; and John Shelvey of Centennial College.
- Krista Mountjoy was presented with the Past President's plaque and pin. Krista expressed her appreciation to the Board of Directors for their support during the past year, and thanked outgoing board members Sandra Noonan and Andrew Cavasin for their contributions. The gavel was presented to the incoming president, Anna Lamarmerding, who outlines goals for the next year, and then adjourned the business meeting.

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/ APRIL 1994

Affiliate News

Upcoming IAMFES Affiliate Meetings

1994

MAY

-4-5, Wisconsin Association of Milk and Food Sanitarians will present a two-day workshop on HACCP programs. The workshop will be presented at the Sheraton Inn, Madison, WI. Registration information is available from Neil Vassau, PO Box 7883, Madison, WI 53707.

JUNE

-2, Tennessee Association of Milk, Water and Food Protection's Annual Meeting will be held at the Nashville Ramada Airport. For more information please contact Dennis Lampey at (615)360-0157.

SEPTEMBER

-19-21, Indiana Environmental Health Association, Inc. Annual Meeting will be held in Muncie, IN. For more information, contact Tami Barrett at (317)633-8400.

-20-22, New York State Association of Milk and Food Sanitarians Annual Conference will be held at the Sheraton Inn-Buffalo Airport, Buffalo, NY. For more information contact Janene Gargiulo (607)255-2892.

OCTOBER

-12-13, Iowa Association of Milk, Food and Environmental Sanitarians Annual Meeting will be held at the Best Western Starlite Village (formerly the Ramada Hotel), Waterloo, IA. For more information call Dale Cooper at (319)927-3212.

NOVEMBER

-2-3, North Dakota Environmental Health Assn. Annual Educational Conference will be held at the International Inn, Williston, ND. For more information, contact Deb Larson at (701)221-6147.

*1, 2-3, Industrial Conference will be held at the Best Western Starlite Village (formerly the Ramada Hotel), Waterloo, IA. For more information call Dale Cooper at (319)927-3212.

*19-21, Indiana Environmental Health Association, Inc. Annual Meeting will be held in Muncie, IN. For more information, contact Tami Barrett at (317)633-8400.

*20-22, New York State Association of Milk and Food Sanitarians Annual Conference will be held at the Sheraton Inn-Buffalo Airport, Buffalo, NY. For more information contact Janene Gargiulo (607)255-2892.

*12-13, Iowa Association of Milk, Food and Environmental Sanitarians Annual Meeting will be held at the Best Western Starlite Village, (formerly the Ramada Hotel), Waterloo, IA. For more information call Dale Cooper at (319)927-3212.

*2-3, North Dakota Environmental Health Assn. Annual Educational Conference will be held at the International Inn, Williston, ND. For more information, contact Deb Larson at (701)221-6147.
Unipath Announces New Anaerogen® Anaerobic Atmosphere Generation System

Unipath Limited is pleased to announce a new Anaerobic Atmosphere Generation System, the first product in the new Oxoid brand Atmosphere Generation System.

The unique Oxoid Anaerogen System employs new technology that replaces oxygen with carbon dioxide in a sealed jär more easily, quickly, and safely than with any other system. With no water, hydrogen, or catalyst to add, the Anaerogen sachet absorbs oxygen (to a final atmosphere of less than 1% oxygen) from a 3.5 L jar in 30 to 40 min. No hydrogen is generated, heat does not exceed 65°F, and no hazardous pressure build-up occurs.

The fast action of the AnaeroGen System aids presumptive identification by improving colony growth during the first 24-48 h, especially with fastidious and obligate anaerobes. The Oxoid AnaeroGen System includes everything needed for the transport, culture, selective isolation and susceptibility testing of anaerobic organisms: Oxoid AnaeroGen sachets in 2.5 L or 3.5 L format; 3.5 L anaerobic jar; wide range of special, high quality Oxoid dehydrated culture media and selective supplements.

Unipath provides the industrial food industry with a complete line of dehydrated culture media, an innovative range of selective culture media, and a wide range of diagnostic kits for the identification of organisms and/or their toxins.

UNIPATH - Ogdensburg, NY

Please circle No. 243
on your Reader Service Card

Klenzade Retains Mona Meyer McGrath & Gavin

Klenzade, a division of St. Paul-based Ecolab, Inc., has selected Mona Meyer McGrath & Gavin to provide marketing communications and trade media relations services.

Klenzade is the market leader in developing and marketing sanitation products, systems and services for the on-farm dairy, dairy processing and food and beverage processing industries. Ecolab, Inc. is a billion dollar, world-wide Fortune 500 corporation and the market leader in global institutional sanitation products and services.

Mona Meyer McGrath & Gavin, headquartered in Minneapolis, employs more than 90 people and is the largest public relations firm in the North Central United States. The firm is part of the London-based Shandwick, which has more than 70 principal offices throughout the world.

Klenzade, Division of Ecolab - St. Paul, MN

Please circle No. 244
on your Reader Service Card

APV Fluid Handling Expands to Include APV Rosista Valves

Effective February 1, 1994, APV Fluid Handling, Lake Mills, WI, assumed the responsibilities for the sales, application, manufacture and service of all APV Rosista Single Seat, Double Seat and Butterfly Valves as well as related fluid handling components formerly supplied by APV Rockford.

This move consolidates all APV North American Fluid Handling capabilities at one location for more efficient operation and improved customer service. APV fluid handling equipment is sold and serviced by a network of local authorized distributors and regional APV sales offices supported by a team of product managers, application engineers and design engineers. Users of all APV valves may now order new or replacement parts direct by calling the Lake Mills factory at 1-800-338-4100.

In addition to valves, APV Fluid Handling provides the processing industries with a complete line of Rotary and Centrifugal Pumps, Powder Mixers and Special Pumping Assemblies.

APV Fluid Handling - Lake Mills, WI

Please circle No. 245
on your Reader Service Card

Pall Corporation and New Logic International, Inc. Agreement for Membrane Separation System

Pall Corporation and New Logic International, Inc. have entered into an exclusive agreement under which Pall has acquired manufacturing and sales rights under New Logic’s Vibratory Shear Enhanced Processing filtration system patents and know how. Pall will market the system under the name Pall-Sep VMF™ filter. Pall has obtained exclusive rights to manufacture and sell the separations system worldwide.

The Pall-Sep VMF filter offers high flux rates, high concentration limits, low power requirements and mechanical simplicity in separations ranging from low molecular weights through 30 microns. These features, offered for the first time in a membrane system, provide a new standard in rapid separation. The Pall-Sep VMF filter can replace many conventional separation processes, such as evaporation, rotary drum vacuum filtration, centrifugal separation and crossflow membrane filtration.

The Pall-Sep VMF filter can be configured with reverse osmosis, ultrafiltration and microfiltration removal rated membranes and is designed to accommodate pilot and industrial scale filtration applications.

Pall Corporation - East Hills, NY

Please circle No. 246
on your Reader Service Card
81st IAMFES Annual Meeting Exhibitors

ABC Research Corporation, 3437 S.W. 24th Ave., Gainesville, FL 32607, (904)372-0436, FAX (904)378-6483

Full service food laboratory - microbiology, chemistry, HACCP programs, imports and exports, plant audits, consulting and problem solving, product development.

Aquionics, Inc., 21 Kenton Lands Road, Erlanger, KY 41018; (606)341-0710, (800)925-0440, FAX (606)341-2302

High intensity ultraviolet systems for disinfection of fluids, air and packaging will be showcased. Ultraviolet is a non-chemical, non-heat exchange method for killing bacteria, yeast, molds and viruses commonly found in food processes.

Atkins Technical, Inc., 3401 S.W. 40th Blvd., Gainesville, FL 32608-2399; (904)378-5555, (800)284-2842, FAX (904)335-6736

Atkins "New" Start-Stop Digital Recorders allows the food professional to start and stop recordings on demand.

Becton Dickinson Microbiology Systems, P. O. Box 243, 250 Schilling Circle, Cockeysville, MD 21030; (410)771-0100, FAX (410)584-2806

Becton Dickinson Microbiology Systems will exhibit products utilized for the cultivation and identification of foodborne pathogens, including Salmonella and Listeria.

In addition, an innovative new identification system that was recently introduced, will be presented as well as a new line of disposable dilution bottles.

BioControl Systems, Inc., 19805 North Creek Parkway, Bothell, WA 98011-8214; (800)245-0113, (206)487-2055, FAX (206)487-1476

BioControl provides rapid diagnostic test systems for microbiology including the 1-2 Test, Assurance EIA, ColiTrak, and ColiComplete.

Bentley Instruments, Inc., 327 Lake Hazeline Drive, Chaska, MN 55318; (612)448-7600, FAX (612)368-3355

Bentley Instruments manufactures analytical instruments for the dairy industry.

bioMérieux Vitek, 595 Anglum Drive, Hazelwood, MO 63042, (800)638-4835, (314)731-8500, FAX (314)731-8700.

On display will be the miniVIDAS fully automated immunoanalysis system for the pathogen screening of E. coli, Listeria Staphylococcal enterotoxin and Salmonella.

Charm Sciences, Inc., 36 Franklin Street, Malden, MA 02148; (617)322-1523, (800)343-2170, FAX (617)322-3141

Crouch Supply Co., Inc., P. O. Box 163829, 305 S. Main Street, Ft. Worth, TX 76161; (800)825-1110, (817)332-2118, FAX (817)332-6511

Since our business began in 1914, we are able to provide the necessary supplies, equipment and chemicals for food, beverage, dairy and pharmaceutical industries.

Charles Felix Associates, P. O. Box 1581, Leesburg, VA 22075; (703)777-7448, FAX (703)777-4453

Charles Felix Associates is a consulting firm specializing in public health promotion, particularly in the area of food safety. The CFA exhibit offers samples of CFA publications: Food Protection Report and Food Talk.

Custom Control Products, Inc., 1300 N. Memorial Drive, Racine, WI 53404; (414)637-9225, FAX (414)637-5728

CCPI, process control automation for food, dairy, beverage automation. “CCPI setting new standards in control designs, customer commitment and product performance.”

Dairy & Food Labs, Inc., 3401 Crow Canyon Road, Suite 110, San Ramon, CA 94583-1307; (510)830-0350, FAX (510)830-0379

Dairy & Food Labs, Inc., (DFL) is a client driven service laboratory offering microbiological testing, chemical analyses, and nutritional labeling services.

Decagon Devices, Inc., NE 1525 Merman Drive, P. O. Box 835, Pullman, WA 99163; (509)332-2756; FAX (509)332-5158

AquaLab from Decagon for measurement of water activity is accurate over a wide range with the fastest measurement time.

Diversey Corporation, 12025 Tech Center Drive, Livonia, MI 48150; (800)521-8140, (313)458-5000, FAX (313)458-2471

Diversey Corporation is the global leader in the cleaning and sanitation industry, with products and services tailored to suit your needs.

DQCIServices, Inc., 5205 Quincy Street, St. Paul, MN 55112-1400; (612)785-0484, FAX (612)785-0584

DQCIServices provide of top quality component calibration samples and confirmed reliability with milk testing laboratories across the nation.

The Educational Foundation of the National Restaurant Association, 250 S. Wacker #1400, Chicago, IL 60606; (312)715-7010, (800)765-2122, FAX (312)715-0807

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994 225
SERVSAFE® Applied Foodservice Sanitation certification coursebook; Managing a Food Safety System; HACCP Reference Book; Serving Safe Food Video Series.

Electro-Steam Generator Corporation, 1000 Bernard Street, Alexandria, VA 22314-1299; (703)549-0644, (800)634-8177, FAX (703)836-2581

Electro-Steam Generator Corporation manufactures an ALL-ELECTRIC steam generator, steam for sterilization, cooking, and cleaning - wherever quality steam is needed.

EM Science, 480 S. Democrat Road, Gibbstown, NJ 08027; (800)222-0342, FAX (609)423-4389

The Reflectoquant Analysis System - a hand held analysis system composed of ion specific test strips (including peroxide, peracetic acid, and nitrate) and a reflectance meter.

Foss Food Technology Corporation, 10355 West 70th Street, Eden Prairie, MN 55344; (612)941-8870, FAX (612)941-6533

Foss Food Technology provides high quality analytical instruments, consumables, and diagnostic kits for QC, Production and Online Process Control to the Dairy, Food, Feed and Beverage industries. Sales locations throughout North America.

Gardex Chemicals, Ltd., 246 Attwell Drive, Etobicoke, Ontario, Canada M9W 5B4; (416)675-1638, (800)563-4273, (416)675-6727

Gardex not only offers a complete line of insecticides, baits, glue boards, equipment and light traps, but is able to offer ancillary services such as application training and consultation on pest management.

G&H Products Corp., 7600 57th Avenue, Kenosha, WI 53142; (414)694-1010, (800)558-4060, FAX (414)694-2907

Gist-brocades Food Ingredients, N93 W14560 Whittaker Way, Menomonee Falls, WI 53051; (414)255-7955, (800)423-7906, FAX (414)255-7732

Delvo-X-Press and Delvotest PSP, test for detecting antibiotics in bulk milk and individual cow samples.

IDEXX Laboratories, Inc., 1 Idexx Drive, Westbrook, ME 04092; (207)856-0300, FAX (207)856-0346

IDEXX Laboratories manufactures and markets advanced biotechnology-based, rapid detection systems for health and quality assurance applications in the food and environmental industries.

Integrated BioSolutions, Inc., 4270 US Route One, Monmouth Junction, NJ 08852; (908)274-1778, (800)222-8260, FAX (908)274-1733

Microbiology - The Next Generation: Integrated BioSolutions invites you to experience the future of microbiology. Where speed, automation, and simplicity become reality!

International BioProducts, Inc., 14780 NE 95th Street, Redmond, WA 98052; (206)883-1349, FAX (206)881-6880

International BioProducts offers TECRA diagnostic products for the rapid detection of Salmonella, Listeria, Staphylococcal Enterotoxins A-E and Bacillus Diarrheal Enterotoxin. We also sell over 1000 general use laboratory supplies.

Klenzade, Ecolab, Inc., Ecolab Center - N/14, St. Paul, MN 55102; (612)293-2549, FAX (612)293-2260

Sanitation products, systems and services.

Nasco, 901 Janesville Avenue, Fort Atkinson, WI 53538-0901; (414)636-2446, FAX (414)564-8296

Nasco manufactures Whirl-Pak, sterile, polyethylene bags used for product sampling, QA testing and R & D.

Nelson-Jameson, Inc., 2400 E. 5th Street, PO Box 647, Marshfield, WI 54449; (800)826-8302, (715)387-1151, FAX (715)387-8746

Nelson-Jameson offers a wide range of unique products to help food and dairy processors integrate QA/QC with plant operations.

Organon Teknika Corp., 100 Akzo Avenue, Durham, NC 27712; (800)654-4682, FAX (919)620-2410

Organon Teknika will exhibit rapid identification systems, Micro-ID and Micro-ID Listeria. We also provide rapid screening kits and confirmatory tests - Listeria-Tek, Salmonella-Tek and EHEC-Tek (for E. coli O157:H7).

Q Laboratories, Inc., 2014 Harrison Avenue, Cincinnati, OH 45214; (513)662-1300, FAX (513)662-1380

Q Laboratories, Inc. is an independent testing and consulting laboratory providing microbiological and analytical support to the food, beverage, cosmetic, pharmaceutical and dairy industries.

R-TECH, P.O. Box 116, Minneapolis, MN 55440-0116; (612)481-2207, (800)328-9687, FAX (612)486-0837

R-TECH’s staff has a diverse background with experience in the areas of meats, dairy, cereals, oils, feeds and environmental issues.

Ralston Analytical Laboratories, Checkerboard Square, St. Louis, MO 63164; (314)982-2806, (800)423-6837, FAX (314)982-1078

Ralston Analytical Laboratories provides chemical and microbiological testing to the food industry, including microbial challenge studies and nutrition label testing.

REMEI, 12076 Santa Fe Drive, Lenexa, KS 66215; (913)888-0939, (800)255-6730, FAX (913)888-5884

Microbiology products including prepared culture media (plate and tubes), sterility testing media and contact plates for environmental sampling.
Silliker Laboratories Group, 900 Maple Road, Homewood, IL 60430; (708)957-7878, FAX (708)957-8449

Silliker Laboratories is an international network of 13 labs which specializes in assessing the safety, quality and nutritional value of foods. New for '94: "The Heart of HACCP: In-Plant Application of HACCP Principles" training video.

SmithKline Beecham Animal Health, 812 Springdale Drive, Exton, PA 19341; (610)363-3100, (800)877-6250, FAX (610)363-3284

SmithKline Beecham Animal Health offers technology to enable food and milk processors to test products for antibiotic residues. The Penzyme Farm Test and Penzyme III Antibiotic Residue Test detects beta-lactam antibiotics in milk. Both of these products are AOAC certified.

Sparta Brush Co., Inc., 402 S. Black River Street, Sparta, WI 54650-0317; (800)356-8366, (608)269-2151, FAX (608)269-3293

Sparta brushes and accessories are custom-designed for each specific application. Our primary purpose is offering you ultimate quality products and outstanding performance.

Spiral Biotech, Inc., 7830 Old Georgetown Road, Bethesda, MD 20814; (301)657-1620, FAX (301)652-5036

New Autoplate™ Spiral plater eliminates serial dilutions; diluflo™ (automates sample dilutions); Automatic bacteria counters; MikroClave™ (rapid media sterilization); Microbial air samplers.

The Sterilex Corporation, 10315 South Dolfield Road, Owings Mills, MD 21117; (410)581-8860, FAX (410)581-8864

Proven effective against biofilms, Sterilex unique patented products represent a new generation of technologies for safe food plant and farm decontamination.

3-A Symbol Council, Executive Plaza Building, Suite 404, 4403 1st Avenue, S.E., Cedar Rapids, IA 52402; (319)395-9151, FAX (319)393-1102

Information relating to 3-A Sanitary Standards for processing equipment and authorization to use the 3-A Symbol will be available at the Symbol Council booth.

3M Microbiology Products, 3M Center, Building 275-4E-01, St. Paul, MN 55144-1000, (800)228-3957, FAX (612)733-9596

Petrifilm™ plates increase efficiency to raise your productivity. They reduce microbial testing to three simple steps.

Troy Biologicals, Inc., 1238 Rankin Street, Troy, MI 48083, (800)521-0445, (810)585-9720, FAX (810)585-2490

Troy Biologicals is a distributor of microbiological products for industry and research.

Unipath, 217 Colonnade Road, Nepean, Ontario, Canada K2E 7K3; (800)567-8378, (613)226-1318, FAX (613)226-3728

We will introduce a diagnostic kit for detection of Listeria from enrichment broth within 15 minutes.

VICAM, 313 Pleasant Street, Watertown, MA 02172, (617)926-7045, (800)338-4381, FAX (617)923-8055

VICAM manufactures microbiological and mycotoxin testing systems for the food industry.

Weber Scientific, 2732 Kuser Road, Hamilton, NJ 08691; (800)328-8378, (609)584-7677, FAX (609)584-8388

Weber Scientific specializes in equipment for bacteria and antibiotic residue detection, butterfat, temperature and sanitation testing, as well as general laboratory equipment.

West Agro, Inc., 11100 North Congress Avenue, Kansas City, MO 64153; (816)891-1600, (816)891-1558, FAX (816)891-1606

West Agro, as a Tetra Laval Company, is dedicated to serving the food, dairy and beverage industries with a complete line of high quality chemicals.

ZEP Manufacturing Co., 1310 Seaboard Industrial Blvd., Atlanta, GA 30318; (404)352-1680, FAX (404)350-6232

National Manufacturer of specialty chemicals - acid sanitizers, perozone and quat, hand cleaners, dispensers and cleaners.
ANNOUNCING

AN ILSI NORTH AMERICA SYMPOSIUM SERIES

TRENDS IN
FOOD MICROBIOLOGY

WHAT

Three international symposia providing the perspectives of scientists in government, academia, and industry regarding the application of concepts important to the microbiological aspects of food safety and quality.

Sponsored by the ILSI North America Technical Committee on Food Microbiology.

In collaboration with the International Association of Milk, Food and Environmental Sanitarians (IAMFES).

WHEN

July 31 - August 3, 1994, in conjunction with the 81st IAMFES Annual Meeting.

WHERE

Hyatt Regency Hotel, San Antonio, Texas, USA.

SYMPOSIUM TOPICS

- Quantitative Risk Assessment in Food Microbiology
- Applications for Predictive Microbiology
- Natural Antimicrobials and Inhibitors for Food Applications

Participation is open to individuals attending the 1994 IAMFES Annual Meeting. You must register with IAMFES in order to attend these symposia.

For more information regarding the IAMFES Annual Meeting, contact IAMFES, 200 W. Merle Hay Center, 6200 Aurora Avenue, Des Moines, Iowa 50322, USA. Telephone: 800/369-6337 (U.S.), 800/284-6336 (Canada), or 515/276-3344 (international). Telefax: 515/276-8655.

PRELIMINARY PROGRAM

81st Annual Meeting of the
International Association of Milk, Food and
Environmental Sanitarians, Inc.

In Cooperation with the Texas Association of Milk, Food and Environmental Sanitarians

Hyatt Regency Riverwalk, San Antonio, Texas
July 31 - August 3, 1994

REGISTRATION TIMES

Saturday, July 30 12:00 - 5:00 p.m.
Sunday, July 31 8:30 a.m. - 7:00 p.m.
Monday, August 1 8:00 a.m. - 4:00 p.m.
Tuesday, August 2 8:00 a.m. - 4:00 p.m.
Wednesday, August 3 8:00 a.m. - 12:00 p.m.

EXHIBITOR HOURS

Sunday, July 31 7:45 - 10:00 p.m.
(Following the Opening Session)
Monday, August 1 9:30 a.m. - 3:30 p.m.
Tuesday, August 2 9:30 a.m. - 3:30 p.m.

IAMFES BOARD MEETINGS

Saturday, July 30 8:00 a.m. - 5:00 p.m.
Tuesday, August 2 7:00 a.m. - 8:30 a.m.
Thursday, August 4 7:00 a.m. - 9:00 a.m.

COMMITTEE/PROFESSIONAL
DEVELOPMENT GROUP MEETINGS

SUNDAY, JULY 31

7:00 - 10:00 a.m. Affiliate Council
10:00 - 11:00 a.m. Dairy Quality & Safety (Farm Section)
10:00 - 11:00 a.m. Audio Visual Library
10:00 - 11:00 a.m. Baking Industry Sanitary Standards
10:00 - 11:00 a.m. Past Presidents Advisory
10:00 - 12:00 a.m. Poultry Safety and Quality
10:00 a.m - 5:00 p.m Communicable Diseases Affecting Man
11:00 - 12:00 a.m. Dairy Quality and Safety (Plant Section)
11:00 - 12:00 a.m. Foundation Fund
11:00 - 12:00 a.m. Nominating
1:30 - 2:30 p.m. Constitution and By-Laws
1:30 - 2:30 p.m. Sanitary Procedures
1:30 - 3:00 p.m. Meat Quality and Safety
1:30 - 3:00 p.m. Dairy, Food & Environmental Sanitation
1:30 - 3:30 p.m. Seafood Safety and Quality
1:30 - 3:30 p.m. Applied Laboratory Methods
1:30 - 3:30 p.m. Food Service Sanitation
3:00 - 4:00 p.m. Environmental Issues in Food Safety
3:00 - 4:30 p.m. Journal of Food Protection Management
3:00 - 5:00 p.m. Food Safety Network
4:00 - 6:00 p.m. Program Advisory

WEDNESDAY, AUGUST 3

12:00 - 4:00 p.m. Program Advisory (members only)
SUNDAY EVENING, JULY 31

Opening Session

- **7:00** Welcome to the 81st Annual Meeting - H. BENGSCH, President of IAMFES and, R. RICHTER, Chairperson of the Local Arrangements Committee

- **7:15** Introduction of the Ivan Parkin Lecture - D. CLINGMAN, President-Elect of IAMFES

- **7:20** Ivan Parkin Lecture

 The Ivan Parkin Lecture is sponsored by the IAMFES Foundation Fund and is supported by the Sustaining Members

- **8:00** Nachos and Margaritas Reception - Held in the Exhibit Hall. An opportunity to greet old friends, make new ones and view the excellent technical displays.

MONDAY MORNING, AUGUST 1

Quantitative Risk Assessment in Food Microbiology

Sponsored by the ILSI North America Technical Committee on Food Microbiology

- **8:30** Overview - the International Commission on Microbiological Specifications for Foods (ICMSF) Approach - T. ROBERTS, Institute of Food Research, Reading, U.K.

- **9:00** Risk Assessment Terms and Definitions - M. POTTER, Centers for Disease Control and Prevention, Atlanta, GA

- **9:30** Health Risk Analysis of Food in Canada - E. TODD, Health Protection Branch, Ottawa, Ontario, Canada

- **10:20** Process Reliability and Risk - A Food Industry Perspective - M. COLE, Unilever Research, Bedford, U.K.

- **10:50** Council for Agricultural Science and Technology (CAST) Report on Risk Assessment - P. FOEGEDING, North Carolina State Univ., Raleigh, NC

Technical Session — Risk Assessment

- **9:15** Application of Sewage Sludge to Food Crops - H. EMERY, San Antonio Water System Regulatory Programs Dept., San Antonio, TX

- **9:30** Effect of Hydrostatic Pressure, in Combination with Heat and/or Irradiation, on the Survival of Clostridium sporogenes in Chicken - Y. CRAWFORD and E. Murano, Iowa State University, Ames, IA

- **9:45** Safety and Food Excellence (S.A.F.E.): A Program for Food Service Workers and Care Givers, who prepare Food for the Chronically Ill - R. GRAVANI, D. Scott, P. Kendall and D. Schmidt, Cornell University, Ithaca, NY

- **10:20** Environmental Testing for Listeria: the Quantitative Edge - B. JACKSON, VICAM, Watertown, MA

- **10:35** The Practical and Educational Role of Environmental Monitoring of Food Premises - I. LINJACKI, University of Guelph, Guelph, Ontario, Canada

- **10:50** Food Facility Plan Review - J. SCHRADE, Food and Drug Administration, Brooklyn, NY

- **11:05** Regulatory Inspection HACCP vs. Food Operation HACCP Self-Control - O. SNYDER, Hospitality Institute of Technology, St. Paul, MN

Technical Session — Dairy

- **8:30** Vitamin Fortification of Milk - R. BYRNE, International Dairy Foods Assn., Washington, DC

- **8:45** Shelf-life of Commercial Conventionally Packaged Cottage Cheese - S. MURPHY, R. Ledford, D. Bandler, S. Kozlowski, Cornell University, Ithaca, NY

- **9:00** Computer Models for Thermal Inactivation of Native Milk Enzymes - R. McKELLAR, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada

Technical Session — Analytical

- **8:30** Comparison of Enrichment Protocols for Use with VIDAS to Detect Salmonellae - J. BAILEY and N. Cox, U. S. Department of Agriculture, ARS, Athens, GA

- **8:45** Fluorometric Acid Phosphatase Method for Verifying End-Point Temperature in Cooked Poultry - C. DAVIS, W. Townsend and C. Lyon, U. S. Department of Agriculture, ARS, Athens, GA

- **9:00** Improved Medium and Method for Growing E. coli - R. FIRSTENBERG-EDEN, S. Allen, M. Averill and N. Sullivan, Difco Laboratories, Inc., Ann Arbor, MI

9:45 A Murine Monoclonal Antibody Specific to D-serogroup Salmonella - A. MASI and J. Zawistowski, University of Manitoba, Winnipeg, Manitoba, Canada

10:20 ATP Luminescence as a Means to Rapidly Detect Microbial and Fecal Contamination on Carcass Tissue - G. SIRAGUSA and C. Cutter, U. S. Department of Agriculture, ARS, Clay Center, NE

10:50 Effect of Monolaurin on L. monocytogenes Scott A at 37 and 8°C - M. JOHNSON, D. Scott and A. Bhunia, University of Arkansas, Fayetteville, AR

11:05 An isolation method for Arcobacter butzleri from Poultry - A. LAMMERDING, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada

11:20 Improved Enrichment Recovery of Campylobacter spp. from Broiler Chicken Carcasses - N. STERN, U. S. Department of Agriculture, ARS, Athens, GA

MONDAY AFTERNOON, AUGUST 1

Microbiology vs. Epidemiology: Complementary or Incompatible Disciplines Symposium

1:30 Worldwide Surveillance of Foodborne Disease Based on Epidemiological and Microbiological Findings - E. TODD, Health Protection Branch, Ottawa, Ontario, Canada

2:00 Microbiology Versus Epidemiology: Who Do You Trust? - D. SIMPSON, State Epidemiologist, Austin, TX

2:30 Human and Armadillo Leprosy in the Southern United States - M. HUGH-JONES, Louisiana State University, Baton Rouge, LA

3:20 A Microbiological Paradox: Viable but Non-Culturable Bacteria - R. COLWELL, Maryland Biotechnology Institute, College Park, MD

3:50 Hazard Analysis: The Link between Epidemiology and Microbiology - F. BRYAN, Food Safety Consultation and Training, Lithonia, GA
4:20 Summary of the Issues: the Experience of a Lifetime - S. MILLER, Health Sciences Center, San Antonio, TX

4:50 Panel of the Speakers: Questions and Conclusions

Technical Session — General Food Microbiology

1:30 Incidence of Arcobacter spp. in Ground Pork - C. COLLINS, I. Wesley and E. Murano, Iowa State University, Ames, IA

1:45 Commercial Field Trials Demonstrating Salmonellae Reduction in Broilers Using a Mucosal Competitive Exclusion Treatment - N. COX, J. Bailey and N. Stern, U. S. Department of Agriculture, ARS, Athens, GA

2:00 The Attachment of Viable and Nonviable Salmonella typhimurium to Poultry Skin - K. KIM, H. Lillard, J. Frank and S. Craven, University of Georgia, Athens, GA

2:15 Effect of Irradiation of Survival of Salmonella enteritidis in Whole Eggs and Liquid Eggs - L. SERRANO and E. Murano, Iowa State University, Ames, IA

2:30 Microbiological Evaluation of Reprocessed Broiler Carcasses - C. POWELL, G. Blank and R. Gallop, University of Manitoba, Winnipeg, Manitoba, Canada

3:20 Staphylococcus intermedius: Etiologic Association with Foodborne Intoxication from Butter Blend and Margarine - R. BENNET, F. Khambaty and D. Shah, Food and Drug Administration, Washington, DC

3:35 Irradiation Inactivation of Listeria monocytogenes and Staphylococcus aureus in Ground Beef as Affected by Fat Content and Temperature - J. MONK, M. Clavero, L. Beuchat, M. Doyle and R. Brackett, University of Georgia, Griffin, GA

3:50 Trichinosis Outbreak Associated with Smoked Wild Boar Meat, Ontario, Canada - B. MARSHALL and S. Isaacs, Wellington-Dufferin-Guelph Health Unit, Guelph, Ontario, Canada

4:05 Enterobacteriaceae from the Chicken Intestine that use Phosphatidylserine for Growth and Inhibit Salmonella typhimurium - S. CRAVEN, U. S. Department of Agriculture, ARS, Athens, GA

4:20 Characterization of Pyocyanine Produced by Pseudomonas Aeruginosa - N. NABBUT, American University of Beirut Medical Center, Beirut, Lebanon

4:35 Effects of Ionizing Radiation and Anaerobic Refrigerated Storage on Indigenous Microflora, Salmonella and Clostridium botulinum types A and B in Mechanically-deboned Chicken - D. THAYER, G. Boyd and C. Huhtanen, Eastern Regional Research Center, Philadelphia, PA

4:50 Efficacy of Cultured Whey of Antagonistic Microorganisms to Inhibit Psychrotrophic Pathogens in Refrigerated, Cooked Beef and Poultry - Y. HAO, R. Brackett and M. Doyle, University of Georgia, Griffin, GA

Stainless Steels for Dairy and Food Equipment Symposium

1:30 Utilizing Stainless Steels in the Food and Dairy Industries - P. ELLIOTT, P.E. Corrosion and Materials Consultancy, Inc., Colts Neck, NJ

2:00 Fabrication and Application of Stainless Steel Equipment for Sanitary Applications - V. MILLS, Evergreen Packaging Equipment, Cedar Rapids, IA

2:30 Orbital Welding of Stainless Steel Tubing for Food and Dairy Applications - B. HENON, ARC Machines, Inc., Pacioma, CA

3:50 Hygiene and Other Health and Safety Aspects of Stainless Steel in Food-Handling and Processing Plants - J. LILLY, Nickel Development Institute, Toronto, Ontario, Canada

Meat Quality and Safety: Effect of Production and Processing on the Microbial Quality of Meat Symposium

Sponsored by the Ontario Food Protection Assn.

1:30 Innovations in Australian Meat Processing Practices and Slaughter Operations: Their Impact on Microbial Status - B. SHAY, CSIRO Australia, Meat Safety Laboratory, Brisbane, Queensland, Australia

2:00 Verocytotoxigenic Escherichia coli: The Dairy Farm as a Model for Animal - Human Transmission - R. CLARKE, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada

Monday Poster Session

- Summary of Standard Plate Counts of Plant Obtained Chocolate Milk and Drinks After 14 Days at 7.2°C (45°F) - S. BARNARD and R. Bicher, The Pennsylvania State University, University Park, PA
- Rapid Colorimetric Method for Estimation of Rancidity in Dairy Products - T. BAUER and P. Vasavada, University of Wisconsin, River Falls, WI
- Survival of Brucella abortus in the Mexican White Soft Cheese - M. DIÁZ, Centro De Investigacion En Alimentacion y Desarrolla, Sonora, Mexico
- S-Value and Epifluorescence Determination of Bacterial Attachment on the Cleaning Brush of an Automatic Milking System* - C. LIU and D. Westhoff, University of Maryland, College Park, MD
- Effect of Temperature and Cell Concentration on Radiosensitivity of Listeria monocytogenes - L. ANDREWS, D. Marshall and R. Grodner, Louisiana State University, Baton Rouge, LA
- Rapid Detection of Enterotoxigenic Clostridium perfringens in Beef Using an Alkaline Phosphatase Microcolony Technique - L. BAEZ and V. Juneja, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Development of Two Simple Methods for the Recovery of Salmonella from Food for Detection by PCR - W. BARBOUR and H. Zanecosky, DuPont Co., Wilmington, DE
- Rapid Assay System for the Detection of Beta-lactam Residues in Milk - S. FAUST, S. Clark and L. Chaney, IDEXX Laboratories, Westbrook, ME
- Reduction of Hydroxymethylfurfural of Honey Exposed to Different Sources of Radiation - J. FARIA, Campinas State University, Campinas, Brazil
- Estimation of Coliform Counts using the BacT/Alert Microbial Detection System - S. JEFFREY, K. Read and B. Robison, Organon Teknika Corp., Durham, NC
- Enrichment Procedures Affecting the Sensitivity of the EHEC-Tek™ ELISA System - S. JEFFREY, R. Durham, B. Robison, Organon Teknika Corp., Durham, NC
- Efficacy of the Microcolony Immunoblot Technique to Detect Heat-Injured Listeria monocytogenes - J. PATEL and L. Beuchat, University of Georgia, Griffin, GA
- Use of the BacT/Alert® Microbial Detection System to Monitor Sterility of Aseptically Processed Pudding - B. ROBISON, Organon Teknika Corp., Durham, NC
- The Development of a PCR Based Assay for the Detection of Salmonella - G. TICE, M. Jensen, R. Jackson and J. Noznek, DuPont Co., Wilmington, DE
- Identifying and Typing Listeria Species with Patterns of Eco R1 Fragments Containing Ribosomal RNA Operon Sequences - J. WEBSTER, E. Cole, J. Bruce, C. Iem and R. Hubner, DuPont Co., Wilmington, DE
- Optimization of Commercial Sterility Testing - M. ROBART, J. David, S. Alles, T. Weaver, S. Chang and T. VanArman, Gerber Products Co., Fremont, MI
- Cold Temperature Stress Response of Psychrotrophic Bacillus cereus - E. BERRY and P. Foegeding, North Carolina State University, Raleigh, NC
- The Synergistic Effect of Sodium Acetate or Sodium Propionate Used in Combination with EDTA and Ascorbic Acid on the Inactivation of Listeria monocytogenes - M. GOLDEN, R. Buchanan and R. Whiting, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Aeromonas hydrophila and Psychrotroph Population of Case- and Pond-Raised Channel Catfish - Y. HUANG, C. Huang and G. Burtle, University of Georgia, Athens, GA
- The Use of Response Surface Methodology to Model Non-Linear Survival Curves and to Predict the Effects of Temperature, pH and Sodium Chloride on the Heat Resistance of Listeria monocytogenes Scott A - R. LINTON, W. Carter, C. Gennings and M. Pierson, Virginia Tech University, Blacksburg, VA
- Validation of Predictive Mathematical Models to Demonstrate Applicability to Foods - I. WALLS, V. Scott and D. Bernard, National Food Processors Assn., Washington, DC
- The Economics of Federal HACCP Regulations - D. ZORN, Food and Drug Administration, Washington, DC
- An Expert System for HACCP Implementation - F. BARRON and J. Acton, Clemson University, Clemson, SC
TUESDAY MORNING, AUGUST 2

Applications For Predictive Microbiology Symposium

Sponsored by the ILSI North America Technical Committee on Food Microbiology

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Overview — Risk Assessment and Predictive Microbiology - R. BUCHANAN, U. S. Department of Agriculture, Philadelphia, PA</td>
</tr>
<tr>
<td>9:00</td>
<td>Modeling Applications - T. McMEEKIN, University of Tasmania, Hobart, Tasmania, Australia</td>
</tr>
<tr>
<td>9:30</td>
<td>Food Micromodel Update - UK and European Perspectives - T. ROBERTS, Institute of Food Research, Reading, U.K.</td>
</tr>
<tr>
<td>10:20</td>
<td>Model Validation (and Confidence in Models) — an Industry Perspectives - M. COLE, Unilever Research, Bedford, U.K.</td>
</tr>
<tr>
<td>10:50</td>
<td>Cold Storage Temperature Fluctuations and Predicting Microbial Growth - C. GILL, Agrifood and Agriculture Canada, Lacombe, Alberta, Canada</td>
</tr>
<tr>
<td>11:20</td>
<td>Predictive Microbiology and HACCP - P. ELLIOTT, Campbell Soup Company, Camden, NJ</td>
</tr>
</tbody>
</table>

Reduction of Foodborne Pathogens on Poultry Symposium

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Salmonellae Importance and Detection in Poultry Feeds - A. WALDROUP, University of Arkansas, Fayetteville, AR</td>
</tr>
<tr>
<td>9:00</td>
<td>Control of Salmonellae During Poultry Production - J. BAILEY, U. S. Department of Agriculture, ARS, Athens, GA</td>
</tr>
<tr>
<td>9:30</td>
<td>The Application of Process Modifications, Chemical Treatments, and Biopeptides to Inhibit Foodborne Pathogens Associated with Poultry Products - B. SHELDON, North Carolina State University, Raleigh, NC</td>
</tr>
<tr>
<td>10:20</td>
<td>Reduction of Foodborne Pathogens on Poultry by Treatment with Ionizing Radiation - D. THAYER, U.S. Department of Agriculture, ARS, Philadelphia, PA</td>
</tr>
<tr>
<td>10:50</td>
<td>Development of a Comprehensive Total Quality Assurance Program for use in Fully Integrated Poultry Companies - M. ROBACH, Continental Grain, Duluth, GA</td>
</tr>
<tr>
<td>11:20</td>
<td>Foodborne Industry Perspective on Pathogen Reduction in Poultry - R. HARRINGTON, National Restaurant Assn., Washington, DC</td>
</tr>
</tbody>
</table>

Pesticides in the Food Industry Symposium

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>The Impact of Sanitation on Pest Control in the Food Establishments - R. GRAVANI, Cornell University, Ithaca, NY</td>
</tr>
<tr>
<td>9:00</td>
<td>IPM — Trends in Pesticide Use and Indoor Environmental Quality - A. FRISHMAN, AMF Pest Management Services, Inc., Farmingdale, NY</td>
</tr>
<tr>
<td>10:20</td>
<td>Rodent Control for Food Processing - E. MARSHALL, Lipha Tech, Milwaukee, WI</td>
</tr>
<tr>
<td>10:50</td>
<td>Future of Pesticides for Use in Food Handling Establishments - J. TUCKER, Urban Entomologist, Houston, TX</td>
</tr>
</tbody>
</table>

Meat Quality and Safety: Concerns and Solutions throughout Distribution Systems Symposium

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Update on Epidemiology of Food Poisoning Outbreaks Caused by Meat Products - P. SPARLING, Centers for Disease Control and Prevention, Atlanta, GA</td>
</tr>
<tr>
<td>9:00</td>
<td>Microbiological Controls for Safety and Quality of Meats During Manufacture - J. MARSDEN, The American Meat Institute, Washington, DC</td>
</tr>
<tr>
<td>9:30</td>
<td>Status of Consumer Education Programs Regarding the Safety of Meat Products - S. CONLEY, U. S. Department of Agriculture, FSIS, Washington, DC</td>
</tr>
<tr>
<td>10:50</td>
<td>Safety and Quality of Meat Products at Retail and Deli Operations - J. FARQUHAR, The Food Marketing Institute, Washington, DC</td>
</tr>
</tbody>
</table>

TUESDAY AFTERNOON, AUGUST 2

General Session — The New FDA Model Food Code: How Will We Implement It?

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30</td>
<td>The New FDA Food Code - J. KVENBERG, Food and Drug Administration, Washington, DC</td>
</tr>
<tr>
<td>1:45</td>
<td>The Restaurant Industry Perspective - R. HARRINGTON, National Restaurant Assn., Washington, DC</td>
</tr>
<tr>
<td>2:00</td>
<td>The Food Store Perspective - J. FARQUHAR, Food Marketing Institute, Washington, DC</td>
</tr>
<tr>
<td>2:15</td>
<td>The Vending Machine Industries Perspective - L. EILS, National Automatic Merchandising Association, Chicago, IL</td>
</tr>
</tbody>
</table>
IAMFES Annual Business Meeting

3:15 Welcome and Introduction - D. CLINGMAN, President-Elect

3:30 Report from the President - H. BENGSCH

3:45 Business Meeting - H. BENGSCH, President
- Moment of Silence in Remembrance of Departed Association Members
- Minutes of Previous Business Meeting
- Report of Executive Manager
- Affiliate Council Report
- Journal Management Committee Report
- Old Business
- New Business
- Presentation of Resolutions - M. DOYLE, Past President

Tuesday Poster Session

- Purification and Characterization of a Bacteriocin Produced by Carnobacterium piscicola LK5 - L. BAGI and R. Buchanan, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Biofilm formation by Escherichia coli O157:H7 on Stainless Steel Surface: Effect of Chemical Agents - R. DEW ANTI and A. Wong, Food Research Institute, Madrid, WI
- Cooling Rate and Outgrowth of Clostridium perfringens Spores in Cooked Ground Beef - V. JUNEA, O. Snyder and B. Eblen, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Isolation and Characterization of Enterocin EL1 A Bacteriocin Produced by a Strain of Enterocin faecium - W. LYON, E. Murano and D. Olson, Iowa State University, Ames, IA
- Effect of Temperature, Salt and pH on Growth Inhibition of Listeria monocytogenes by Sodium Polyphosphate - O. SCULLEN and L. Zaika, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Evaluation of Different Phosphates to Control Microbial Growth in Meat Products - S. SUMNER, L. Flores, D. Peters and R. Mandigo, University of Nebraska-Lincoln, Lincoln, NE
- Inhibitory Activity of Caffeic Acid Against Clostridium botulinum Spores - A. WILLIAMS, B. Bowles, and A. Miller, U. S. Department of Agriculture, ARS, Philadelphia, PA
- Antimicrobial Effect of Sodium Lactate, Trisodium Phosphate, and Sodium Glutamate Monohydrate Pre-Treatments in Combination with Organic Acids on Escherichia coli O157:H7 - P. WIXOM and J. Dickson, Iowa State University, Ames, IA
- Microbiological Shelf-Life Stability of Textured Supro™ Granules - V. COLLETT,Ralston Purina Co., St. Louis, MO
- Shelf-life and Microbial Ecology of Precooked Poultry Stored Under Modified Atmosphere at 4°C - R. BARAKAT and L. Harris, University of Guelph, Guelph, Ontario, Canada
- Resistance of Acid Adapted Salmonellae to Organic Acid Rinses on Beef - J. DICKSON and M. Kunduru, Iowa State University, Ames, IA
- Survival of E. coli O157:H7 in Refrigerated and Frozen Low Fat Ground Beef and Thermal Inactivation by Microwave Energy - L. FLORES, S. Sumner and L. Bullerman, University of Nebraska, Lincoln, NE
- The Fate of Listeria monocytogenes and Clostridium botulinum in Minimally-Processed Packaged Vegetables - J. FARBER, Y. Cai, C. Addison, B. Blanschfield, S. Wang and K. Dodds
- Use of Time-Temperature Indicator to Monitor the Shelf-Life of Packaged Fresh Cabbage - L. HE and Y. Huang, University of Georgia, Athens, GA
- Recovery of Arcobacter from Broiler Carcasses - H. LILLARD and N. Stern, U. S. Department of Agriculture, ARS, Athens, GA
- Monoclonal Antibody for Rapid Detection of Clostridium botulinum Toxin Type B - R. CRAWFORD, J. Ferreira, S. McCay and H. Hamdy, Food and Drug Administration, Atlanta, GA
- Susceptibility of Listeria sp. to Cell Bound Pediocin AcH in BHI Broth, Turkey Frank Slurries, and on Chicken Breast Meat - J. FERGUSON, A. Bhunia and M. Johnson, University of Arkansas, Fayetteville, AR
- The Fate of Listeria monocytogenes during the Manufacture of Manchego Cheese with Bacteriocin-producing Lactic Acid Bacteria and Commercial Lactic Starters - E. GARCIA, J. Rodriguez, P. Gaya, M. Medina and M. Nunez, Tecnología de Alimentos, Madrid, Spain
- Microbial Changes of Osmotically Dehydrated Green Beans Coupled with Modified Atmosphere Packaging Stored at 10°C - W. TAN, D. Grinstead, J. Mount and F. Draughon, University of Tennessee, Knoxville, TN
- Mold Content of Stored Popcorn - L. BULLERMAN and S. Katta, University of Nebraska, Lincoln, NE
- Effect of Dry Milling on Fusarium Counts and Fumonisins in Corn - A. CAGAMPANG and L. Bullerman, University of Nebraska, Lincoln, NE
- Isolation of the Zearalenone-producing Strains from Agricultural Products in Southern Korea - D. CHUNG, S. Kim and S. Kim, Gyeongsang National University, Gyeongnam, Korea
- Inhibition of Phosphate on Mold Growth and Mycotoxin Production (T-2 Toxin, Zearalenone) - D. CHUNG, I. Kim and S. Chung, Gyeongsang National University, Gyeongnam, Korea
- Immunolocalization of Aflatoxin B1 in Liver of Chick Embryo Intoxicated with Aflatoxin B1 - Y. KO, S. Shu, J. Che and D. Chung, Hanyang University, Seoul, Korea
• The Mycoflora and Mycotoxin-Producing Potential of Fungi from Foods in Burundi - C. MUNIMBAZI and L. Bullerman, University of Nebraska, Lincoln, NE
• Application of Immunohistochemical Technique to Visualize Zearalenone Formation of Fusarium graminearum - J. KANG, S. Kang and D. Chung, Jinju Junior College, Gyeongnam, Korea
• Use of TECRA® Unique® for the Detection of Salmonella in a Range of Food Products within 22 hours - D. KERR, M. Ash, D. Hughes and C. Fitzgerald, TECRA Diagnostics, Roseville, Australia
• Automated Detection of Foodborne Pathogens Using the TECRA® OPUS® System - M. ASH, D. Chee and U. Gasanov, TECRA Diagnostics, Roseville, Australia
• Agglutination Behavior of Lactic Starter Cultures - S. IBRAHIM and A. Nabulsi, University of Jordan, Jordan
• Effects of Packaging System on Lactate Treated Tilapia Fillet stored at 4°C - C. Huang and Y. Huang, National I-Lan Institute of Agriculture and Technology, I-Lan, Taiwan

WEDNESDAY MORNING, AUGUST 3

A Symposium on Risk Management
Sponsored by the Grocery Manufacturer’s of America

RISK ASSESSMENT
The Risk Analysis Approach

8:30 Risk Analysis and Management Defined
9:00 Risk Analysis and Foodborne Illness

Issues in the Assessment of Food Safety Risks

9:30 Infectious Dose and Susceptible Populations
10:20 The Role of Epidemiology in Estimating Risk and Risk Exposure
10:50 Acceptable Risk and the Risk/Benefit Equation
11:20 The “Cost” of Foodborne Disease

Dairy Symposium

Topics to be announced

Natural Antimicrobials and Inhibitors for Food Applications
Sponsored by the ILSI North American Technical Committee on Food Microbiology

8:30 Bacteriocins for Listeria Control - P. MURIANA, Purdue University, West Lafayette, IN
9:00 Antimicrobials for Meat Applications - M. STILES, University of Alberta, Alberta, Canada
9:30 Efficacy of Naturally Occurring Food Flavors as Inhibitors of Foodborne Pathogens - B. BOWLES, U. S. Department of Agriculture, Philadelphia, PA
10:20 Regulatory Perspectives on the Use of Bacteriocins in Foods - F. FIELDS, U.S. Food and Drug Administration, Washington, DC
10:50 USDA’s Regulatory Perspective on the Use of Bacteriocins in Foods - R. POST, U. S. Department of Agriculture, FSIS, Washington, DC
11:20 Industry Perspective on the Use of Natural Antimicrobials and Inhibitors for Food Applications - Speaker to be announced

The Quality and Safety of Aquacultured Fishery Products Symposium

8:30 Introduction of Aquaculture - R. MARTIN, National Fisheries Institute, Fairfax, VA
8:50 Chemical/Physiological Perspectives - G. FINNE, Silliker Laboratories of Texas, College Station, TX
9:10 Microbiological Perspective - Fin-Fish - D. WESTHOFF, University of Maryland, College Park, MD
9:30 Microbiological Perspective - Crustaceans - R. NICKELSON, Silliker Laboratories, Homewood, IL
9:50 Microbiological Perspective - Molluscan - G. RODRICK, University of Florida, Gainesville, FL
10:30 Residues in Aquacultured Products - I. HIGUERA, Consultores En Alimentos, Sonora, Mexico
10:50 Value-Added Aquaculture Products - Y. HUANG, University of Georgia, Athens, GA
11:10 HACCP in Aquaculture - E. GARRETT, National Marine Fisheries Service, Pascagula, MS
WEDNESDAY AFTERNOON,
AUGUST 3

A Symposium on Risk Management (cont.)
Sponsored by the Grocery Manufacturer's of America

RISK MANAGEMENT
Control Practices and Their Impact
1:30 Managing Risks from the Industry Perspective
2:00 Economic Impact of Control Practices

Education and Communication of Risks
2:30 Education and the Public's Understanding of Risk - the Role of Industry, Government and Academia
3:00 Communicating Food Safety Risks to the Public

Current Regulatory Approaches
3:50 Short Presentation and Roundtable

Dairy Symposium II
Topics to be announced

European Food Processing Equipment Hygiene Standards Symposium

1:30 Food Industry Perspective - M. MOSTERT, Unilever Research Laboratorium, Vlaardingen, The Netherlands
2:00 Equipment Manufacturers Perspective - P. SKUDDER, APV Baker Ltd., Crawley, U.K.

2:30 CEN and EHEDG Perspective - D. TIMPERLY, Campden Food and Drink Research Association, Chipping Campden, U.K.

3:50 Test Methods and Their Development - J. HOLAH, Campden Food and Drink Research Association, Chipping Campden, U.K.

4:20 The 3-A Viewpoint on European Standards - T. GILMORE, Dairy and Food Industries Supply Association, Rockville, MD

Current Food and Health Related Safety Issues Symposium

1:30 The Impact of International Free Trade on Food Safety Standards - K. TING, U.S. Department of Agriculture, Washington, DC

2:00 International Food Safety and Quality Standards - C. CARNEVALE, Food and Drug Administration, Washington, DC

2:30 Does International Fair Trade Mean Compromised Food Safety Standards? — Impact on Seafood Safety - C. HACKNEY, Virginia Polytechnic Institute and State University, Blacksburg, VA

3:20 Poultry Safety After NAFTA - J. MARCY, University of Arkansas, Fayetteville, AR

3:50 Hantavirus Pulmonary Syndrome (HPS) — An Emerging Public Health Threat - R. GRINNEL, United States Public Health Service, Albuquerque, NM

81st IAMFES Annual Meeting
Spouse/Companion Tours and Special Events

BIENVENIDOS
Sunday, July 31 — 9:00 a.m. - It's up to you
Cost: $25 ($30 on-site) Lunch on your own

Welcome to San Antonio ... one of America’s four unique cities ... where the east meets the west, where the romance and tradition of old Spain meet the sound and energy of a high tech society, where the river dances through the heart of the city and the fiesta never ends. A chartered transit bus will be your magic carpet and Convention Coordinators guide will be your key as you are met at the Hyatt Regency Riverwalk at 9:00 o’clock in the morning for this introductory tour.

First, we’ll drive through Hemisfair Plaza to the Institute of Texan Cultures. This “hands-on” museum is for the interpretation and assimilation of Texas history and folk culture and tells about the 26 ethnic groups who were the pioneers of this great state.

We’ll drive through the King William Historic District, which was one of San Antonio’s early residential neighborhoods. Built at the turn of the century by German “merchant princes,” the area has been “re-awakened” and is once again a gracious and friendly old-fashioned neighborhood.

On to the new IMAX Theater, featuring “Alamo - The Price of Freedom,” located in Rivercenter Mall. The movie is a stunning experience, shown on a six-story screen with a six-track sound system that lets you “feel” the action. “Alamo - The Price of Freedom” is the most historically accurate depiction of the famous battle in existence. The 45-minute movie “puts you in the middle of the battle of the Alamo.”

Walk next door to the “Cradle of Texas Liberty,” the Alamo, tucked in among downtown hotels, office buildings and crowded streets. The Alamo’s roughly pitted, sandstone facade belies its quiet, churchlike limestone interior where even the most casual visitor experiences an awe while viewing the names of the Alamo heroes inscribed in bronze on the walls.

Continue to San Jose, Queen of the Texas Missions, for a tour of the Indian compound in this extensively restored mission. You will see Indian living quarters, Spanish officer’s quarters, the convent, the beautiful church with its elaborately carved entrance, and the famous Rosa’s Window.

There will be time for lunch on your own, shopping and browsing in El Mercado where the shops are loaded with curios from the Southwest. Items include: Dresses, shirts, pinatas, dolls, jewelry, straw hats, leather goods, and many other “goodies.” Our guide will tell us how to ride the trolley back to the hotel for ten cents. Return to the Hyatt at your leisure.

LBJ RANCH & FREDERICKSBURG
Monday, August 1 — 8:45 a.m. - 4:30 p.m.
Cost: $25 ($30 on-site) Lunch on your own

The beautiful Texas Hill Country has never been so well known as when Lyndon B. Johnson was President of the United States. His barbecues under the oak and pecan trees of his ranch were seen by all in those days. So that you can taste a little of “Pedernales country” for yourselves, we have arranged a day in this legendary part of Texas. A chartered motor coach with a Convention Coordinators guide on board will meet you at the Hyatt Regency Riverwalk at 8:45 in the morning for the drive to the LBJ Ranch. There will be a 90 minute educational tour of this National Historic Park including the Junction School, the Johnson birthplace and cemetery, the LBJ ranchlands with its registered Hereford cattle, the Show Barn, and the exterior of the Texas White House where Mrs. Johnson still resides.

On to the historic Fredericksburg for lunch on your own, shopping and browsing on Main Street in this quaint German town, or visiting the Admiral Chester Nimitz Museum of the War of the South Pacific (a Recorded Texas Historic Landmark) with the Japanese Peace Garden.

See the historic “Sunday Houses”, where farmers and ranchers stayed on weekends. Return to the hotel at 4:30 in the afternoon.

MIL COLORES
Tuesday, August 2 — 9:00 a.m. - 3:00 p.m.
Cost: $25 ($30 on-site) Lunch on your own

Capture the spirit and the many colors of San Antonio as you depart the Hyatt Regency Riverwalk at 9:00 in the morning. We’ll follow the Mission Trail, pausing at Mission Concepcion, and San Jose, Queen of the Texas Missions. We’ll proceed to historic Fort Sam Houston, established in 1876, and now Headquarters for the Fifth Army. We’ll see the enormous parade field, the Quadrangle where Chief Geronimo was once held captive, and General’s Row where many famous military personalities have resided.

On to the San Antonio Botanical Center, 38-acres representing, in miniature, the diverse Texas landscape - from the wild flowers of the Texas Hill Country to the formal rose gardens of East Texas. A Biblical Garden, Children’s Garden, and a Fragrance Garden are also featured. A highlight of the center is the new underground conservatory, with rare and exotic plants and flowers.

There will be time for lunch on your own and shopping at Los Patios, an oasis on the banks of Salado Creek. Shop in the boutiques located on the park-like grounds, including: The Flower Forest, Marisol Boutique, Tejas Gifts, Tienda, Big Sky Clothing Company, The Gallery, Vega’s Jewelry and Lo Singular. Enjoy lunch at the Gazebo, the Hacienda or the Brazier Restaurants.
The McNay Art Museum is a “treasure house of art,” religiously dedicated to discriminating taste. Housed in a magnificent Mediterranean mansion built around a lush courtyard and reflecting pool, you’ll view works by Van Gogh, Gauguin, Matisse, Picasso, Renoir - to name a few. The McNay is rated one of the best small museums in the country.

We’ll pause on Alpine Drive which affords a beautiful view of the city skyline and the Japanese Sunken Garden below. Arrive back at the Hyatt Regency Riverwalk at 3:00 in the afternoon.

SHOPPER’S PARADISE
Wednesday, August 3 — 9:00 a.m. - 4:00 p.m.
Cost: $20 ($25 on-site) Lunch on your own

“Shop till you drop!” Today you will see some of the most interesting shops in the area as you depart the Hyatt Regency Riverwalk at 9:00 a.m. in a chartered motorcoach to search for bargains galore. First, we’ll journey to San Marcos, Texas, to a new and exciting outlet mall, one of the nation’s largest. Clothing, accessories, housewares - in such shops as Adolpho, Perry Ellis, Coach, Mikasa, Eddie Bauer, Etienne Aigner, Nike, Sara Coventry, Fitz & Floyd - and much, much more. On to the Tanger Factory Outlet Center where you’ll find items for the entire family. Buy directly from 31 upscale designers and manufacturers outlet stores and save 30 to 70% off retail prices.

Then to the quaint German town of New Braunfels, Texas where “Life is Beautiful.” The Langston House, a symmetrical Greek Revival style house, was built in 1854 by Franz Moreau. The log and “fachwerk” construction was common in those days. The house was later occupied by the Gross family, the Frieze Family and then the Langston Family.

We’ll continue to the nearby town of Gruene, founded in 1872 by Henry D. Gruene from Germany, who built a home and cotton gin and the town grew. It was known for its dance hall and saloon built in the 1880’s which is the oldest dance hall in Texas still in existence. Death came to Henry Gruene in 1920 and this also marked the end of the development of the town. In 1925 the boll weevil and the depression struck and it became a ghost town. The untouched town was purchased in 1974 and businesses were once again established in the old buildings. We’ll enjoy stepping back in time as we visit the many shops in town including: Texas Homegrown, The Bush Whacker, Nature’s Alliance, The Gruene Antique Company, The Back Porch, Buck Pottery and others. Guests can eat on their own at one of the three restaurants located in Gruene. Arrive back at the Hyatt Regency Hotel at 4:00 o’clock in the afternoon.

Monday Night Social Event
“A LITTLE BIT TEXAN”
August 1 — 6:00 - 10:00 p.m.
Cost: Adults $35 ($40 on-site) Children $20 ($25 on-site)

Git your boots, jeans, western shirts and cowboy hats (no six-shooters, please) and head out for a “little bit of Texas — The Rio Cibolo Ranch.”

We’ll board our Grey Line buses at 6:00 p.m. and head for the wild, wild west. A short ride later, we’ll cross the Rio Cibolo River and pull into the ranch. A Texas style Barbeque dinner - beef brisket and chicken quarters, cole slaw, beans, relish tray, bread and butter and fruit cobbler — will await us.

Work up an appetite by learning or dancing the Texas National past-time — line dancing. A band and dance instructor will be there to show you how it’s done — the real way. Or there’s the Rol-A-Roper, horse shoes, volleyball, basketball, cow-chip toss or wagon rides. Or just chat with your friends under a beautiful Texas sky — (it isn’t really any bigger, it just seems like it!)

We’ll mosey on back to the Hyatt Regency between 9:30-10:00 p.m.

Traditional IAMFES Gatherings
IVAN PARKIN LECTURESHIP
Sunday, July 31 — 7:00 p.m.

Followed by the Nachos and Margaritas Reception for the Opening of the Education Exhibits. An opportunity to greet old friends, make new ones and view the excellent technical displays.

IAMFES ANNUAL AWARDS RECEPTION AND BANQUET
Wednesday, August 3

Reception: 6:00 p.m.
Banquet: 7:00 p.m.
Cost: $30 ($35 on-site)

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994 239
81st IAMFES Annual Meeting Registration Form

Hyatt Regency Riverwalk — San Antonio, Texas — July 31 - August 3, 1994

(Use photocopies for extra registrations)

Sign up to become a NEW member and take advantage of the member discount.

Credit Card payments may be sent via Fax today!

515-276-8655

Registration

<table>
<thead>
<tr>
<th>Registration</th>
<th>Amount</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAMFES Member (Banquet included)</td>
<td>$150 ($185 on-site)</td>
<td></td>
</tr>
<tr>
<td>Non-Member (Banquet included)</td>
<td>$210 ($245 on-site)</td>
<td></td>
</tr>
<tr>
<td>IAMFES Student Member</td>
<td>$20 ($25 on-site)</td>
<td></td>
</tr>
<tr>
<td>IAMFES Member One Day (Circle: Mon/Tues/Wed)</td>
<td>$80 ($100 on-site)</td>
<td></td>
</tr>
<tr>
<td>Non-Member One Day (Circle: Mon/Tues/Wed)</td>
<td>$105 ($130 on-site)</td>
<td></td>
</tr>
<tr>
<td>Spouse/Companion (Name:)</td>
<td>$25 ($25 on-site)</td>
<td></td>
</tr>
<tr>
<td>Children (14 & Under), Name:</td>
<td>FREE</td>
<td></td>
</tr>
</tbody>
</table>

New Membership Fees:

Membership (Dairy, Food & Environmental Sanitation)	$50
Membership Plus (Dairy, Food & Env. Sanitation & Journal of Food Protection)	$80
Student Membership (Dairy, Food & Env. San. or Journal of Food Protection)	$25
Student Membership Plus (Dairy, Food & Environmental Sanitation & Journal of Food Protection)	$40

POSTAGE CHARGES: OUTSIDE THE U.S. - SURFACE RATE

<table>
<thead>
<tr>
<th>Airmail</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>$22.50 per journal</td>
<td></td>
</tr>
<tr>
<td>$95.00 per journal</td>
<td></td>
</tr>
</tbody>
</table>

Other Fees: (Per Person)

<table>
<thead>
<tr>
<th>Event</th>
<th>Adult</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachos and Margaritas Reception (Sun. 7/31)</td>
<td>$35 ($40 on-site)</td>
<td></td>
</tr>
<tr>
<td>Rio Cibolo Ranch Evening (Mon., 8/1)</td>
<td>$20 ($25 on-site)</td>
<td></td>
</tr>
<tr>
<td>IAMFES Awards Banquet (Wed., 8/3)</td>
<td>$30 ($35 on-site)</td>
<td></td>
</tr>
</tbody>
</table>

Spouse/Companion Events:

<table>
<thead>
<tr>
<th>Event</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienvenidos (Sun., 7/31)</td>
<td>$25 ($30 on-site)</td>
</tr>
<tr>
<td>LBJ Ranch & Fredericksburg (Mon., 8/1)</td>
<td>$25 ($30 on-site)</td>
</tr>
<tr>
<td>Mil Colores (Tues., 8/2)</td>
<td>$25 ($30 on-site)</td>
</tr>
<tr>
<td>Shopper's Paradise (Wed., 8/3)</td>
<td>$20 ($25 on-site)</td>
</tr>
</tbody>
</table>

- Please indicate here if you have a disability requiring special accommodations.

Credit Card Payments: Please Circle: VISA/MASTERCARD/AMERICAN EXPRESS

Registration Information

Send payment with registration to IAMFES, 6200 Aurora Avenue, Suite 200W, Des Moines, IA 50322. Make checks payable to IAMFES. Pre-registration must be post-marked by July 1, 1994. The pre-registration deadline will be strictly observed. For additional information contact Julie Heinz at 1-800-369-6337.

Refund/Cancellation Policy

The IAMFES policy on meeting cancellations/refunds is as follows: Registration fees, minus a $25 processing fee, will be refunded for written cancellations post-marked at least two (2) weeks prior to the start of the meeting. No refunds will be made for cancellations made less than two (2) weeks prior to the start of the meeting, however, the registration may be transferred to colleague with written notice.

Exhibitor Information

An exhibition of products and consultant services will be at the Hyatt Regency Riverwalk. For more information on exhibiting at the conference, please contact Scott Wells at 1-800-369-6337.

For Office Use

Date Rec'd:
First initial:
Last name:
Registration #:

<table>
<thead>
<tr>
<th>Name on Card</th>
<th>Signature</th>
<th>Exp. Date</th>
</tr>
</thead>
</table>

U.S. FUNDS DRAWN ON U.S. BANK

Total Amount

Enclosed $
Reader requests for information are sent to the appropriate company. Follow-up on reader requests are the responsibility of the company advertising.

The Advertisements included herein are not necessarily endorsed by the International Association of Milk, Food and Environmental Sanitarians, Inc.

Please send information on items circled below: Deadline 60 days from issue date

101 114 127 140 153 166 179 192 205 218 231 244 257 270 283 296 309 322 335 348

102 115 128 141 154 167 180 193 206 219 232 245 258 271 284 297 310 323 336 349

103 116 129 142 155 168 181 194 207 220 233 246 259 272 285 298 311 324 337 350

104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351

105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352

106 119 132 145 158 171 184 197 210 223 236 249 262 275 288 301 314 327 340 353

107 120 133 146 159 172 185 198 211 224 237 250 263 276 289 302 315 328 341 354

108 121 134 147 160 173 186 199 212 225 238 251 264 277 290 303 316 329 342 355

110 123 136 149 162 175 188 201 214 227 240 253 266 279 292 305 318 331 344 357

111 124 137 150 163 176 189 202 215 228 241 254 267 280 293 306 319 332 345 358

112 125 138 151 164 177 190 203 216 229 242 255 268 281 294 307 320 333 346 359

113 126 139 152 165 178 191 204 217 230 243 256 269 282 295 308 321 334 347 360

The Advertisements included herein are not necessarily endorsed by the International Association of Milk, Food and Environmental Sanitarians, Inc.
I AMFES
200W Merle Hay Centre
6200 Aurora Ave.
Des Moines, Iowa 50322
Equipment For Sale

The CDT™ Test Device*
For testing all differential controls on H.T.S.T. pasteurizers
Model III ss x now shipping!
New adapters** connect directly to HTST’s sanitary pressure sensors

The Crombie Company
521 Cowles Ave., Joliet, IL 60435-6043
815-726-1683 (Voice & FAX)

**Adapters may be ordered separately - fit all previous models.

CIRCLE READER SERVICE NO. 339

Services / Products

IAMFES Sustaining Member
1994 Exhibitor

GOSSELIN & BLANCHET
Butter-Making Equipment
New and used.
Sales. Service. Parts.

B & J REPAIR SERVICE
• 4818 N. Bailey Rd. •
Coral, MI 49322
(616) 354-6629

CIRCLE READER SERVICE NO. 356

IAMFES Sustaining Member
1994 Exhibitor

Decagon Devices, Inc.
Post Office Box 835
Pullman, WA 99163
509/332-2756
FAX 509/332-5158

CIRCLE READER SERVICE NO. 320

Michelson Laboratories, Inc.
6280 Charleston Dr., Los Angeles, CA 90040
Telephone: (310) 928-6533 / (714) 971-8673 / FAX (310) 927-6625

COMPLETE DAIRY ANALYSIS
SPECIALIZING IN:
• Chemical
• Microbiological
• Sugar Profile
• Fatty Acid Profile
• Vitamin A & D
• Quality Assurance
• Consulting
• MS-LIS/MS-FDA Approved 06143

TECHNIQUES AVAILABLE:
• Infrared Milk Analyzer
• Mass Spectrometry
• Gas Chromatography
• Atomic Absorption
• Spectrophotometry
• Spectrofluorometry
• Spiral Plater
• Laser Counter
• Microscopy
• Vitek & Bactometer
• Inductively Coupled Plasma

Also Offering: Milk Calibration Samples for Infrared Milk Analyzer and Electronic Somatic Cell Counter

CIRCLE READER SERVICE NO. 340

COMPLETE LABORATORY SERVICES
Ingman Labs, Inc.
2945 - 34th Avenue South
Minneapolis, MN 55405
612-724-0121

CIRCLE READER SERVICE NO. 315
Services / Products

For Food Plant Operations
Employee Training Materials

* GMP & GSP booklets, slides and video tapes in English & Spanish
L. J. BIANCO & ASSOCIATES
(Associated with L.J.B. Inc.)
FOOD PRODUCT QUALITY CONTROL AND ASSURANCE CONSULTANTS
850 Huckleberry Lane
Northbrook, IL 60062
708-272-4944 / FAX 708-272-1202
Over 40 years Food Operation Experience

CIRCLE READER SERVICE NO. 297

Cargill Analytical Services

* Accurate Food, Feed and Water Analysis
* Quality Microbiological and Chemical Testing, plus a wide variety of Technical Services
* Includes Nutrition Labeling, Pathogens, Shelf-life Studies, Mycotoxins, HACCP Programs, and problem-solving capabilities
* Reliable Results, Personal Service, & Competitive Pricing

Call Today for More Information!

Deb Paulsen-Hogue Jon Gray
319/366-3570 417/451-5973
405 Eighth Ave., SE 4301 Doniphan Dr.
Cedar Rapids, IA 52401 Neosho, MO 64850

CIRCLE READER SERVICE NO. 287

ENVIRONMENTAL SYSTEMS SERVICE, LTD.

* Testing for Listeria and other Pathogens
* Drug Residue Analysis by H.P.L.C. and GC/MS
* Dairy, Poultry and Food Product Testing
* Water and Wastewater Analysis
* Vitamin Analysis of Dairy Products and Concentrates.

218 N. Main Street Culpeper, VA 22701
703-825-6660 800-541-2116

CIRCLE READER SERVICE NO. 349

ECI will eliminate the problems you may be having with

- FALLING OFF
- LEAKING AIR
- DETERIORATION
- INKING OFF

Start using ECI scientifically tested inflations now for faster, cleaner milking.

ECI INDUSTRIES, INC.
VERNON, N.Y. 13476

CIRCLE READER SERVICE NO. 317

IAMFES Sustaining Member

Cargill Analytical Services

* Accurate Food, Feed and Water Analysis
* Quality Microbiological and Chemical Testing, plus a wide variety of Technical Services
* Includes Nutrition Labeling, Pathogens, Shelf-life Studies, Mycotoxins, HACCP Programs, and problem-solving capabilities
* Reliable Results, Personal Service, & Competitive Pricing

Call Today for More Information!

Deb Paulsen-Hogue Jon Gray
319/366-3570 417/451-5973
405 Eighth Ave., SE 4301 Doniphan Dr.
Cedar Rapids, IA 52401 Neosho, MO 64850

CIRCLE READER SERVICE NO. 287

ENVIRONMENTAL SYSTEMS SERVICE, LTD.

* Testing for Listeria and other Pathogens
* Drug Residue Analysis by H.P.L.C. and GC/MS
* Dairy, Poultry and Food Product Testing
* Water and Wastewater Analysis
* Vitamin Analysis of Dairy Products and Concentrates.

218 N. Main Street Culpeper, VA 22701
703-825-6660 800-541-2116

CIRCLE READER SERVICE NO. 349

ECI will eliminate the problems you may be having with

- FALLING OFF
- LEAKING AIR
- DETERIORATION
- INKING OFF

Start using ECI scientifically tested inflations now for faster, cleaner milking.

ECI INDUSTRIES, INC.
VERNON, N.Y. 13476

CIRCLE READER SERVICE NO. 317

IAMFES Sustaining Member
IAMFES Offers the Northeast Dairy Practices Council (NDPC)
“Guidelines for the Dairy Industry”

At the urging of our Dairy Quality and Safety Professional Development Group, IAMFES has entered into an agreement with the Northeast Dairy Practices Council (NDPC) to distribute their “Guidelines for the Dairy Industry.”

NDPC is a non-profit organization of education, industry and regulatory personnel concerned with milk quality and sanitation throughout 15 northeastern/mid-Atlantic states. Interestingly, its membership and subscriber rosters list individuals and organizations throughout the United States, Canada and Japan.

For the past 25 years, NDPC’s primary mission has been the development of and the distribution of educational guidelines directed to proper and improved sanitation practices in the production, processing, and distribution of high quality fluid milk and manufactured dairy products.

The NDPC Guidelines are written by professionals who comprise five permanent Task Forces. Prior to distribution, every Guideline is submitted for approval to the key milk control sanitarian in each of the 15 states which are now active participants in the NDPC process. Should any official have an exception to a section of a proposed guideline, that exception is noted in the final document.

Although the Guidelines are developed east of the Mississippi River, clearly they have a high degree of applicability wherever cows are milked and milk is transported, processed and distributed.

The Guidelines are renown for their common sense, useful approach to proper and improved sanitation practices. We think that they will be a valuable addition to your professional reading library.

The entire set consists of 48 guidelines including:
1. Dairy Cow Free Stall Housing
2. Effective Installation, Cleaning and Sanitizing of Milking Systems
3. Selected Personnel in Milk Sanitation
4. Sampling Fluid Milk
5. NE Ext. Publ., Conferences, Short Courses, Correspondence Courses and Visual Aids in Dairying
6. Fundamentals of Cleaning and Sanitizing Farm Milk Handling Equipment
7. Fluid Milk Shelf Life
8. Sediment Testing and Producing Clean Milk
9. Environmental Air Control & Quality for Dairy Food Plants
10. Clean Room Technology
11. Handling Dairy Products From Processing to Consumption
12. Causes of Added Water in Milk
13. Abnormal Milk—Fieldman’s Approach
14. Raw Milk Quality Tests
15. Control of Antibacterial Drugs and Growth Inhibitors in Milk and Milk Products
16. Preventing Rancid Flavors in Milk
17. Troubleshooting High Bacteria Counts of Raw Milk
18. Cleaning and Sanitizing Bulk Pickup and Transport Tankers
19. Troubleshooting Residual Films on Dairy Farm Milk Handling Equipment
20. Cleaning and Sanitizing in Fluid Milk Processing Plants
21. Potable Water on Dairy Farms
22. Composition and Nutritive Value of Dairy Products
23. Fat Test Variations in Raw Milk
24. Brucellosis and Some Other Milkbome Diseases
25. Butterfat Determinations of Various Dairy Products
26. Dairy Plant Waste Management
27. Dairy Farm Inspection
28. Planning Dairy Stall Barns
29. Preventing Off-flavors in Milk
30. Grade A Fluid Milk Plant Inspection
31. Controlling Fluid Milk Volume and Fat Losses
32. Milksrooms and Bulk Tank Installation
33. Stray Voltage on Dairy Farms
34. Farm Tank Calibrating and Checking
35. Troubleshooting Dairy Barn Ventilation Systems
36. Gravity Flow Gutters for Manure Removal in Milking Barns
37. Dairy Odor Control
38. Naturally Ventilated Dairy Cattle Housing
39. Cooling Milk on the Farm
40. Postmilking Teat Dips
41. Farm Bulk Milk Collection Procedures
42. Controlling the Accuracy of Electronic Testing Instruments for Milk Components
43. Emergency Action Plan for Outbreak of Milkbome Illness in the Northeast
44. Vitamin Fortification of Fluid Milk Products
45. Selection and Construction of Herringbone Milking Parlors
46. Dairy Product Safety (Relating to Pathogenic Bacteria)
47. Dairy Plant Sanitation
48. Sizing Dairy Farm Water Heater Systems

If purchased individually, the entire set would cost $174. We are offering the set, packaged in three loose leaf binders for $125 plus $9 shipping and handling (outside the US, $21 for shipping and handling).

Information on how to receive new and updated Guidelines will be included with your order.

To purchase this important source of information, complete the order form below and mail or FAX (515-276-8655) it to IAMFES.

Please enclose $125 plus $9 shipping and handling for each set of Guidelines. Shipments outside the US are $125 plus $21 shipping and handling.

Payment in US Funds drawn on a US Bank or by credit card.

Name: ____________________________ Phone No. ____________________________

Company: __________________________

Street Address: __________________________

City, State/Province, Code: __________________________ Signature: __________________________

VISA/MC/AE No.: __________________________ Exp. Date: __________________________

244 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/ APRIL 1994
Coming Events

1994

May

- 2-6, Electrical Troubleshooting, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 3-4, Food Plant Sanitation, sponsored by the American Institute of Baking, will be held in Seattle, WA. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 3-5, Extending Food Product Quality and Shelf-Life, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 4-5, Wisconsin Association of Milk and Food Sanitarians will present a two-day workshop on HACCP programs. The workshop will be presented at the Sheraton Inn, Madison, WI. Registration information is available from Neil Vassau, PO Box 7883, Madison, WI 53707.

- 4-6, HACCP - A Basic Concept for Food Protection, presented by The Food Processors Institute, in cooperation with The Texas Food Processors Association and Texas A&M University, to be held at The Gunter Hotel, San Antonio, TX. For more information please contact The Food Processors Institute, 1401 New York Avenue, NW, Suite 400, Washington, DC 20005; (202)393-0890, FAX (202)639-5932.

- 6, How to Write Your Own OSHA Programs, sponsored by the American Institute of Baking, will be held in Kansas City, MO. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 7-12, Food Structure Annual Meeting will be held at the Holiday Inn Downtown City Hall, Toronto, Ontario, Canada. For more information, please contact Dr. Om Johari, SMI, Chicago (AMF O'Hare), IL 60666-0507, USA (or call 708-529-6677, FAX 708-980-6698).

- 9-11, Introduction to Food Industry Quality Management, sponsored by the University Extension, University of California-Davis, will be held on the UC-Davis campus. For more information or to enroll, call toll free in California (800)752-0881, from Davis, Dixon, Woodland or outside California, call (916)757-8777.

- 10-14, Fundamentals of Programmable Controllers, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 14-15, Progressive Management Seminars held at the Hotel-Motel Show, sponsored by The Educational Foundation of the National Restaurant Association, to be held at McCormick Place North, (lower level), Chicago, IL. For more information please call The Educational Foundation’s Customer Service Department at 1-800-765-2122.

- 16-20, Refrigeration Technology, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 17-18, Food Plant Sanitation, sponsored by the American Institute of Baking, will be in Atlanta, GA. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 18-21, Purdue Better Process Control School will be held at Purdue University. For more information, contact James V. Chambers, Food Science Department, Smith Hall, Purdue University, West Lafayette, IN 47907, Phone: (317)494-8279.

- 25-27, International Conference on Food Physics, sponsored by the International Society of Food Physicists and the Editorial Board of Journal of Food Physics, will be held at the University of Horticulture and Food Industry, Budapest, Hungary. For further information, contact A. S. Szabo, President of the Organizing Committee, H-1118 Budapest, Somloi Street 14-16, Phone: 361-166-6220.

June

- 2, Tennessee Association of Milk, Water and Food Protection’s Annual Meeting will be held at the Nashville Ramada Airport. For more information please contact Dennis Lampley at (615)360-0157.

- 6-9, Safety School, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

- 6-10, Baking for Allied and Non-Production Personnel, sponsored by the American Institute of Baking, will be held at AIB, 1213 Bakers Way, Manhattan, KS 66502. For more information please contact AIB at (913)537-4750, (800)633-5137.

July

- 8-15, Rapid Methods and Automation in Microbiology International Workshop XIV, to be held at Kansas State University, Manhattan, KS. For more information contact Dr. Daniel Y. C. Fung at (913)532-5654, FAX (913)532-5681. A mini-symposium will occur on July 8th and 9th.

August

- 20-25, 41st International Congress of Meat Science and Technology, hosted by the American Meat Science Association, to be held in San Antonio, TX. For more information contact Ken Johnson, ICoMST Secretariat at (312)467-5520.
•23-24, Microbiological Concerns in Food Plant Sanitation & Hygiene, a two day interactive lecture course, sponsored by Silliker Laboratories Group, Inc., will be held in Chicago, IL. For further information, contact Silliker Laboratories, Education Services Department at (800)829-7879.

September

•14-16, International Dairy Federation Annual Sessions to be held in Adelaide, Australia. 18-22 International Dairy Congress to be held in Melbourne, Australia. For more information please contact IDF, 1601 Malvern Road, Glen Iris 3146, Victoria, Australia, Telephone (03)885-9781, FAX (03)885-0017.
•18-21, 1995 National Educational Conference, sponsored by the Canadian Institute of Public Health Inspectors, “Approaching the 21st Century - Challenges in Health Protection”, to be held in Victoria, British Columbia, Canada. For more information please contact Mr. R. W. Bradbury (604)478-0523, FAX (604)478-9363.
•19-21, Indiana Environmental Health Association Fall Annual Educational Conference will be held in Muncie, IN. For additional information, contact Tami Barrett at (317)633-8400.
•20-22, New York State Association of Milk and Food Sanitarians Annual Conference, Sheraton Inn-Buffalo Airport, Buffalo, NY. For more information contact Janene Gargiulo (607)255-2892.

October

•5-7, New York State Registry of Sanitarians 1994 Educational Conference will be held at the Villa Roma Resort Hotel, Callicoon, NY. For more information please contact Susan Jones (516)727-8947 or Michele Hecht (516)349-5816.
•5-8, 1994 International Dairy Show, sponsored by the International Dairy Foods Association, Milk Industry Foundation, National Cheese Institute and International Ice Cream Association, co-sponsored by the American Butter Institute, will be held at the Minneapolis Convention Center, Minneapolis, MN. For more information, contact International Dairy Show Convention Management at (703)876-0900.
•12-13, Iowa Association of Milk, Food and Environmental Sanitarians Annual Meeting will be held at the Best Western Starlite Village (formerly the Ramada Hotel), Waterloo, IA. For more information, call Dale Cooper at (319)927-3212.
•19-20, North Central Cheese Industries Association Annual Conference to be held at the Holiday Inn, Brookings, South Dakota. For further information contact E. A. Zottola, Executive Secretary, NCCIA, Box 8113, St. Paul, MN 55113.
•25-26, HACCP for Meat and Poultry Processors, a two day interactive workshop designed for those responsible for implementing a HACCP plan in a processing plant, will be held in Dallas, TX. Sponsored by Silliker Laboratories Group, Inc., more information is available by calling Silliker’s Education Services Dept. at (800)829-7879.

November

•2-3, North Dakota Environmental Health Assn. Annual Educational Conference will be held at the International Inn, Williston, ND. For more information, contact Deb Larson at (701)221-6147.

To insure that your meeting time is published, send announcements at least 90 days in advance to: IAMFES, 200W Merle Hay Centre, 6200 Aurora Avenue, Des Moines, IA 50322.

ADVERTISING INDEX

COMPANY .. PAGE

Acumedia Manufacturers, Inc .. 191
Applied Research Institute .. 206
Atkins Technical, Inc .. 199
Bentley Instruments, Inc .. 201
bioMérieux Vitek, Inc .. 189
Capitol Vial, Inc .. 204
Charm Sciences, Inc .. Back Cover
Dairy & Food Labs, Inc .. 195
Educational Foundation of the National Restaurant Assn .. 197
Environco .. 201
Food and Dairy Quality Management Inc .. 207
Gardex Chemicals Ltd .. 201
Gist-brocades Food Ingredients, Inc. Inside Front Cover
IDEXX Laboratories, Inc Inside Back Cover
Marcor Development Corp .. 195
McGlaughlin Oil Co .. 194
Nasco .. 200

Nelson-Jameson, Inc .. 203
Novamann Int./Smith Laboratory Service Ltd .. 194
Prosser/Enpo .. 201
VICAM .. 199
Wold Dryer .. 194

BUSINESS EXCHANGE “Classifieds”

B&J Repair Services .. 242
L. J. Bianco & Associates .. 243
Cargill Analytical .. 243
The Crombie Co .. 242
DQCI Services, Inc .. 242
Decagon Devices .. 242
Environmental Systems Service .. 243
Eastern Crown .. 243
Ingman Labs, Inc .. 242
Michelson Labs .. 242

246 DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994
IAMFES Booklets

New Prices Effective May 1, 1994

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Waterborne Illness</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Foodborne Illness - 4th Edition</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Arthropod-borne and Rodent-borne Illness</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Implement the Hazard Analysis Critical Control Point System</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pocket Guide To Dairy Sanitation</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$.50/member; $.75/non-member</td>
<td></td>
</tr>
</tbody>
</table>

Minimum order of 10 ($2.50 shipping for each order of 10)

Shipping/Handling

U.S. $2.00 for first item, $1.00 for each additional item

Outside U.S. $4.00 for first item, $1.00 for each additional item

3-A Sanitary Standards

New Prices Effective May 1, 1994

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Complete set 3-A Dairy Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$48 member; $72 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Complete set 3-A Dairy & Egg Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$70 member; $105 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>3-A Egg Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$40 member; $60 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Five-year Update Service on 3-A Sanitary Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-A Dairy & Egg Standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$62 member; $93 non-member</td>
<td></td>
</tr>
</tbody>
</table>

Shipping/Handling

U.S. $6.25 each item

Outside U.S. $10.25 each item

PRINT OR TYPE ... ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

Name

FIRST

MI

LAST

Company Name

Job Title

Office Phone #

Address

FAX #

City

State/Province

Country

Postal Code

MAIL ENTIRE FORM TO:

IAMFES

6200 AURORA AVENUE, STE 200W

DES MOINES, IA 50322-2838

OR USE YOUR CHARGE CARD

515-276-3344

800-369-6337

FAX 515-276-8655

U.S. FUNDS on U.S. BANK

PAYMENT MUST BE ENCLOSED IN ORDER TO PROCESS

___ CHECK OR MONEY ORDER

___ MASTERCARD

___ VISA

___ AMERICAN EXPRESS

CARD #

EXPIRATION DATE

YOUR SIGNATURE

DAIRY, FOOD AND ENVIRONMENTAL SANITATION/APRIL 1994 247
MEMBERSHIP APPLICATION

MEMBERSHIP

☐ Membership Plus $80
(Includes Dairy, Food and Environmental Sanitation and the Journal of Food Protection)

☐ Membership with Dairy, Food and Environmental Sanitation $50

☐ Check here if you are interested in information on joining your state/province chapter of IAMFES

SUSTAINING MEMBERSHIP

☐ Membership with BOTH journals $450
Includes exhibit discount, July advertising discount, company monthly listing in both journals and more.

STUDENT MEMBERSHIP*

☐ Membership Plus including BOTH journals $40
☐ Membership with Dairy, Food and Environmental Sanitation $25
☐ Membership with the Journal of Food Protection $25
*Full-time student verification must accompany this form.

Shipping Charges: Outside U.S.
☐ Surface $22.50 per journal
☐ AIRMAIL $95.00 per journal

PRINT OR TYPE . . . ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

Name ___________________________ Company Name ___________________________
FIRST MI LAST

Job Title ___________________________ Office Phone # ___________________________

Address ___________________________ FAX # ___________________________

City ___________________________ State/Province ___________________________ Country ___________________________ Postal Code ___________________________

Membership: New _______ Renewal _______

MAIL ENTIRE FORM TO:
IAMFES
6200 AURORA AVENUE, STE 200W
DES MOINES, IA 50322-2838

OR USE YOUR CHARGE CARD
515-276-3344
800-369-6337
FAX 515-276-8655

U.S. FUNDS on U.S. BANK

PAYMENT MUST BE ENCLOSED IN ORDER TO PROCESS

CHECK OR MONEY ORDER
MASTER CARD
VISA
AMERICAN EXPRESS

CARD #_________________________
EXPIRATION DATE_________________
YOUR SIGNATURE ___________________________
Water testing with Colilert

If water plays an important part in your business, Colilert should play an important part in your water testing.

Colilert is rapidly becoming the method of choice around the world for detecting and confirming total coliforms and E. coli.

Millions of tests run annually

Simple
- Easy-to-read results
- Pre-measured, ready-to-use 100ml, 50ml, and 10ml unit doses
- Easily adapted to field use

Quick
- 2 test results in 24 hours or less
- Less than 1 minute hands-on time
- No preparation or cleaning time

Accurate
- 1 CFU/100ml sensitivity
- No heterotrophic interference

Economical
- Shown to be less expensive than MF or MTF
- No expensive equipment required
- 12-month shelf life reduces waste

Proven
- In Standard Methods
- Approvals include: USEPA, AOAC, NCIMS and MOH Japan

To order a starter kit now, or for more information, call, fax or write:

IDEXX Laboratories, Inc.
One IDEXX Drive
Westbrook, ME 04092
Tel 207-856-0300 or 800-321-0207
Fax 207-856-0630
We can help you sleep at night.

Are changing regulations keeping you up at night? Do you worry that inaccurate tests may make you unnecessarily discard milk? Do you worry about certification?

Stop worrying!
Charm Tests have never let you down. And they won't now. The FDA Study and every study to date have shown that no other technology can match Charm Tests for:

Selectivity
Charm achieved 0/30 selectivity for all tests approved. No other test can match that record - no false positives.

NAPS
For all the major drugs in use, Charm tests produce the fewest NAPS (Non-Actionable Positives).

Interferences
No interference from: butterfat; legal metabolites of ceftiofur; bacteria; sanitizers, etc.

Reliability
From lot to lot, operator to operator, assay to assay

Dairies, regulators and government agencies around the world rely on Charm Tests. They can sleep at night. How about you?

Charm Sciences Inc.
36 Franklin Street Malden MA 02148
617 322-1523 FAX 617 322-31

Please circle No. 186 on your Reader Service Card
IAMFES Sustaining Member
1994 Exhibitor

Nothing works like a Charm