• Food Inspection Performance Standards

• Special Focus Industry Products: Microbiological Equipment
Maintain food safety in confidence.

Food safety is gaining greater worldwide awareness. Testing both product and environment is one of the best ways to ensure that what you produce meets or exceeds standards.

Since 1985, VICAM has dedicated itself to developing innovative, rapid, AOAC-approved tests for mycotoxins and foodborne pathogens. Most importantly, we maintain your confidentiality, and that's why we think of ourselves as your silent partner in food safety.

Serve your customers with confidence.

Every one of our tests offers significant improvements over other methods, providing each of these important benefits:

- **Speed** – Results in minutes or hours, not days.
- **Sensitivity** – Detect levels at or below guidelines.
- **Ease-Of-Use** – Little training required.
- **Accuracy** – Quantitative measurements.
- **Safe** – Test methods minimize hazards.

For example, ListerTest™ gives accurate, quantitative results within 24 hours for live Listeria. And, AflaTest® is the industry standard for aflatoxin testing, providing quantitative results in ppb within 10 minutes. No other tests are this fast, simple or sensitive.

For more information on how VICAM rapid test kits can help you maintain food safety, call us toll-free at (800) 338-4381 or contact:

Your Silent Partner in Food Safety

313 PLEASANT STREET, WATERTOWN, MA 02172
TEL: 617-926-7045 / FAX: 617-923-8055

Please circle No. 189 on your Service Reader card.
MEMBERS
INTERNATIONAL ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS, INC.

Invite a Colleague
To Join The Association

You, as a member of IAMFES, can contribute to the success of the Association and the professional advancement of your colleagues by inviting them to become a part of IAMFES. On your behalf we would be happy to send a colleague a membership kit, including complimentary copies of Dairy, Food and Environmental Sanitation and the Journal of Food Protection, and an invitation to join IAMFES. Just fill in the following information and Mail or FAX to (515) 276-8655. (Please Print)

Name ___________________________ Title ___________________________
Company __
Address __
City ___________________________ State/Prov. ___________________________
Country ___________________________ Zip/Postal Code ___________________________
Phone Number __
Your Name ___________________________ Your Phone ___________________________

MEMBERS
INTERNATIONAL ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS, INC.

Invite a Colleague
To Join The Association

You, as a member of IAMFES, can contribute to the success of the Association and the professional advancement of your colleagues by inviting them to become a part of IAMFES. On your behalf we would be happy to send a colleague a membership kit, including complimentary copies of Dairy, Food and Environmental Sanitation and the Journal of Food Protection, and an invitation to join IAMFES. Just fill in the following information and Mail or FAX to (515) 276-8655. (Please Print)

Name ___________________________ Title ___________________________
Company __
Address __
City ___________________________ State/Prov. ___________________________
Country ___________________________ Zip/Postal Code ___________________________
Phone Number __
Your Name ___________________________ Your Phone ___________________________
QMI helps you identify the source of product contamination

AND helps you avoid it!

With its patented QMI Aseptic Sampling System and Aseptic Transfer System, QMI is a fast, sure and easy solution for the threat of contamination. More importantly, QMI goes a long way to help avoid an even bigger threat—the threat of product recall due to spoiled or unsafe products.

- Using the QMI Aseptic Sampling System, you can effectively document micro-
biological process control, which is critical to an effective HACCP system.
- Using the QMI Aseptic Transfer System, you can avoid contamination during inoculation.

Don't take chances. Take action against contamination. Get all the facts on our aseptic sampling and transfer systems now.
ARTICLES

Extending the Keeping Quality of Fluid Milk to 21 Days ... 12
Sidney E. Barnard, Thomas R. Palchak, Mark Ivkovich and Patrick Cauiller

Food Inspection Performance Standards ... 17
Kermit M. McKemie

Current Situation of Food-Borne Diseases in Bahrain: Implications for Prevention and Control 21
Abdulrahman O. Musaiger, Corresponding Author, Dr. A. O. Musaiger

ASSOCIATION NEWS

Sustaining Members ... 7
Thoughts From the President ... 8
On My Mind ... 10
Updates ... 31
New IAMFES Members ... 28

Editor's Note:
The following five advertisers were mistakenly left off the Summary of 1994 Annual Meeting Exhibitors published in the November issue:
- Dynal
- 3-A Symbol Council
- Capitol Vial
- Nickel Development Group
- Prism

Descriptions can be reviewed on page 30 of this issue.
We apologize for the error.

DEPARTMENTS

Federal Register ... 20
Updates ... 31
News ... 36
Industry Products ... 39
Where To Find It ... 44
Business Exchange ... 46
Coming Events ... 47
Advertising Index ... 49

EXTRAS

IAMFES Membership Application ... 51
IAMFES Booklet Form ... 52

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.
Is your plant clean?

Lightning™ proves it's clean.

Now, with Lightning, you have proof. Proof that your cleaning is effective. Proof that you're ready for production.

Portability is the key to Lightning. Results are provided where and when you need them, on the production floor, within 2 minutes.

Lightning features a new breakthrough in swab design. Simply bend and squeeze the swab to activate reagents. No measuring, no pipetting required.

By measuring ATP from food residue on processing surfaces, Lightning is the solution to your concerns of plant cleanliness.

Lightning offers these advantages:

- **Portable** - Lightweight, easy to carry
- **Unit dosed** - all reagents contained in swab
- **Fast** - Less than 2 minutes to results
- **Easy** - Anyone can operate
- **Memory** - Stores thousands of test points
- **Trending** - Customized software for data analysis
- **Lowest priced system available**

Call 1-800-321-0207
SAFER FOOD FOR
A BETTER TOMORROW

MARK YOUR CALENDAR NOW
& PLAN TO ATTEND!

15 SYMPOSIAS & 3 TECHNICAL SESSIONS
INCLUDING:
- PRACTICAL APPROACH TO MILK QUALITY
- CURRENT ISSUES IN FOOD SERVICE
- ILSI SPONSORED RESEARCH UPDATE
- INTERNATIONAL APPROACHES TO MEAT SAFETY AND QUALITY
- EQUIVALENCY OF INSPECTION - THE IMPACT OF NAFTA AND GATT

WATCH COMING ISSUES FOR MORE DETAILS OR PHONE US TO RECEIVE YOUR ANNUAL MEETING INFORMATION!
(800) 369-6337
New Tamper Evident, Leak Proof, Air Tight, Hinged Cap, Sterile Sample Vials

Passes all FDA and USDA leak-proof tests. Available in 2 oz., 3 oz., 4 oz. and 10 oz. FDA approved polypropylene.

Call or write for a FREE SAMPLE of our

NEW SNAP SEAL

800-772-8871

Capitol Vial, Inc.

Union Street Extension, Fultonville, NY 12072

Rapid Isolation of Foodborne Pathogens

Beat the Clock with Dynabeads®

Dynabeads® Microbiology Selective Enrichment Products reduce the time for selective enrichment from 24 hours to less than 1 hour.

The Immunomagnetic Separation technology of Dynabeads® utilizes magnetic microspheres coated with highly specific antibodies to capture Salmonella species or E. coli 0157 directly from pre-enrichment broth.

The magnetically separated bead:organism complex can be directly plated on culture media or used in other detection systems (e.g. ELISA, PCR*).

**PCR process is the subject of patent and patent applications of Roche Molecular Systems, Inc., NJ, USA.

A Dynabeads® anti-E. coli 0157 method will appear in the BAM 8th ed.**

Dynabeads® are simple, sensitive and cost effective.

Contact Dynal at (800) 638-9416 for details on Dynabeads® anti-Salmonella and Dynabeads® anti-E. coli 0157.

DYNAL® 5 Delaware Drive, Lake Success, NY 11042
Temperature is critical to food safety and quality inspections—rely on Atkins Thermometers and Recorders! Ideal for wet processing environments, they are O-ring sealed against moisture. These rugged, high accuracy digital thermometers have several probe designs available. Atkins 330 Series with Probe Priced from $115
Recorder Thermometer with Probe Priced from $325
1-800-284-2842 ext. 404

DATKINS
Thermometer Manufacturing
Gainesville, FL USA • (904) 378-5555
FAX to (904) 335-6736 • Dept. 404
24 Hour Auto-Faxed Information
Call 1-800-888-1335, key in Info Pak #404, information will be immediately faxed to you.
Leadership is the most often talked about concept in management development courses these days. Leadership is often misconstrued by some because it is felt that it only applies to people who supervise others directly. But this is not the case. Some examples of leaders who are not in a supervisory role are: a basketball player who leads his teammates and to whom they respect, political leaders, a senior employee who is held in high regard by his or her coworkers, and even TV evangelistic preachers who lead people to their cause emotionally, financially, and even to death. Individuals such as Michael Jordan, Fidel Castro, Walter Cronkite, Rev. Jim Baker, and Rev. Jim Jones are or were powerful leaders.

Leadership is not solely a management skill but an emotional or psychological process. Most likely many great leaders probably had trouble supervising people directly. But they developed and fine tuned their psychological skills to become the lead dog of the pack. And as the lead dog you are the only one with a panoramic view. The rest of the pack looks at the back end of the others in the pack.

So what does this have to do with IAMFES? Good question. Specifically, I don't know. But I do know that as a professional environmental and food safety organization we want to be the leader. We want to position ourselves as a group of professional members, to be looked upon as leaders in our field. We want to have the skill and finesse of Michael Jordan, the stature and discipline of Fidel Castro, the peer respect of Walter Cronkite, the financial motivation to the cause of Rev. Jim Baker and the commitment to the cause Rev. Jim Jones gave to his followers even to the bitter end. How do or did these people do it? How will we as an Association accomplish it?

Leadership begins with the individual. Each IAMFES member needs to continue to be the focal point of information, guidance, experience, and motivation. Through this collective group of individuals we can draw upon as an Association to move the “pack” positively forward. But what makes individuals successful in IAMFES? First, the constant recognition of your professional Association is essential. Talking about IAMFES in business and personal circles is important. This includes recruiting new members and encouraging current members to remain in the “pack”.

A former boss of mine said once, “Dee, if you are going to establish yourself as a leader you have to first position yourself in the center and secondly, vibrate in all directions”. There is some good advice in those words. One can’t look at leadership, even as an Association, in a vertical manner. The concept is multi-directional or global in nature. Even in business today hierarchical management is fading away in progressive companies. Today’s leaders are those who can successfully maneuver around the organizational matrix.

All of us want IAMFES to be the leader in the food safety arena; the place to go for current information and sound scientific principles. But like individuals, we have our competition; organizations like NEHA, IFT, ILSI, APHA, ASQC, etc. all want to be the leader, too. But successful leadership of a professional Association is only achieved by participation — participation of its members in the Association, in committees, and on professional development groups and task forces. Just taking 15 to 30 minutes each month to review the Journal of Food Protection or the journal of Dairy, Food and Environmental Sanitation is participating.

The success of IAMFES to become the undisputed leader as a professional Association will not come from the efforts of the paid headquarters staff. It will come from each person reading this article. Please plan on becoming an “active” member. If we are successful, a future IAMFES President can write “Just Because You’re First, Doesn’t Mean You Stay First” in his or her column.
We’ll take the hassle out of HACCP.

SERVSAFE® Serving Safe Food from The Educational Foundation is a complete educational program, designed to address critical food safety issues through the Hazard Analysis Critical Control Point (HACCP) system. Our materials bring you the latest, most up-to-date information — and the easiest, most understandable implementation of the HACCP food safety system available. The SERVSAFE system features products for:

Foodservice Managers and Employees — The *Applied Foodservice Sanitation* course is the most recognized, widely accepted food safety training and certification program available for managers today. It is the first manager certification program to define and discuss the HACCP system. It’s great as an introduction for new sanitarians with food program responsibilities. And SERVSAFE also includes a manager training video, instructor materials and employee videos and guides to streamline training.

Sanitarians — The *Managing a Food Safety System* HACCP-based course is designed specifically to meet the needs of sanitarians and industry professionals. It offers opportunities for collaborative workshops between regulatory and industry professionals to discuss the practical implementation of the principles of HACCP consistent with the 1993 FDA Food Code. Some examples of past workshops include:

- **The Department of Commerce and FDA** use of the *Managing a Food Safety System* course as the HACCP curriculum for the National Seafood Foodservice Pilot Program.
- **The Department of Commerce and the Chicago Health Department** use of SERVSAFE programs to train field personnel.
- **National and state environmental health association** sponsorship of SERVSAFE programs for their members.

The *Managing a Food Safety System* course, as well as other SERVSAFE programs, can be presented as a seminar in your state. For more information on arranging a seminar, call 1-800-765-2122 ext. 772.

Let us help you take the hassle out of HACCP with the most recognized, up-to-date food safety training available — SERVSAFE Serving Safe Food. For more information on our HACCP-based SERVSAFE programs, call 1-800-765-2122 today!
“The question I would like to raise with you is, ‘Have we done too good a job of sanitizing?’”

...is “oversanitation.”

I may have made up another new word, I’m not sure. Probably, there are those of you who would say that “oversanitation” is a contradiction in terms — you just can’t get too much sanitation. Others would say that there simply isn’t such a word.

The question I would like to raise with you is, “Have we done too good a job of sanitizing?”

Let me digress for a minute. I have a friend who has a six year old daughter. To look at the child, you would think that she is the picture of health. She is, unless she stops taking her daily dose of antibiotics. If she so much as misses a day (I may be exaggerating a bit here), she comes down with an ear infection.

That requires a trip to the pediatrician who looks in her ears and prescribes — antibiotics. Usually more powerful (and more expensive and more difficult to pronounce) than the last. After listening to my friend relate this story and how it is a constant battle, I got to looking around.

Both my nephew and niece have had tubes in their ears because of ear infections. Every one of the children of our office staff have tubes in their ears because of ear infections (that’s five kids!). Both of my neighbor’s kids have had tubes in their ears. I know several children from church who have tubes in their ears. There may well be a great many more out there with tubes in their ears — it’s not the most obvious thing in the world.

If you talk to the parents involved, they all have essentially the same story: ear infections; somewhat controlled by antibiotics, but in the end resulting in tubes being inserted.

Now it could be that this is a newly accepted treatment regimen; or perhaps that all children go to the same pediatrician; or that aliens have invaded our children’s ears. (Aiming for their minds, but missed?)

Or, it could be that our reliance on antibiotics for all sorts of ills has left our children with a somewhat impaired immune system, susceptible to certain microbes that find their way to the vulnerable ears.

We know that insects and plants have the ability to develop resistance to pesticides and herbicides, and that they can do this in relatively short periods of time. Is it not possible that microbes can, and are, doing the same thing?

Now, let’s talk about emerging pathogens. Are they truly emerging, or are we just discovering them? Have they been there all along, but we were, for whatever reason, unable to detect them or catalog them?

Or — and this leads me back to — “oversanitation,” have our advances in techniques and sanitizers allowed us to kill off the weaker, perhaps competing strains and left us with just the survivors? Have we accidentally genetically engineered these emerging pathogens? Have we caused them to mutate and evolve in order to survive?

Have we oversanitized? And, is that bad? Considering the alternatives...
With Confidence

Testing for Salmonella enteritidis (SE) or Total Salmonella is easy, accurate and fast with VICAM’s exclusive Screen and Verify tests.

SE/Screen lets you rule out the presence of SE in Product and the Environment.

In Less Than 24 Hours

The procedure is simple. Sample is mixed with magnetic beads which attach to SE in the sample. If colonies appear, SE/Verify lets you know if SE is present. A similar test for total Salmonella is also available.

In Confidence

We understand your need for confidentiality, and that’s why we think of ourselves as your silent partner in food safety. And, because you can perform this test in-house, you’re assured complete confidentiality. Monitor wherever and whenever you want. Or, if you prefer using an outside laboratory, choose one providing rapid results with VICAM’s SE/Screen and SE/Verify.

For more information on SE and Salmonella testing, contact VICAM directly at (800) 338-4381 in North America, or UEP at (404) 587-5871.
Extending the Keeping Quality of Fluid Milk to 21 Days

Sidney E. Bornord,* Professor of Food Science, Food Science Department, College of Agricultural Sciences, Borland Lab, The Pennsylvania State University, University Park, PA 16802; Phone (814)863-3915; Thomas R. Polchok, Manager, University Creamery Penn State University, University Park, PA; Mark Ivkovich, Klenzade Div., Ecolab, St. Paul, MN 55102; Patrick Cauller, Diversey Corp., Wyandotte, Ml

ABSTRACT

Sixty-two steps are a lot to read, understand, and follow. However, careful attention to each one is necessary if you expect unopened containers of fluid milk to keep up to 21 days at 7.2°C (45°F), and still have acceptable flavor. Your goal should be to have at least 50% of the bacterial counts showing less than one coliform per ml and less than 20,000 SPC per ml after 14 days at 7.2°C (45°F). This list of processing and sanitation practices could become the Good Manufacturing Practices (GMPs) for your plants. You can select from these the few points to serve as your Hazard Analysis Critical Control Points (HACCP) program for your operation, also. You are challenged to hold daily samples from each filler at 7.2°C (45°F) for the length of open date you are using. One hundred percent of those samples will remain acceptable if all employees perform their responsibilities ideally.

Penn State studies show that traditional pasteurization and packaging can protect fluid milk so that it remains good for 21 days or longer at 45°F. Present procedures and practices of the more than 40 plants processing milk in Pennsylvania show that more than 90% of their product samples retained quality for 14 days at 45°F. Continual improvements in processor performance are moving keeping quality well beyond the 12-day open-dating mandated by the Division of Milk Sanitation of the Pennsylvania Department of Agriculture, as adopted in August 1991. Developing the changes recommended and getting them into practice required the cooperative efforts of the Food Science Department at Penn State, the Pennsylvania Association of Milk Dealers and their dealer member employees, Pennsylvania Department of Agriculture regional sanitarians, and representatives of allied industries.

Eleven studies of Pennsylvania plant-obtained samples have been made since May 1989. Two additional studies (Fall, 1993, April, 1994) involved only samples from the University’s Creamery. Two of the last three industry plant surveys showed 90% of the samples remaining acceptable for up to 14 days at 7.2°C (45°F). In the two studies of University Creamery samples, processed two days a week, 99% kept for 14 days at 7.2°C (45°F), and 88% keeping for 21 days at 7.2°C (45°F).

This is the second revision of the listing of recommended procedures and practices compiled by the authors from personal experience in troubleshooting keeping quality problems in milk processing plants. The initial listing, presented in March 1990 to attendees at regional meetings for Pennsylvania dairy-processing employees, was published in the February 1992 issue of Dairy, Food, and Environmental Sanitation and summarized in the April 1992 issue of Dairy Foods.

Recommended Procedures and Practices

1. The most important step is to use hot water to sanitize from the HTST pasteurizer, through all pasteurized milk equipment, to the overflowed filler bowls, then drained out through every valve of every filler. To meet the legal definition, sanitizing requires a minimum temperature of 76.6°C (170°F) for at least 5 min at any spot where you can check with a thermometer (such as draining from a pasteurized surge tank, entering a filler bowl, and draining from filler valves). To achieve 21-day keeping quality at 7.2°C (45°F) water temperatures were maintained above 82.3°C (180°F) for circulation and draining times of at least 10 min.

2. It may be necessary to start with water as hot as 93.2°C (200°F), unless the water can be reheated as it flows from the pasteurized surge tank, entering a filler bowl, and draining from filler valves). To achieve 21-day keeping quality at 7.2°C (45°F) water temperatures were maintained above 82.3°C (180°F) for circulation and draining times of at least 10 min.

3. Build-up of lactose on inner surfaces of the pasteurizer and surge tank can be reduced by the use of high temperature water in the surge tank over a period of time.
(170°F) for 5 min. At the University Creamery, it takes about 600 gal of 93.2°C (200°F) water to sanitize a three-valve paper filler, a single-valve dispenser filler, and the tanks and piping in five circuits. A multiple-filler plant could easily require 2,000 gal of hot water, unless the water can be recovered and reheated.

3. Follow (in accordance with manufacturers' instructions) the hot water with a cool-water chemical-sanitizer solution, at a temperature of 21°C to 31°C (70 to 90°F). DO NOT USE HOT WATER OR MIX CHEMICALS for this purpose. Flush the sanitizer solution for at least 2 min; 5 to 10 min is recommended. Never allow chlorine or iodine solutions to exceed 49°C (120°F).

4. If it is deemed absolutely impossible to hot-water sanitize pasteurized surge tanks, be sure they have been thoroughly cleaned, using a spray ball. Check all protrusions, openings, and gaskets for cleanliness, then sanitize with an acid-type or other sanitizer, using the circulation cleaning system and spray ball. Spraying the inside surfaces of a pasteurized surge tank with metered sanitizer solution usually will not, in itself, give you the desired keeping quality.

5. Allow sanitized surfaces to drain. Never use tap water from your private or a municipal supply to rinse off sanitizer solutions. These waters frequently contain psychrotrophs. Even if coliform-free, these organisms will contaminate pasteurized milk, hastening spoilage.

6. Provide a separate area and facilities where milk will help keep them out of pasteurizing and packaging rooms. This means coffee, restrooms, refrigerated cases for samples, ice, drinking fountain, table and comfortable chairs.

7. Check the appearance, temperature, and odor of milk in all truck tanks when received. Before unloading, take an aseptic sample for flavor testing, microscopic examination, drug-residue testing, determination of bacterial counts, and titratable acidity. Reject all loads of milk arriving warmer than 40°C (4.4°F), with bacteria counts exceeding 100,000/ml, or with positive tests for any drug residue, pronounced off-flavors, or titratable acidity exceeding 0.20%.

8. Minimize spoilage or leaking of raw milk. Using a sanitizer solution, promptly flush spills down the drain, or collect the leaking milk in the recovery system for separation, pasteurization, and use in manufactured products.

9. All raw milk is to be processed within 48 h of its collection from farms.

10. Place footbaths and/or provide squirt bottles containing a quaternary ammonium compound [800 to 1,000 ppm] at all outside doorways and passageways between processing areas. Insist that all personnel and visitors use them.

11. Each day, empty footbaths and manually brush or foam-clean with a chlorinated alkaline cleaner, rinse and refill with quaternary ammonium sanitizer. Lack of good rinsing will greatly reduce effectiveness of the sanitizer.

12. Do not use high-pressure pumps to clean the exteriors of trucks or floors, walls, and other dairy-processing equipment. High-pressure sprays create aerosols that can harbor bacteria and spread them widely via the air.

13. Establish and follow a preventive program to control all insects, rodents, and birds. Carry out your own program or engage a commercial exterminator. Check to see that prevention is accomplished. Keep in mind the possibility of pesticide contamination and make certain your exterminator understands the situation.

14. You must manually clean the manhole cover, vent, gasket, pump, and fittings each day you collect milk. If circulation cleaning does not result in clean flexible hose and fittings, they must be disassembled and manually cleaned.

15. Disassemble all raw-milk pumps at least weekly. Wash manually and reassemble, then sanitize before using. Pumps on some milk-collection trucks must be disassembled and cleaned each day they are used.

16. If you must repair equipment with raw or pasteurized milk-contact surfaces while it is in use, wear rubber or plastic gloves and chemically sanitize the surfaces. Drain, rinse, and sanitize milk-contact surfaces and equipment if it is not possible to follow a complete cleaning and sanitizing procedure.

17. Have a separate CIP system for cleaning and sanitizing truck tanks and raw-milk storage tanks and lines. This will help prevent the possible spread throughout the plant of disease-causing bacteria that may be present in the raw milk or raw-milk product. Separate CIP systems help prevent contamination of pasteurized products and equipment in production areas.

18. Empty, wash and sanitize raw-storage tanks at least every 72 h. Never put fresh raw milk on top of older milk in a raw-milk storage tank.

19. Provide lockers, changing space, footwear and uniforms for all plant personnel. Employees should be able to get to the locker room from outside without crossing any processing area. Employees arriving for work should change into their uniforms, leaving street clothes and footwear in the locker room. The objective is to avoid bringing to the processing areas soil and bacteria that might come from rural areas where animals are kept.
20. All employees, including management and sales personnel, should wear hair nets and hard hats, as well as nets over beards and mustaches. This is most important for all persons working in or walking through processing and packaging areas.

21. Processing, product-manufacturing, and packaging employees should wear no jewelry, other than a wedding band, while at work. Other jewelry, wrist-watch, etc., should be left at home or in the employee's locker. Pens, pencils, and thermometers should not be carried in the shirt or blouse pocket.

22. Each employee must thoroughly wash hands when returning from any area away from his/her work responsibilities. Use an E-3-rated handsoap. Dry hands on single-service paper towels, single-use cloth toweling, or under hot-air driers.

23. Have flow diagrams of all raw- and pasteurized-milk piping and equipment, as well as of lines conveying water, steam, cleaning solution or ingredients for dairy products. It is our experience that, in many cases, plant diagrams are not current. Update these diagrams whenever changes are made. Color-code lines to indicate product and direction of flow. Make sure all key plant personnel know where the diagrams are kept and how to read them.

24. Move or remove any kind of piping that is directly above any 'open' piece of processing or packaging equipment. Condensation forming on such piping may drip into the milk or dairy product. Dripping condensation can be a major source of spoilage.

25. Seal all cracks in floors, walls, and ceiling. Resurface floors, so they slope to drain and prevent pooling of liquids.

26. Wash and rinse weekly any product or case-conveying system, whether in gutters in the floor or out in the open. Install drip shields beneath overhead conveyors and use a lubricant containing a bactericide. Wash and sanitize these weekly.

27. Provide separate rooms, apart from areas used for processing and packaging, where returning containers and cases may be cleaned and sanitized with quaternary ammonium compound at 400 to 600 ppm. Wash, rinse, sanitize, and dry all product cases upon return or before moving them to the packaging area.

28. Do not install any piece of dairy equipment over a floor drain. Reposition any equipment that interferes with free access to a drain. Floor drains must be cleaned each processing day.

29. Install drain covers, with bell traps and grating, that are easily removed for daily cleaning and sanitizing.

30. On each processing day, clean all drain pipes with brushes designed and used only for that purpose. Rinse, then pour full-strength quaternary ammonium sanitizer into the reassembled drain cover and down the pipe. Sanitizer tablets or rings are available. Tablets or rings placed in your drains provide sanitizer in the drain at all times.

31. Pressurize the packaging room, preventing inward-moving air currents. This will help reduce entry of dust and airborne organisms.

32. Color-code your cleaning brushes, using separate brushes for raw and pasteurized milk-contact surfaces, for floors and walls and for drains.

33. Minimum required pasteurization temperatures destroy disease-causing and spoilage bacteria that may have contaminated raw milk. Temperatures in excess of 73.2°C (165°F) and holding times longer than 18 s for fluid white milk will not, in themselves, extend keeping quality.

34. The 99% of 188 samples from the University Creamery cold room which kept for 14 or more days at 7.2°C (45°F) were pasteurized at 73.2°C (165°F). Complete cleaning and proper hot water sanitizing are the keys to extended keeping quality. This must extend from the HTST into the container.

35. Provide covers and shields for all processing and packaging equipment, and keep them in place to prevent entry of contaminants into products or containers. Wash and sanitize all covers and shields daily. Check the undersides of the shields to be sure that they are clean and free of moisture. Any wet surface can become the source of contamination.

36. Close and seal all cartons of product containers and covers which remain at the end of the run. This will help prevent entry of dust, dirt, and other contaminants.

37. Any product resulting from change-over of product or container size should be re-pasteurized and used the same day. Spray forming and sealing mandrels and/or shields with a sanitizer solution as often as every 20 min and whenever you change products or sizes, but at least every 60 min.

38. Add all flavorings and sweeteners to milk prior to pasteurization. Vitamins should be added, in the correct amount, to separated milk and then thoroughly agitated prior to pasteurization.

39. Check samples of sweet water and glycol coolant on a frequent, but irregular, schedule. Look for disease-causing and spoilage bacteria (coliform and pseudomonads).
40. Minimize the use of water in processing and packaging areas to keep floors as dry as possible. This eliminates a place for bacteria to grow. When rinsing spills during processing, use a sanitizer solution.

41. Do not accept back into your cold room any product that has left a delivery truck and been delivered to a wholesale customer. If you must accept returns, put them in a separate area. The ideal means of disposal is to a farmer with pigs, but do not let product cases or boxes that have gone to the farm come back to your plant.

42. Have a circulation cleaning and sanitizing system (CIP) dedicated to pasteurized-milk equipment to prevent contamination from raw milk. A single-use or solution-recovery system is recommended. With top-opening vats, it is helpful to pre-rinse with a hose prior to a CIP rinse. Discharge all rinse water from CIP systems to drain.

43. Empty and recharge CIP systems with fresh water and chemicals each processing day. Change wash solution whenever it becomes cloudy and loaded with soils, and at least every 10 cycles. Level of Cl concentration in the wash solution is an indicator of soil load.

44. Write out the cleaning and sanitizing programs for all operations in your plant, specifying quantities, products, times and temperatures. This should be done with the help of a technical commercial representative of your chemical-compounds supplier. Check-off lists, if carefully thought out, can be extremely helpful to employees. Use cleaning and sanitizing compounds in the recommended amounts, so that solutions are of the proper concentration and pH. Check and record the strength of cleaning and sanitizing solutions at the beginning of each processing day.

45. Use cleaning and sanitizing compounds in the recommended amounts, so that solutions are of the proper concentration and pH. Check and record the strength of cleaning and sanitizing solutions at the beginning of each processing day.

46. To keep milkfat in a liquid state, temperatures of circulation cleaning alkaline solutions should be at least 5.5°C (10°F) above the temperature of the raw or pasteurized product. When cleaning cold milk-contact surfaces, solution temperature at the end of the wash cycle should be no less than 43.3°C (110°F).

47. Start with solution temperatures between 54°C (130°F) and 65°C (150°F) for raw-milk equipment and lines. Temperatures for pasteurizers, fillers, and pasteurized milk surfaces and lines should be 56.7°C (135°F) to 78.6°C (175°F) at the start for alkaline cleaning solutions.

48. For CIP cleaning, solution velocity through the pipes should be a minimum of 5 feet per second. To successfully clean a HTST press you need a velocity of up to one and one-half times milk-flow velocity.

49. It is usually necessary to manually clean the following silo tank parts: agitator, door and gasket, sample cock, vent, sight glass, valves, and any protrusions into the tank.

50. Other system components requiring hand-washing at the end of each processing day include plug valves, air-operated valves that do not pulse, pump seals, and pump gaskets.

51. Certain parts of your HTST systems require hand-washing or frequent disassembly and visual checking. These include vacuum breaker, timing pump, impellers, stand pipe, balance tank, dead-end pipes (pressure surge absorbers), divert lines and leak-detector lines.

52. You must have filters on air-blow systems to prevent contamination of product and lines with coliforms and spoilage bacteria. With blow systems the product is pushed out of the system with air, rather than by the next product in the line.

53. Disassemble and manually clean vacuum breakers each processing day. Be sure to remove any stand pipes for hand-cleaning and cap the tees down at the horizontal lines.

54. Examine each valve in all valve clusters often enough that you know they are clean. This could be monthly, weekly, or even each processing day if the valves are the manual three-way plug type.

55. Federal regulations prohibit circulation cleaning and sanitization of your homogenizer. Install bypass piping during CIP. Check the screens and gauges at least weekly to be sure that they are clean. Screens should be autoclaved each processing day.

56. Wear plastic or rubber gloves if you have to hook up fittings, adjust fillers, or handle a milk contact surface. Sanitize your clean gloved hands for 1 min in a proper strength sanitizer solution.

57. Thorough cleaning and sanitizing of fillers may be the most challenging job in the plant. With most machines many parts must be disassembled and manually cleaned. Be alert for foreign material.

58. Filler parts requiring manual cleaning and frequent checking include drive chains, splash shields, chain guards, heaters, mandrels, defoamer tubes and hoses, filler valves and shields, and cups or pistons.

59. When parts are clean and dry, check all surfaces to ensure that they are completely free of any deposits. Do this on an irregular, but as frequently as weekly ba-
sis, prior to assembly and sanitizing (which usually means in the middle of the night).

60. Be sure the system is completely assembled prior to hot-water sanitizing. Remove the filler screens from the chemical sanitizer and install prior to hot water sanitizing. Drain hot water through each of the valves, not just one or two.

61. Identify the hard-to-clean areas on each machine or process. Disassemble and inspect these as often as necessary to be sure they remain clean.

62. Develop a maintenance-record book or log listing dates: when gaskets were changed, when the HTST press was last opened, filler gaskets inspected and air-operated valves checked. Designate the employee responsible for recording this information, and make certain that all employees know of the book and its importance. Change gaskets and disassemble air-operated valves at least quarterly and open the HTST press at least twice each year.

LISTERIA, SALMONELLA
SAMPLING MADE EASY

The Whirl-Pak® “Speci-Sponge” Bag contains a 1⅛" x 3" sterile, non-inhibitory sponge for surface sampling to test for foodborne pathogens. Add our DE Neutralizing Broth to moisten the sponge, or use the dry sponge when wiping in a wet area. After collecting the sample, return sponge to the bag, and send to lab for testing. Growth media may also be added after collection if desired. The DE broth will neutralize several sanitizers which may be present on the surface.

For a free sample of the “Speci-Sponge” Bag and a copy of our Sampling Products Catalog, write NASCO, Dept. WL501, or call toll free.

Free Phone Order Service:
1-800-558-9595
FAX: 1-414-563-8296

Nasco
Fort Atkinson, WI 53538-0901
Modesto, CA 95356-9318

Reader Service No. 150
Food Inspection Performance Standards

Kermit M. McKemie, FDA Pacific Region Food Specialist
1359 Deerfield Ct., Concord, CA 94521

INTRODUCTION

This paper identifies qualitative performance standards for retail food-inspection work. We should regard standards as essential staff training guides and performance-review criteria. Enhanced standards should help achieve more effective inspections, and thus better address public-health concerns and provide more value for taxpayer funding.

Managers will have to become more involved in implementing change to meet competition and survive. Supervisors will need to join work teams so as to establish and maintain field performance having demonstrable public value.

Effective inspections should help prevent, or reduce the severity of, food-borne disease outbreaks. These are estimated as high as 81 million cases every year in the U.S., and result in an estimated 10 thousand deaths (1). A great many of these illnesses and deaths occur from poor food-preparation practices in retail and institutional kitchens. Many inspections, even in facilities with high volumes of food preparation or with at-risk clients, fail to address the factors associated with outbreaks. Higher levels of staff professionalism — for both restaurant workers and health inspection staff — should lessen this very high toll of suffering and economic loss from food-borne illness.

Each day most Americans eat out or buy food from a store. Improved inspections should reduce the discomforting chance of finding half a cockroach in a sandwich, as can happen from infested, dirty kitchens. There is enough stress in life without the worry of what happened to the other half of the bug! Having to take time off from work and care for a child stricken with salmonellosis resulting from a store's undercooked barbecued chicken is unneeded stress. These incidents don't have to happen in a modern, technologically advanced society like the United States.

There are some 1 million retail facilities in the U.S. These are inspected approximately twice a year. If we cost out this work (2), several hundred million dollars are spent every year. Any significant portion of ineffective inspections would waste a lot of taxpayer dollars. Also, there is a rationale for industry to exchange annual permit fees, which can be several hundred dollars for each facility, for more helpful, risk-directed private consultations.

Higher performing food inspection professionals are more able to communicate and share food risk and sanitation knowledge with industry. Ultimately, this should help industry managers and workers to be better educated, motivated, and empowered to do their important jobs. We can not inspect additional quality or safety into a food product than already exists. Industry has to do it.

We believe that high staff performance standards are essential factors leading to effective inspections, and conversely when lacking, bring about ineffective inspections. We will illustrate and compare inspections.

The Effective Inspection

We are defining this as an inspection utilizing good interpersonal skills and efficient inspection techniques. The inspection achieves a reasonable balance between physical facility and equipment matters, and those areas relating to greater food safety risk, such as inadequate food-temperature control, employee health problem (3), and poor hygienic practices. The inspection findings are code specific and are reviewed in helpful detail. Inspection staff consider themselves professionals, take pride in their work, and find job satisfaction.

The Ineffective Inspection

We are defining this as an activity where the end result focuses on filling out a check list of debits. Some call this a "report card" inspection. The inspection dwells almost exclusively on physical facilities and equipment, plumbing matters, and garbage handling. Work emphasis is on "Get the numbers accomplished." This satisfies the jurisdiction's high priorities of bean counting and revenue generation. Reports are often superficial "equipment in disrepair" or "clean the floor" narratives. In that findings are not detailed, the reports can be considered useless for most legal action considerations. Few significant, higher health-risk problems are found, and more importantly, resolved.

Inspections are often conducted in an adversarial or authoritarian style. With this approach and often trivial findings, the inspection program does not generate much support or credibility from industry. Jurisdiction employees consider food-inspection work to be a low-level stepping stone to more important (and better paying) environmental-health work, such
as toxic waste control. Managers are complacent "desk-potatoes."

We do not intend for the above to be a broad-brushed indictment of retail work inefficiency. In the writer's experience with over a thousand retail inspections, including the review of numerous reports prepared by federal, state, and local jurisdictions, the depiction above is not a typical inspection. However, the "ineffective" factors are found frequently enough to bring genuine concern for work quality, which prompted this paper on enhanced performance standards.

Suggested Performance Standards of Inspection Technique, Inspection Balance, Reporting, and Specialist Skills

Inspection Technique

The health officer shows efficiency and good focus. Other important factors include:

1. Starts the activity with a satisfactory introduction and explanation of visit to management.
2. Is courteous and establishes good rapport.
3. Is a good role model in personal hygienic practices, such as by washing hands at the beginning of the inspection, and by the cleaning and sanitizing of temperature probes.
4. Generates professional demeanor by personal appearance and garb appropriate for the facility (which may include hair restraints and smocks in the larger facility).
5. Prepares beforehand for the inspection with appropriate report forms, equipment, and file familiarity.
6. Conducts the inspection in an efficient, organized manner and without disruption of kitchen operations.
7. Demonstrates the satisfactory use of inspection equipment, such as chemical sanitizer-check strips, temperature measuring devices, pH meters or paper strips, cameras, and flashlights.
8. Uses satisfactory skill and safety precautions in examining kitchen equipment.
9. Can explain or demonstrate technological features to retail staff, such as how a bimetallic thermometer works or is calibrated, or just what "sanitization" means i.e., bacterial load reduction.
10. Shows good interview skills in establishing facts. Does not ask questions in such a way as to solicit the "correct" answer (e.g., "Do you sanitize? Of course we do").
11. Reviews in a careful, helpful manner the more significant violations.
12. Listens well. Is positive. Is able to negotiate.
13. Establishes mature and lasting "win-win" (4) inspection outcomes.

Inspection Balance

The health professional emphasizes the quality of work over the quantity of work. Other features include:

1. Establishes inspection priorities, such as first reviewing food preparation processes and risk for representative foods. Does the food safety review by observing, by checking recipes or written procedures, and by interviewing kitchen staff? Identifies what are or are not "potentially hazardous foods" (PHF) and follows food flows.
2. Finds and helps resolve hazardous or poorly controlled processes. An example would be the review of the preparation history of a large pot of PHF food taken into the walk-in refrigerator from the cook line.
3. Establishes a satisfactory voluntary destruction (or uses an embargo process) of contaminated or severely temperature abused food items.
4. Gives adequate attention to the coverage of employee health, employee practices, and "person in charge" (5) monitoring.
5. Distinguishes and weighs the significant, repeated violations from minor, isolated violations. Uses good public health judgment and current scientific and epidemiological information in evaluating possible problems. Is able to distinguish "critical items" (6) from noncritical provisions.
6. Addresses in a balanced way facility and equipment factors or conditions, housekeeping practices, and areas that present aesthetic concerns to consumers, such as the lack of employee hair restraints. This balance should be made in context with the overall facility, including resources, products produced, and importantly, the inspection time available after finding and resolving the higher health-risk problems.

Reporting

The health officer reports accurate, detailed findings related to code requirements. The report serves as a legal and public record of the visit and reflects well upon the jurisdiction. Other considerations include:

1. Prepares a report that identifies code sections and requirements. Narrative findings are correctly related to specific code sections.
2. Presents findings as fact-witness based, detailed statements written in a clear, objective style.
3. Lists report violations in a descending order of health importance.
4. Writes report observations with the intent of helping manage-
ment understand and resolve problems.

5. Can find and explain Code "Public Health Reasons" (7) or identify other scientific documentation or consensus standards, and satisfactorily and constructively explain health relationships, if questioned on debits.

7. Uses computer hardware and report-generation software, when available, to facilitate professional reporting.

8. Handwrites a legible report.

9. Is able to prepare reports reasonably free from misspelling and grammar errors.

10. Efficiently writes and submits the report at the time of inspection.

Specialist Skills

By developing interpersonal skills and food protection knowledge, the food specialist achieves professional maturity important in work performance, and equally, for personal confidence and job satisfaction. Professional registration can be considered a major step in this process.

Skill areas include, but are not limited to, verbal and written communication, culinary arts, commercial kitchen design and technology, evidence development, food technology, microbiology, epidemiology, entomology, and the useful application of the "Hazard Analysis and Critical Control Point" (HACCP) concept.

The jurisdiction should have a policy that supports skill development and training.

Staff must be accountable for their good or poor performance in some kind of review process. Field performance can be reviewed and certified in a recognized procedure by an objective authority. It is the author's experience that this leads to better work uniformity and staff professionalism in the jurisdiction.

Personal Comments

If we set low expectations for performance for public health officers, then that is precisely what we get. Mediocrity. Always doing things the quick and easy way.

Politicians may ask, "How can we afford a program with high worker skills and enhanced performance levels? There would be a demand to reward outstanding performance, such as with higher salaries, and there would be some additional time needed to cover and communicate health-risk findings." In response, I suggest that these politicians ask the mother whose child was killed because of hamburger contamination (8), or the consumer who finds half a deadroach in her sandwich, about costs and how inspections should be conducted.

In the 1990's many corporations have had to "re-invent" or "reengineer" (9) to better serve clients, meet competition, and utilize modern technology. By discarding obsolete functions, removing autocratic layers of staff, and working as self-directed teams, significant efficiencies have been achieved. Companies then do what they can do best. Government agencies can also streamline. With these savings, performance-oriented employees can be rewarded.

Many government managers are complacent "desk potatoes." We should bring to task more than a few health department bureaucrats for misplaced priorities, inadequate staff performance standards, and unrecognized inspection needs. These health-department managers, most of whom have nice computers on their desks, may ask, "How can we afford such things as field computers or even digital thermometers for staff?" The $1,400 notebook computer, even if it can be cost-justified in a year or so of use, is too expensive; the $140 automatic camera is too expensive; the $14 digital thermometer is too expensive.

You can apply this same mentality to food-group supervisors who have the only computers, are desk bound, and resist change or modern procedures. These supervisors and groups may not survive either in a realistic, competitive world. They could be replaced by private consultants doing efficient, risk-based inspections or by a U.S.D.A. Cooperative Extension industry training program. The scenario is not totally improbable.

There should be a paradigm shift to refocus our priorities and enable highly professional food inspectors to work with industry to resolve problems of common interest. The use of the 1993 Food Code and industry application of the HACCP concept should drive change. Enhanced performance standards would help in efforts to meet the work challenges of a modern world.

References

2. U.S. Food and Drug Administration, FDA/GSA Interagency Agreement. FDA is reimbursed approximately $70 per hour for federal office cafeteria inspections. With an average of three hours total time per inspection, twice a year, this would be about $400/year per facility. State and local jurisdiction inspection costs are believed to be similar to this figure.

3. U.S. Food and Drug Administration, Food Code 1993 Part 2-2 Employee Health. Much more attention is directed in this modern code to microorganisms such as Salmonella typhi, Shigella spp., Escherichia coli O157:H7, and Hepatitis A virus and the disease transmission potential in retail units. The code also has a detailed Annex Food Establishment Inspection that compliments performance standards.

5. U.S. Food and Drug Administration, Food Code 1993 Part 1-2 Definitions "Person in Charge" and Chapter 2. The person in charge shall demonstrate knowledge of foodborne disease prevention and have other important duties and responsibilities.

6. Ibid. Part 1-2 Definitions "Critical Items" and Preface xvi. The new code is written to clearly identify these more important violation areas.

7. Ibid. Annex Public Health Reasons. This part of the code provides in layman's terms the underlying purpose of each provision.
Federal Register

How to Make a Freedom of Information Act Request to FDA

The Freedom of Information Act allows anyone to request from FDA records not normally prepared for public distribution. Certain materials that are prepared for public distribution — such as press releases, consumer publications, speeches, and congressional testimony — are available from FDA without having to file an FOI request. Simply contact the appropriate FDA office. Also, consumers can ask questions about FDA-related matters by writing to the Consumer Inquiries Office, HFE-88, Food and Drug Administration, 5600 Fishers Lane, Rockville, Md. 20857.

How to Make an FOI Request

All FOI requests should be in writing. Address your request to: Food and Drug Administration Freedom of Information Staff (HFI-35), 5600 Fishers Lane, Rockville, MD 20857.

Or send requests via facsimile to: 301-443-1726 (facsimile operator 301-443-2706).

Be sure to include:

- Your name, address and telephone number.
- A statement of the records being sought, identified as specifically as possible. A request for specific information that is releasable to the public can be processed much more quickly than a request for “all information” on a particular subject. Also, a more specific and limited request will cost less for search, review and duplication fees.
- The Freedom of Information Act pertains only to existing records and is not a research service that compiles information not already available and identifiable. Make your request specific enough to permit an FDA employee familiar with the subject matter to locate the record in a reasonable period of time.
- Separate requests should be submitted for each firm or product involved.

Fees

Since FOI requesters may have to pay fees covering some or all of the cost of processing a request, you may want to mention the maximum dollar amount you are willing to pay. If the fees will exceed this amount, FDA will contact you before filling the request.

The current fee schedule for commercial requesters is as follows:

- search and review time: $13, $26 or $46 per hour, depending on the level of FDA employee filling the request.
- photocopying: 10 cents a page for standard-size paper or the actual cost per page for odd-size paper.
- microfiche: 50 cents per fiche.
- certifications: $10 each.
- computer charge: actual cost for time involved.

For noncommercial requesters such as representatives of educational institutions, public interest groups and the news media, fees are charged only for duplication (with no charge for the first 100 pages). Consumers are charged for search time and duplication (with no charge for the first two hours of search time and the first 100 pages of duplication).

Do not send payment with your request. You will be billed if the total charges are $10 or more. FDA does not accept credit cards. Payment must be made by check or money order.
Current Situation of Food-Borne Diseases in Bahrain: Implications for Prevention and Control

Abdulrahman O. Musaiger, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
Corresponding Dr. A.O. Musaiger, P.O. Box 132, Manama-Bahrain; Fax: (+973)533423

ABSTRACT

One of the main public-health problems facing Arabian Gulf states, including Bahrain, is the need to ensure an adequate supply of safe and nutritious foods. Food importation in these countries has increased steeply due to the decline in agriculture and the very rapid growth in demand for food commodities. In Bahrain, the severe shortage in food production has made the country highly dependent on food importation (90% of foods consumed are imported), and the country has become among the least self-sufficient countries in the world (1).

Bahrain imports food from various countries all over the world. This creates a great challenge to the health authorities in order to ensure the safety of imported foods, especially in view of the lack of these foods (2). In 1991, the Bahraini Ministry of Health destroyed 882 tonnes and rejected 1,449 tonnes of imported foods because they were unfit for human consumption (3). These figures are relatively high for a country like Bahrain with a population of 508,000 (4).

In Bahrain, while noncommunicable diseases such as cardiovascular diseases, hypertension, diabetes, and cancer are becoming the main causes of morbidity and mortality, foodborne diseases still contribute to substantial numbers of illnesses (3). The World Health Organization (WHO) reported that foodborne diseases are now considered a major public-health problem all over the world (5). Health consequences due to these diseases can be very severe and may lead to death, especially in persons with low disease resistance such as infants, young children, and the elderly. These diseases also have major economic impacts through loss of income, manpower, foodstuffs, medical care and decreases in tourism (6).

Information on foodborne diseases in Arabian Gulf countries, including Bahrain is lacking. The present paper provides such information based on the available data. It reviews the current situation of foodborne diseases in Bahrain, investigates their etiology, and suggests some measures to control these diseases.

Current Situation of Food-Borne Diseases in Bahrain

Food-borne diseases may be toxic or infectious in nature and are caused by ingestion of contaminated food. These diseases can be grouped on the basis of the causative agents: bacteria, fungi, viruses, parasites, and chemicals.

Bacterial Food-borne Diseases

Bacteria are a leading cause of food-borne diseases in Bahrain. In 1991, a total of 673 cases of microbial food-borne disease were reported in the country. Of these cases, salmonellosis was the most common type, followed by hepatitis A, shigellosis, typhoid, paratyphoid fevers, and amoebiasis, in that order (3).

The Ministry of Health in Bahrain reported that about 7% of foods examined in 1991 were unfit for human consumption due to bacterial contamination. The main pathogens isolated from these samples were Salmonella, Staphylococcus, Listeria, and Bacillus cereus, in that order (3). A study on suspected food examined from January through October, 1992, in Bahrain, showed that 21% of these foods were unfit for human consumption based on coliform tests. This percentage is three times higher than that reported in 1991. The foods commonly found to be unfit were fresh fruit juices (35%), milk and milk products (28%), and ready to eat foods (12%) (7).

The incidence of salmonellosis decreased by 24% during the period 1990 to 1991. Of all salmonellosis cases, 51% occurred in children below five years of age (Table 1). The incidence rate was the highest among this age group (14/10,000), indicating the importance of prevention and control of salmonellosis among infants and young children. The high prevalence of bottle-feeding and unhygienic preparation of baby foods may be responsible in part for the salmonellosis among children below one year of age. In addition, young children have an incomplete immune system, and thus are more susceptible to bacterial infection.

Food-poisoning outbreaks due to
salmonellosis occur frequently; the most common types of Salmonella isolated from food samples are Salmonella groups B (31%), C1 (26.5%), E1 (16%) and C2 (13%) (3). Epidemiologic investigations showed that improper thawing of foods, inadequate cooking, inadequate reheating of cooked foods, cross-contamination, and infected foodhandlers are the main factors contributing to Salmonella outbreaks in homes and restaurants in Bahrain. The foods mostly involved in these outbreaks are chicken, turkey, and meat (8).

Cases of shigellosis increased by 31% during the same period. The incidence rate was also highest among children less than five years of age (9.5/10,000), followed by children from 5 to 14 years of age (4.7/10,000).

Eighty-six and 12 cases of typhoid and paratyphoid fever respectively were reported in 1991. The reported cases of typhoid increased by 39% for the period 1990 to 1991 and 83% of the cases were imported. The main countries of importation were India (67.7%) and Pakistan (21.1%). Of the total typhoid cases, 81% occurred in the age group 5 to 34 years. However, it is worth mentioning that typhoid fever is no longer considered a public-health problem in Bahrain, and the increase in its incidence in 1991 is mainly due to the increase in reporting cases in this year. All the 12 cases of paratyphoid fever were imported from India (10 cases) and Pakistan (2 cases) (3).

Staphylococcus food poisoning is also a matter of concern, and cooked foods are mostly involved in these cases. In 1991, it was found that Staphylococcus aureus were isolated from 90% of suspected cooked foods, indicating that humans are the main source of transmission. In 1985, a food-poisoning outbreak occurred in a primary boy's school in Bahrain. The investigation showed that the sandwiches provided to the school canteen were contaminated with Staphylococcus aureus. Egg sandwiches had the highest attack rate (32%), followed by meat (27%), liver (18%), and chicken sandwiches (14%). Furthermore, examination of the foodhandlers showed that one of them had an abscess on his left ring finger, and S. aureus was isolated from the lesion (9).

It is a common practice in local markets in Bahrain to sell some food products that are prepared at home. This practice may lead to health hazards to the public. A pilot study was done on the bacteriological quality of fermented fish sauces which were prepared at home and available in the Bahraini market. The total plate count was found to be high in all fish sauces studied. Staphylococcus aureus were detected in three out of five samples, while other salmonellae were not detected. It was concluded that Staphylococcus aureus may come from unhygienic preparation of fish sauces as well as from ill carriers (10).

Viral Food-borne Diseases

Food can only act as a vehicle for the transmission of viruses. The important viral disease transmitted via food in Bahrain is infectious hepatitis, caused by the hepatitis A virus. About 169 cases of hepatitis A were reported in 1991; of these 62% were among children ages 5 to 14 years, (an incidence of 10.1 per 10,000). In many cases it is difficult to ascertain the food implicated since the disease has a long incubation period, varying from 10 to 50 days, and therefore by the time an outbreak is detected, the food is no longer available for examination. The source of infection in food-borne virus infection is usually human feces. Contamination can occur either directly by means of infected foodhandlers or polluted water (11). In Bahrain, it is widely believed that expatriate foodhandlers (mainly Asians) play a major role in the spread of hepatitis A in the country.

Aflatoxin

Contamination of foods with aflatoxin is a public health problem in many tropical countries. Reports from developing countries (12, 13) showed that a significant occurrence of aflatoxin has been found in some foods such as nuts, corn, chillies, and cassava. Aflatoxin is produced mainly by Aspergillus flavus, a fungus which grows better in warm, moist conditions. Epidemiological studies indicate that ingestion of food contaminated with aflatoxin is associated with the occurrence of liver cancer (13).

Contamination of foods with aflatoxin is a problem in Bahrain. This is particularly true because the country is characterized by warm and highly humid weather during most of the year. Additionally, it is highly dependent on imported foods, which come from various countries all over the world.

A preliminary study (14) was done to identify the occurrence and levels of aflatoxin in 80 raw foods.
commonly consumed in Bahrain, with particular emphasis on peanuts and pistachio nuts. Only two samples of shelled peanuts and one sample of unroasted pistachio nuts were contaminated with aflatoxin B₁, while all other samples were free from contamination. The levels of aflatoxin B₁ in peanuts were 3.5 and 2.5 ppb in the two samples. This level is below the U.S. FDA permitted level, 20 ppb. In the contaminated sample of unroasted pistachio nuts, the level of aflatoxin B₁ was 100 ppb, which greatly exceeds the guideline level. This raises a concern since aflatoxin B₁ is the most toxic of the aflatoxins. More attention should be given, therefore, to detecting aflatoxin in nuts in this country.

This study demonstrated that the problem of aflatoxin contamination exists in Bahrain. However, at this stage the situation is not necessarily alarming, since only one sample was above 20 ppb. However, the negative results in other foods must be interpreted with caution, since the sample size for some foods was small and did not cover all regions in Bahrain. Therefore, a comprehensive and well-designed study to monitor aflatoxin in various foods is urgently needed.

Chemical Food Poisoning

Chemical poisoning through intake of food is rarely reported in Bahrain, but the available indicators showed that chemical poisoning, especially among infants and young children, is a source of worry to the local health authorities in the Arabian Gulf countries (2).

Foods may be contaminated by harmful metals such as lead, cadmium, and mercury. This kind of contamination can occur during the initial stages of production, and during post-harvest processing, handling, and preparation. A high level of heavy metals such as lead and cadmium have been found in staple foods and water from industrialized areas in Europe and North America (15).

Reports on food contamination with heavy metals in Bahrain are alarming. A study on trace metals in drinking water in Bahrain (16) showed that the levels of lead, chromium, aluminum, arsenic, copper, zinc, nickel, and mercury are all below the acceptable levels recommended by WHO. However, there are variations in the concentrations of these metals depending on the source of water. High levels of copper and zinc were found in a small localized area where copper pipes and metal taps are used. A relatively high concentration of chromium was found in tap water. This may be due to the use of galvanized water taps in most houses. The use of metal water tanks may play an important role in the increase in the level of copper and zinc in drinking water. This is particularly true when water from fiberglass tanks is compared with that from metal tanks; it was found that the levels of copper and zinc were higher in the latter source compared to the former.

To prevent and control the heavy metals in drinking water in Bahrain, the study (16) recommended replacing the metal tanks with fiberglass tanks, introducing proper legislation for water and waste water, and frequent testing for heavy metals in drinking water. As Bahrain's water distribution system depends on mixing groundwater with desalinated water, a national environmental strategy for controlling these two sources (sea water and groundwater) should be established.

Chemical poisoning may arise due to oil pollution of seafood in Bahrain. The spilling of oil into the Gulf sea has been reported several times. Crude oil contains many compounds of known or suspected to be carcinogenic to man, such as the polynuclear aromatic hydrocarbons (PNAH). It has been alleged that these PNAHs will persist in tissue of marine biota exposed to oil discharges and will be accumulated up the food chain, reaching concentrations presenting a hazard of cancer-induction in humans as consumers (17,18). In Bahrain, the last occurrence of oil pollution, which happened during the recent Gulf War (1990/91), and oil slicks threaten the fishing industry. Several cases of fish contaminated with oil have been reported.

Another source of contamination of seafood is oil-refinery effluents. The petroleum refineries in Bahrain use large volumes of water for oil processing and cooling. This water, in spite of the oil-recovery techniques applied, carries residual oil in the final discharge in addition to residues of other chemicals used in the processing of that oil. The refinery effluents also contain phenols, sulphides, ammonia, cyanide, and heavy metals. The waste water containing all these pollutants, when released into the sea, brings about both localized and widespread destruction of the marine biota and disruption of the ecology through the release of harmful pollutants. Therefore, fish caught in these areas may be polluted with hazardous chemicals. A high level of toxicity near the outlets of the refinery and low levels at the stations situated seaward have been reported (19).

The study (19) of effects of the refinery effluents on rabbit fish (Siganus canaliculatus) measured by toxicity tests has found that although certain dilutions of the effluents did not kill the fish, there was an increased concentration of contaminants and heavy metals in the tissues of the fish which could be passed on up the food chain and eventually be consumed by humans leading to severe deleterious results.

Intestinal Parasitic Infection

Intestinal parasitic infection is widespread in developing countries and has an adverse effect on the health of the population, especially of children (20). In Bahrain, few studies have been carried out to estimate the prevalence of intestinal parasitic infection. In 1980, Mobayed, Kamal, and El-Gashy (21) found that 36% of children aged 1 to 11 years were infected with intestinal parasites. A more recent study by Mussaiger and Gregory (22) on 762 school children ages 6 to 20 years showed that 14.3% of these children were infected with intestinal parasites. The results indicated that boys had (15.4%) higher rates of
infection than girls (12.5%). The most common parasites isolated were *Giardia lamblia* (4.7%), *I. trichura* (3.8%) and *H. nana* (3.4%). *Giardia lamblia* was more prevalent among children ages 16 years and above than in other age groups, whereas *T. trichura* was highly prevalent among children of 6 to 10 years. The prevalence of *H. nana* was higher in the age group 11 to 15 years. The pattern of parasitic infections in Bahrain is very similar to those reported in other Arabian Gulf countries (23, 24). This could be attributed to the similarity in the socioeconomic conditions and health status in these countries.

Giardia was the most common parasite prevalent among school children. This parasite is endemic throughout the world. The frequency of *Giardia* in this study may be underestimated since examination of one stool sample may not detect the forms of *Giardia* (or even of other parasites) which are irregularly released in the stool (20).

Trichuris and *Hymenolepis* were the second most important parasites prevalent among Bahraini children. Although *Trichuris* is widespread all over the world, it has been neglected more often than the other intestinal parasites (20), and this has led to a lack of recognition of this infection as a public health problem (25). Intensive infection of *Trichuris* was found to cause a severe clinical syndrome associated with mucoid dysentery and growth retardation in children (26). It is widely accepted that *Trichuris* may be a major cause of chronic malnutrition in young children in developing countries (20). This whipworm is also spread widely among the adult population and it is a common cause of bloody diarrhea (27). These findings suggest the importance of detecting *Trichuris* in Bahrain, particularly among infants and young children.

It was found that *Ascaris* infection alone is not capable of inducing malnutrition unless it is associated with other health problems (28). However, Tripathy et al. (29) showed that malabsorption is associated with *Ascaris* infection, and this indicates the need to detect such parasites in children.

The prevalence of intestinal parasitic infections in Bahrain can be attributed to several factors. A lack of personal hygiene is the most important factor responsible for the higher incidence of parasites in the developing world (20). In some rural areas in Bahrain the hygiene conditions are relatively poor, which leads to a higher prevalence of parasitic infections in these regions. Mobayed, Kamal, and El-Gashy (21) showed that parasitic infections were almost double among rural children compared to urban children. This is supported by a study by Musaiger and Aldallal (30) which reported that deaths due to infectious and parasitic diseases are higher in rural than in urban areas of Bahrain.

Immigrants also play an important role in spreading intestinal parasites among the local populations. The majority of immigrants in Bahrain come from endemic countries such as India, Pakistan, and Sri Lanka. The Public Health Directorate (3) reported that several intestinal parasites were isolated from feces of expatriate food handlers and housemaids who came to work in Bahrain. The main parasites isolated were *Ascaris lumbricoides*, *Trichuris trichura*, hookworms, and *Giardia lamblia*. Reports in other Arabian Gulf countries showed similar findings, as the prevalence of parasitic infections among the immigrants is very high (31, 32). In Saudi Arabia, for example, it was found that 44% of Indians involved in catering and domestic work in the Riyadh Military Hospital were infected with parasites (31).

Factors Contributing to Occurrence of Food-borne Outbreaks

Changes in Food Habits

The food habits of the people of Bahrain have changed dramatically during the last two decades, as a result of the increase in income from oil revenue. The consumption of processed and take-out foods has increased steeply. Nowadays the practice of eating out is becoming more popular and thus, people have a greater chance of becoming sick due to eating contaminated foods prepared at restaurants. Moreover, there is a rapid growth of shops and canteens which are providing take-out meals, and many families reheat such meals at home or keep them for a long period before eating. This practice provides the ideal conditions for microbial growth (8).

Food Handlers

Food handlers often have little information about the risks of food contamination or how to avoid it. The work is considered low status and is low paid, which leads to poor motivation (33). The majority of food handlers in Bahrain are low socioeconomic expatriates who came from endemic countries such as the Indian subcontinent and Far East countries. A high percentage of these expatriates work in restaurants and in homes. The Directorate of Public Health (3) reported that expatriate food handlers were involved in many bacterial foodborne illness such as salmonellosis, typhoid and paratyphoid fevers, and food-poisoning outbreaks. In addition, several intestinal parasites were isolated from feces of food handlers and housemaids during their routine medical check-ups.

Illiteracy and poor personal hygiene are the main characteristics of food handlers in Bahrain (including Bahraini workers). This has complicated the problems, especially in that the expatriates cannot understand Arabic and this makes the health-education campaigns through various mass media useless. A study on the problems encountered by food inspectors in Bahrain showed that 91% of these inspectors had difficulties in communicating with food handlers, because of language barriers (8).

Another important factor is the increase in the demand for the services of foreign housemaids by Bahraini families. Even unemployed mothers depend on the services of...
housemaids to help in home management, preparation and cooking the meals. These housemaids are poorly educated, have little or no information on hygienic preparation of foods and probably play an important role in the occurrence of many cases of food poisoning at home.

Lack of Health Awareness

Ignorance on sound handling, preparation, and storage of foods is common among both food handlers and the public. Most food-poisoning outbreaks which occurred in homes, restaurants, and schools in the country have been due to lack of knowledge about food preparation such as improper thawing of frozen foods, inadequate cooking, keeping the cooked food at room temperature for several hours, and bad personal hygiene during preparation of foods (8).

A study on food sanitation knowledge and practices of 372 Bahraini housewives showed that 13% of them did not cover their hair and 28% did not remove their rings during food preparation and cooking. Moreover, 54% of those housewives thawed frozen food in a water bath and 34% at room temperature. About 60% of those who eat grilled fish did not eviscerate it before grilling. Among the total samples, 18% had at least one episode of diarrhea during the month preceding the survey (34).

Environmental Pollution

Foods can be contaminated due to environmental pollution of drinking water, sea, and air. The Ministry of Health (4) in Bahrain reported that 5% of water samples tested in the Public Health Laboratory were unsatisfactory (based on coliform tests). Contamination of tap water may come from leaks in the pipes or contaminated tanks.

Another source of contamination is spring water. Bahrain has many natural springs which are used for swimming, washing, irrigation purposes, and possibly food preparation. These natural springs may pose a health hazard if polluted with pathogenic organisms (35). In 1975, an outbreak of paratyphoid fever occurred in a village in Bahrain. On investigation it was found that this outbreak had originated from one of the natural springs in the village (36).

Unlike deep ground water, spring waters are more easily contaminated by feces of both animals and humans. The bacteriological quality of 12 springs in Bahrain were studied by Khunji, Musaiger, and Mohana (35). It was found that fecal coliforms were present in 11 of 12 springs studied, and three springs were heavily contaminated with fecal coliforms. All springs may be contaminated with animal wastes (using the ratio of fecal coliforms to fecal streptococci as indicators for human and animal wastes). Neither Salmonella nor Shigella were detected in the spring waters.

In Bahrain, treated and untreated sewage effluents are dumped into the sea and this can create two kinds of health problems: the risk of contaminating bathing water and beaches and the risk of contaminating fish and shellfish. Effluents treated with conventional methods may still contain large amounts of viruses and parasitic ova and cysts. The coastal water quality at the main beaches of Bahrain was assessed for fecal pollution (37). The results indicated that two out of seven beaches surveyed were polluted, but the pollution did not exceed EEC standards. The performance of three different types of existing sewage-treatment methods was also assessed, and findings showed that a conventional sewage-treatment system was producing the highest chemical and bacteriological quality effluents. The effluents, however, which are intended for reuse, still contained parasites, mostly Strongyloides stercoralis larvae. On the other hand, an overloaded waste stabilization-pond system was producing parasite-free effluents.

Inadequate Legislation and Regulations Related to Food Safety

Most outbreaks of foodborne disease throughout the world are caused by failure to observe satisfactory standards in the preparation, processing, handling, and storing of food (33). National food standards are lacking in many aspects related to food safety (38). Adequate legislation and regulations for food handling and processing are a great help in keeping food safe for human consumption. Although Bahrain adopted the Food Hygiene Regulations recommended by the Code Alimentarius Committee of FAO/WHO, the need for regulations to consider the local situations is essential.

Inadequate Training of Workers Involved in Food Inspection

Food and health inspectors usually receive little training through their education. These inspectors are rarely updated about the new trends in food and health inspection. In addition, their training contains little information about the local situation. For example, the majority of food inspectors did not receive any training in implementation of the HACCP system. This system ensures that all food handling operations are properly controlled and has proved to be more efficient and cost-effective than traditional systems (33).

Prevention and Control

Despite the improvement in the sanitary and health situation in Bahrain over the past decade, food-borne diseases remain a problem of concern. A number of factors are responsible for the prevalence of these diseases, such as food handling personnel, lack of health awareness, and environmental pollution. It is essential, therefore, to establish an effective program to prevent and control food-borne diseases in this country. To achieve that...
measures should be adopted. These measures can be divided into two categories, local and regional measures.

Local Measures

It is well recognized that without an effective food-quality control system, it would be difficult to ensure that food supplies are safe. To obtain an adequate and effective food-safety program in this country the following measures should be taken into consideration:

1. Revising the current Food Law. Unfortunately the Law is far from being comprehensive. In view of the rapid technical development in food processing and handling, more attention should be given to updating the current Food Law, with more emphasis on local situations.

2. Active and effective food inspection services. Food inspection in Bahrain has concentrated more on general hygienic and sanitation aspects, without taking into consideration many other sources of contamination of foods. This is particularly true given the great limitations in facilities and number of health inspectors. Inspection should focus on storage and preservation of foods, cooking methods, cleaning materials and methods, sterilization and disinfection, kitchen design and equipment and control of infestation. This can be done effectively through adoption of the HACCP system.

3. Improve quality and quantity of analytical services. This can be achieved by training the staff and carrying out more chemical tests such as determining pesticide residues in foods, mycotoxins, food additives, and artificial hormones.

4. Preparation of food standards which are related to local circumstances in Bahrain. Standards relating to levels of mycotoxins in foods, additives, pesticides residues, and heavy metals are urgently needed. Equipment used in preparation and processing should be standardized to avoid any defect in processing unsafe foods.

5. Proper training for both food inspectors and chemists. This should be done in two ways: in-service training to update knowledge and improve skills of these staffs, and overseas training for senior staff to gain skills in specific techniques or advanced methods in inspection and analysis of foods.

6. Revising the current food inspection organization in order to cover a wider aspect of food control and to increase the efficiency of activities.

7. Involvement of other related governmental and private bodies in preparation of food standards, such as the Directorate of Fisheries, Directorate of Agriculture, Nutrition Unit (at Ministry of Health), the Bahrain Society of Engineers, food factories, and others.

8. Adequate educational programs for the public and food handlers on different aspects of food safety. This educational program should be an integral part of the primary health-care education approach (6).

Regional Measures

As the Gulf Cooperation Council countries (GCC) have similar demographic, cultural, and environmental characteristics, cooperation and coordination among these countries in food safety are essential. This is particularly true when we know that there are several regional bodies which can participate effectively in supporting the activities to improve food safety programs in the GCC countries. Among these are the Arab Gulf Standardization and GCC Health Council. It is highly recommended to establish a Food Safety Committee for GCC countries. This committee will be responsible for programs to improve food safety in these countries. The main activities of this committee can be suggested as follows:

1. To work as a consultation committee for food safety for the Governments of GCC countries.

2. To propose procedures for evaluating and monitoring of food safety programs in these countries.

3. To coordinate activities related to food safety in these countries, such as laboratory services, food inspection, and legislation.

4. To recommend various kinds and levels of training programs needed for workers involved in food safety at country and regional levels.

5. To review and update the current regulations and legislation related to food safety.

6. To plan and recommend health-education materials and programs for the public and food handlers.

7. To organize regional conferences, workshops, and symposia in food safety.

8. To work as a liaison with other countries.

References

diseases in Bahrain. Proceedings of Workshop on Food Additives and Contaminants, Food and Environment Center, Abu-Dhabi, U.A.E.

New Members

ARKANSAS
Mary Ann Herring
Riceland Foods Inc., Stuttgart
Yanbin Li
University of Arkansas, Fayetteville

AUSTRALIA
Ed Stuttard
EMI Consulting Services, Parramatta, NSW

CALIFORNIA
Laurel Cady
Case Swanye Co., Inc., Corona
Joel Geldin
Geldin Meat Co., Inc., Los Angeles
Juan Jose Muniz
Primus Laboratories, Santa Maria
John Schillinger
CSU Northridge, Northridge
Eldon Smith
Dairyman’s Coop Creamery Assn., Tulare
James Wagner
Baskin Robbins, Canyon Country
Carl Yamashiro
Perkin Elmer/Applied Biosystems Division, Foster City
Darlene Yingst
Dept. of Food and Agriculture, Comina

CANADA
Jasmin Francor
Cintech AA, St. Hyacinthe, Quebec
Julie Frechette
Flamingo Food, St. Rosalie, Quebec

COLORADO
Marie McCarty
Pillsbury Canada Ltd., Ontario
Peter Moccio
Health Unit, Ontario
Rhonda Tracht
Nat’l. Agri-Food Tech. Ctr., Portage La Prairie, Manitoba
Gergia Vlahos
Cargill Foods, Etobicoke, Ontario

CONNECTICUT
Jerry Nigh
Merittech, Inc., Englewood
Joseph M. Rashan, Jr.
Pfizer, Inc., Technical Service Div. Groton

FLORIDA
Rebecca Henry
Publix Supermarkets, Deerfield Beach

GEORGIA
Leslye L. Brudzinski
University of Georgia, Athens
Joseph Dugan
Dutch Quality House, Gainesville
Beverly Grant
Dutch Quality House, Gainesville
Chief Parson
Naval Medical Clinic, Kings Bay
Jyoti Keswani
University of Georgia, Athens
Frank Pool
Zep Manufacturing Co., Atlanta
Carol Salmon
Food & Drug Admin., Atlanta

ILLINOIS
Ronald E. Arian
World’s Finest Chocolate, Chicago
Mark Lovell
Silliker Lab Group, Inc., Homewood
Damion Lurdes
Silliker Group Lab., Chicago Heights
Mark Moorman
Silliker Lab Group, Chicago Heights
Susan Ciani
Marriott Distribution Service, Hanover Park

IOWA
Bruce Hanley
Fleur de Lait Foods, New Holland

KENTUCKY
Becky Conner
Long John Silver’s, Lexington

MARYLAND
Joseph Kozup
Maryland & Virginia Milk Producers Coop., Laurel
Stephanie J. Merkel
Potomac Farms Dairy, Cumberland

Philip G. Snellen
Puritan Churchill Chemical, Atlanta
Doug Waltman
Georgia Poultry Lab., Oakwood
Pamela Pickels York
University of Georgia, Stockbridge

GERMANY
Hans-Joachim Lange
Food Chemist, Meine

28 Dairy, Food and Environmental Sanitation – JANUARY 1995
MASSACHUSETTS
Gregory Knochenmus
First District Association, Litchfield

MISSOURI
Diana Pasley
Jefferson Co. Health Dept., Hillsboro
Pat Thompson
Marriott Health Care Serv., St. Louis

MONTANA
Daryi Paulson
Bioscience Laboratories, Bozeman

NEW JERSEY
Michael Ambrosei
Wakefern Food Corp., Eliz
Donald Evans
Crompton & Knowles, Mahwah

NEW YORK
John Braubitcz, Jr.
Byrne Dairy, Inc., Syracuse
Robert Kuhn
Upstate Cooperative, Rochester
Ibrahim Naderl
Jamaica

NEW ZEALAND
John Middleton
Ministry of Ag. & Fish N.Z., Hamilton

NORTH CAROLINA
Jennifer Quinlan
Chief Agricultural Microbiologist
Raleigh

NORTH DAKOTA
Robert Dykshoorn
North Dakota Dept. of Agriculture
Bismarck

MISSOURI
Doug Hanson
Bridgeman Dairy, Bismarck
Jennifer Quinlan
N. C. Dept. of Agriculture, Raleigh

OHIO
Chris Eddy
Hamilton Co. General Health Dist.
Cincinnati
Howard Hartley
Old Country Favorites, Columbus
John Wiegand
Canberra Corporation, Toledo
Paula Wright
Shelby City Health Dept., Shelby

PENNSYLVANIA
Larry Cohen
Weight Watchers Food Co.
Pittsburgh
Barb Wisor
Raskas of PA, Chambersburg
Bruce Hanley
Fleur de Lait Foods, New Holland

SWITZERLAND
Bernard Klein
Laboratoire Cantonal, Epalinges, VD

TENNESSEE
Dennis Lampliy
Tennessee Dept. of Agriculture
Nashville
Sandra Shaw
Pictsweet Frozen Foods, Bells

TEXAS
David Dorman
Garland Health Dept., Garland
Ned Ewart
Bug Master, Austin
Joey Goldsmith
Defense Commissary Agency DeCA, Kelly AFB
Ray Sherrell
KMB Produce, Inc., Grand Prairie
Tom Stirmenman
Crouch Supply Co., Fort Worth
John Weihe
Coca-Cola Foods, Houston

UTAH
Neal Smith
Smith's Food & Drug Centers, Layton

WASHINGTON
Amy Newton
Clallam Co. Division of Env. Health
Port Angeles

WISCONSIN
Karen Etter
Garden Fresh Foods, Milwaukee
Gerald D. Gutormson
Anchor Food Products, Inc., Appleton
Rich Linnemeyer
Milwaukee Health Department
West Bend
Randy Wergin
Kenosha Co. Health Dept.
Kenosha

JANUARY 1995 – Dairy, Food and Environmental Sanitation 29
Capitol Vial, Inc.
Fultonville, NY
Sustaining Member

In this day of rigorous laboratory testing and vigorous regulatory activity, even a single adulterated sample can have devastating economic effect. Only an absolutely leakproof, airtight and sterile sample container with an attached cap can guarantee sample integrity. Only one company can fully guarantee that its vials are: Leakproof, Airtight, Sterile.

Phone: 800-836-5520
Fax: 518-853-3409

Dynal, Inc.
Lake Success, NY

Dynabeads® Microbiology Selective Enrichment Products enable rapid detection of food-borne pathogens. Dynabeads® products utilize magnetic microspheres coated with highly specific antibodies to capture Salmonella species or E. coli O157:H7 directly from pre-enrichment broth. The technique is simple, sensitive and cost effective. The use of Dynabeads anti-E. coli O157: H7 product will be featured in the upcoming 8th edition of the BAM.

Phone: 516-326-3270
Fax: 516-326-3298

Nickel Development Institute
Toronto, Ontario

Nickel Development Institute (NiDI) is the market development and applications research organization of the international nickel industry. NiDI is a leading source of information on stainless steel and nickel alloys. Worldwide programs are conducted from the head office in Toronto and from offices in the United Kingdom, Japan, Korea, Australia and India.

Phone: 416-591-7999
Fax: 416-591-7987

3-A Sanitary Standards Symbol Administrative Council
Columbia, SC

Information relating to 3-A Sanitary Standards for processing equipment and authorization to use the 3-A Symbol was available at the Symbol Council booth.

Phone: 803-783-9258
Fax: 803-783-9265

PRISM Integrated Sanitation Management, Inc.
Miami, FL

PRISM Integrated Sanitation Management, Inc. provides sanitation services "in the back of the house" to the food industry. Our services include Guaranteed Pest Elimination, Hood & Duct Cleaning, Hood Grease Filter Exchange, Vector Fly Machine, Soak Tank and Cleaning Chemicals. For more information contact Michael Moon, R.S. at

Phone: 305-592-6312
800-67-PRISM

ATTENTION

Dairy, Food and Environmental Sanitation encourages readers to submit four-color photographs for consideration to be used on the cover of the journal.

Send photographs and/or negatives to:
Editor, Dairy Food and Environmental Sanitation
IAMFES,
6200 Aurora Avenue,
Suite 200W, Des Moines, IA
50322-2838
National Institute of Standards Announces Contract Awardee

The U.S. National Institute of Standards and Technology (NIST) has announced that it will award a contract to DuPont Food Quality Management Systems (FQMS) as part of its Advanced Technology Program competition. Forty-one grants were presented in four program areas; the DuPont grant is one of 13 in the highly competitive “Tools for DNA Diagnostics” category. The Advanced Technology Program (ATP) competition has recently been refocused to concentrate its funding on specific technologies identified as offering the best opportunities for major economic return. This specialized competition is one of four that has been conducted by NIST this year; in previous competitions, only about 10 percent of proposals have been funded.

The DuPont proposal reflects its goal to develop a cost-effective, automated DNA diagnostic system based on DNA amplification. The system will be sufficiently versatile and user-friendly to enable extensive and routine use of amplification-based diagnostics, with minimal need for special operator skills or specialized laboratory facilities. It will be a PCR (polymerase chain reaction) based system. PCR is the best suited of the DNA amplification technologies for development of an automated system with maximum versatility. The FQMS approach to an amplification-based system is to combine automation and standardization of PCR with detection by computerized fragment size analysis, to provide maximum depth of information. DuPont's intention is to incorporate these technologies into automated systems for microbial testing.

Work on this project is scheduled to begin in January of 1995 and to be completed in a two-year time frame. The amount of the contract award is approximately $2 million. The FQMS Group is part of the Corporate New Business Development Division of the DuPont Company in Wilmington, DE. Its business is to develop automated systems for microbial testing and to offer these systems to the food industry for quality control purposes.

New Officers to the Association of Water Technologies

The Association of Water Technologies (AWT) proudly announces the appointment of its 1994 – 1995 officers: Jack Altschuler, Maram Corporation (President); John Baum, Craft Products Company, Inc. (Past President); Brent Chettle, W.E.S.T., Inc. (President-elect); i.e., Hannigan, Klenzoid, Inc. (Secretary); and Larry Webb, HVC, Inc. (Treasurer).

Elections were held at Water Technologies '94, AWT's annual convention, in Orlando, FL on October 12, 1994. Mr. Altschuler was honored at the annual awards banquet where he received the presidential gavel from Past President John Baum, signifying his one-year term. AWT is an international, non-profit, trade association which represents over 400 regional water treatment companies and suppliers specializing in commercial and industrial cooling and boiler treatments. The Association provides its members, and the water treatment industry, with a variety of products and services designed to improve the performance of the industry, including a quarterly, full color magazine, annual conventions and expositions, spring conferences and exhibitions, and the Certified Water Technologist (CWT) program.

National Dairy Council® Nutrition Expert Named to American College of Nutrition Board

Gregory D. Miller, Vice President of Nutrition Technical Services for National Dairy Council, has been named to the Board of Directors of the American College of Nutrition (ACN). Miller, who holds a Ph.D. in nutrition, is one of eight ACN directors, a body which includes other nationally recognized nutrition experts.

ACN is a prestigious organization of nutrition scientists that seeks to improve and promote the knowledge and application of nutrition through study, research and publishing. It influences health professionals and nutrition educators through its journal and other communications.

The ACN board determines the organization's policy, strategic direction and public messages regarding nutrition and health issues. Miller, who was appointed head of the NDC nutrition research/technical services program in January, 1992, formerly was a senior research scientist for Kraft General Foods. He holds Ph.D. and M.S. degrees in nutrition from Pennsylvania State University and a B.S. degree in nutrition from Michigan State University.
Custom Control Products Adds Baugrud, Borchardt and Tupy to the Staff

Custom Control Products, Inc. recently announced the addition of Jackie Baugrud to the staff.

As Sales & Marketing Manager, Baugrud will be responsible for expanding and developing existing and new markets for CCPI's products and services. CCPI also recently announced the addition of two project engineers to the engineering team.

As Project Engineers, David Borchardt and Russell Tupy will be involved in all phases of automated control system projects. They will quote on control systems, design the hardware and software, assist with the installation and train and service the customer.

Daniel O'Sullivan Joins University of Minnesota Food Science and Nutrition Faculty

On October 17, 1994, Daniel O'Sullivan joined the faculty of the Department of Food Science and Nutrition, University of Minnesota, as an assistant professor.

Sullivan came to the University of Minnesota from a research associate position at North Carolina State University in Raleigh, where he worked with Todd Klaenhammer, Ph.D., in the Department of Food Science. O'Sullivan, a native of Ireland, earned his Ph.D. in Microbiology at University College, Cork in 1990.

While completing his doctorate, he was a research scientist at the National Food Biotechnology Center in Cork. In addition to many refereed publications, O'Sullivan has written chapters in five books; made presentations in Canada, the Netherlands, Switzerland, England, and the United States; and participated in research experiences in Spain and the Netherlands, funded by European Community programs.

Dr. O'Sullivan will play a key role in the Department's teaching and research activities in food microbiology and biotechnology.

Totally Sanitary
Totally Reusable

The New ReSeal™ Sanitary Hose System

A totally sanitary environment for your food or beverage product, now available with the cost-savings of reusable ends! That's right. With the ReSeal™ system, when your hose assembly gets kinked, run over or simply wears out, the couplers can be reattached to a new length of hose. You still have to buy the hose . . . but you don't have to buy new couplers. That's usually a savings of 50% to 90% over the price of a complete new assembly!

The innovative ReSeal™ system provides all the features you've come to expect in a sanitary hose assembly: sanitary full-flow compression seal, CIP cleanable, safe and in compliance with regulatory standards — including 3-A Standard 62-00 for sanitary hose assemblies. Call today for a free information packet.

Nelson-Jameson, Inc.
2400 E. 5th St., P.O. Box 647
Marshfield, WI 54449

Phone 800/826-8302
FAX 800/472-0840
Awards Nominations

The International Association of Milk, Food and Environmental Sanitarians is proud of its members and their contributions. As a member, you are entitled to nominate deserving colleagues for the IAMFES Awards.

Nomination forms need to be completed and back to the Des Moines office by April 1, 1995.

1. Previous award winners are not eligible for the same award. Check pages 34 and 35 in this issue for a complete listing of past award winners.

2. Current Executive Board members are not eligible for nomination.

3. Candidates must be current IAMFES members in order to be nominated.

Presentation of these awards will be made during the Annual Awards Banquet on August 2.

NOMINATION FORMS MAY BE OBTAINED FROM: (Be sure to tell us for which award(s) you will be making a nomination. Each award nomination form is different.)

Steven K. Halstead, CAE
IAMFES, Awards
Suite 200W
6200 Aurora Avenue
Des Moines, IA 50322

Questions? Call 800-369-6337, 8-4:30 Central time weekdays, or FAX 515-276-8655.

- Sanitarian Award — $1000 Award and Plaque
 Recognizes an individual for outstanding service to the profession of the Sanitarian.

- Educator Award — $1000 Award and Plaque
 Presented to an educator in recognition of outstanding service in academic contributions to the profession of the Sanitarian.

- Citation Award — Plaque
 Recognizes an individual for many years of devotion to the ideals and objectives of the association.

- Harold Barnum Industry Award — $500 Award and Plaque
 Recognizes an individual for outstanding service to the public, IAMFES and the profession of the Sanitarian.

- Honorary Life Membership Award — Plaque and Lifetime Membership with IAMFES
 For an individual’s devotion to the high ideals and principles of IAMFES.

- Black Pearl Award — Black Pearl, Encased in Glass
 Recognizes a company for its outstanding achievement in corporate excellence in food safety and quality.
EDUCATOR-INDUSTRY AWARD
1973- Walter A. Krienke
1974- Richard P. March
1975- K. G. Weckel
1976- Burdet H. Heinemann
1977- Elmer H. Marth
1978- James B. Smathers
1979- Joseph Edmondson
1980- James R. Welch
1981- Francis F. Busta
In 1982 this award was split into the Educator Award and the Harold Bamum Award (for industry).

EDUCATOR AWARD
1982- Floyd Bodyfelt
1983- John Bruhn
1984- R. Burt Maxcy
1985- Lloyd B. Bullerman
1986- Robert T. Marshall
1987- David K. Bandler
1988- Edmund A. Zottola
1989- Vemal Packard
1990- Michael Stiles
1991- William E. Sandine
1992- William S. LaGrange
1993- Irving J. Pflug
1994- Kenneth R. Swartzel

HAROLD BARNUM AWARD
1982- Howard Ferreira
1983- C. Dee Clingman
1984- Omer Majerus
1985- William L. Arledge
1986- Hugh C. Munns
1987- J. H. Stilkker
1988- Kenneth Kirby
1989- Lowell Allen
1990- Roy Ginn
1991- Thomas C. Everson
1992- Ronald Case
1993- David D. Fry
1994- Bruce Tompkin

HONORARY LIFE MEMBERSHIP AWARD
1957- J. H. Shrader
1958- Clifford Goslee
1959- William H. Price
1960- None Given
1961- Sarah Vance Dungan
1962- None Given
1963- C. K. Johns and Harold Macy
1964- C. B. and A. L. Shogren
1965- Fred Basselt and Ivan Parkin
1966- M. R. Fisher
1967- A. Abele and L. A. Black
1968- M. P. Baker and W. C. Frazier
1969- John Faulkner
1970- Harold J. Barnum
1971- William V. Hickey

SANITARIANS AWARD
1952- Paul Corash
1953- E. F. Meyers
1954- Kelley G. Vester
1955- B. G. Tennent
1956- John H. Fritz
1957- Harold J. Barnum
1958- William Kempa
1959- James C. Barringer
1960- Martin C. Donovan
1962- Larry Gordon
1963- R. L. Cooper
1964- None Given
1965- Harold R. Irvin
1966- Paris B. Boles
1967- Roger L. Stephens
1968- Roy T. Olson
1969- W. R. McLean
1970- None Given
1971- Shelby Johnson
1972- Ambrose P. Bell
1973- None Given
1974- Clarence K. Luchterhand
1975- Samuel C. Rich
1976- M. W. Jefferson
1977- Harold Bengsch
1978- Orlofe Osten
1979- Ballas Walker, Jr.
1980- Paul Pace
1982- Edwin L. Ruppert
1983- None Given
1984- Harold Wainess
1985- Harry Haverland
1986- Jay Boosinger
1987- Erwin P. Gadd
1988- Kirmon Smith
1989- Robert Gales
1990- Leon Townsend
1991- James L. Kennedy
1992- Dick B. Whitehead
1993- Lawrence Roth
1994- Charles Price

SANITARIANS AWARD
1952- Paul Corash
1953- E. F. Meyers
1954- Kelley G. Vester
1955- B. G. Tennent
1956- John H. Fritz
1957- Harold J. Barnum
1958- William Kempa
1959- James C. Barringer
1960- Martin C. Donovan
1962- Larry Gordon
1963- R. L. Cooper
1964- None Given
1965- Harold R. Irvin
1966- Paris B. Boles
1967- Roger L. Stephens
1968- Roy T. Olson
1969- W. R. McLean
1970- None Given
1971- Shelby Johnson
1972- Ambrose P. Bell
1973- None Given
1974- Clarence K. Luchterhand
1975- Samuel C. Rich
1976- M. W. Jefferson
1977- Harold Bengsch
1978- Orlofe Osten
1979- Ballas Walker, Jr.
1980- John A. Baghott
1981- Paul Pace
1982- Edwin L. Ruppert
1983- None Given
1984- Harold Wainess
1985- Harry Haverland
1986- Jay Boosinger
1987- Erwin P. Gadd
1988- Kirmon Smith
1989- Robert Gales
1990- Leon Townsend
1991- James L. Kennedy
1992- Dick B. Whitehead
1993- Lawrence Roth
1994- Charles Price

SANITARIANS AWARD
1952- Paul Corash
1953- E. F. Meyers
1954- Kelley G. Vester
1955- B. G. Tennent
1956- John H. Fritz
1957- Harold J. Barnum
1958- William Kempa
1959- James C. Barringer
1960- Martin C. Donovan
1962- Larry Gordon
1963- R. L. Cooper
1964- None Given
1965- Harold R. Irvin
1966- Paris B. Boles
1967- Roger L. Stephens
1968- Roy T. Olson
1969- W. R. McLean
1970- None Given
1971- Shelby Johnson
1972- Ambrose P. Bell
1973- None Given
1974- Clarence K. Luchterhand
1975- Samuel C. Rich
1976- M. W. Jefferson
1977- Harold Bengsch
1978- Orlofe Osten
1979- Ballas Walker, Jr.
1980- John A. Baghott
1981- Paul Pace
1982- Edwin L. Ruppert
1983- None Given
1984- Harold Wainess
1985- Harry Haverland
1986- Jay Boosinger
1987- Erwin P. Gadd
1988- Kirmon Smith
1989- Robert Gales
1990- Leon Townsend
1991- James L. Kennedy
1992- Dick B. Whitehead
1993- Lawrence Roth
1994- Charles Price

SANITARIANS AWARD
1952- Paul Corash
1953- E. F. Meyers
1954- Kelley G. Vester
1955- B. G. Tennent
1956- John H. Fritz
1957- Harold J. Barnum
1958- William Kempa
1959- James C. Barringer
1960- Martin C. Donovan
1962- Larry Gordon
1963- R. L. Cooper
1964- None Given
1965- Harold R. Irvin
1966- Paris B. Boles
1967- Roger L. Stephens
1968- Roy T. Olson
1969- W. R. McLean
1970- None Given
1971- Shelby Johnson
1972- Ambrose P. Bell
1973- None Given
1974- Clarence K. Luchterhand
1975- Samuel C. Rich
1976- M. W. Jefferson
1977- Harold Bengsch
1978- Orlofe Osten
1979- Ballas Walker, Jr.
1980- John A. Baghott
1981- Paul Pace
1982- Edwin L. Ruppert
1983- None Given
1984- Harold Wainess
1985- Harry Haverland
1986- Jay Boosinger
1987- Erwin P. Gadd
1988- Kirmon Smith
1989- Robert Gales
1990- Leon Townsend
1991- James L. Kennedy
1992- Dick B. Whitehead
1993- Lawrence Roth
1994- Charles Price

SANITARIANS AWARD
1952- Paul Corash
1953- E. F. Meyers
1954- Kelley G. Vester
1955- B. G. Tennent
1956- John H. Fritz
1957- Harold J. Barnum
1958- William Kempa
1959- James C. Barringer
1960- Martin C. Donovan
1962- Larry Gordon
1963- R. L. Cooper
1964- None Given
1965- Harold R. Irvin
1966- Paris B. Boles
1967- Roger L. Stephens
1968- Roy T. Olson
1969- W. R. McLean
1970- None Given
1971- Shelby Johnson
1972- Ambrose P. Bell
1973- None Given
1974- Clarence K. Luchterhand
1975- Samuel C. Rich
1976- M. W. Jefferson
1977- Harold Bengsch
1978- Orlofe Osten
1979- Ballas Walker, Jr.
1980- John A. Baghott
1981- Paul Pace
1982- Edwin L. Ruppert
1983- None Given
1984- Harold Wainess
1985- Harry Haverland
1986- Jay Boosinger
1987- Erwin P. Gadd
1988- Kirmon Smith
1989- Robert Gales
1990- Leon Townsend
1991- James L. Kennedy
1992- Dick B. Whitehead
1993- Lawrence Roth
1994- Charles Price
1972-C. W. Dromgold and E. Wallenfeldt
1973-Fred E. Uetz
1974-H. L. Thomasson and K. G. Weckel
1975-A. E. Parker
1976-A. Bender Luce
1977-Harold Heiskell
1978-Karl K. Jones
1979-Joseph C. Olson, Jr.
1980-Alvin E. Tesdal
1981-Robert M. Parker
1982-None Given
1983-Orlowe Osten
1985-Patrick J. Dolan, Franklin W. Barber and Clarence K. Luchterhand
1986-John G. Collier
1987-Emer Marth and James Jezeski
1988-Kenneth Whaley and Paul J. Pace
1989-Earl Wright
1990-Vernon Cupps
1991-Leon Townsend
1993-None Given
1994-Ken Kirby

BLACK PEARL AWARD
1994-HEB Company
San Antonio, TX

SHOGREN AWARD
1972-Iowa Affiliate
1973-Kentucky Affiliate
1974-Washington Affiliate
1975-Illinois Affiliate
1976-Wisconsin Affiliate
1977-Minnesota Affiliate
1978-None Given
1979-New York Affiliate
1980-Pennsylvania Affiliate
1981-Missouri Affiliate
1982-South Dakota Affiliate
1983-Washington Affiliate
1984-None Given
1985-Pennsylvania Affiliate
1986-None Given
1987-New York Affiliate
1988-Wisconsin Affiliate
1989-Georgia Affiliate
1990-Texas Affiliate
1991-Georgia Affiliate
1992-Georgia Affiliate
1993-New York Affiliate
1994-Illinois Affiliate

MEMBERSHIP ACHIEVEMENT AWARD
1986-Iowa Affiliate
1987-Florida Affiliate
1988-Florida Affiliate
1989-California Affiliate
1990-California Affiliate
1991-Illinois Affiliate
1992-Illinois Affiliate
1993-California Affiliate
1994-California Affiliate

PAST PRESIDENTS
1912-C. J. Steffen
1913-C. J. Steffen
1914-C. J. Steffen
1915-A. N. Henderson
1916-Claude F. Bessio
1917-Wm. H. Price
1918-Alfred W. Lombard
1919-James O. Kelly
1920-Ernest Kelly
1921-C. L. Roadhouse
1922-H. E. Bowman
1923-Geo. E. Bolling
1924-J. B. Hollingsworth
1925-T. J. Strauch
1926-G. C. Supplee
1927-W. A. Shouts
1928-Ira V. Hiscock
1929-H. R. Estes
1930-R. E. Irwin
1931-A. R. B. Richmond
1932-W. B. Palmer
1933-H. N. Parker
1934-P. F. Krueger
1935-C. K. Johns
1936-G. W. Grim
1937-J. C. Hardenbergh
1938-A. R. Tolland
1939-V. M. Ehlers
1940-P. D. Brooks
1941-L. C. Frank
1942-F. W. Fabian
1943-C. A. Abele
1944-C. A. Abele
1945-R. R. Palmer
1946-R. R. Palmer
1947-R. G. Ross
1948-W. D. Tiedeman
1949-A. W. Fuchs
1950-M. R. Fisher
1951-K. G. Weckel
1952-H. L. Thomasson
1953-J. H. Barnum
1954-John D. Faulkner
1955-E. Parkin
1956-Harold S. Adams
1957-Paul Corash
1958-Harold Robinson
1959-Franklin Barber
1960-W. V. Hickey
1961-John Sheuring
1962-Charles E. Walton
1963-Ray Belknap
1964-John H. Fritz
1965-W. C. Lawton
1966-Fred E. Uetz
1967-P. R. Elliker
1968-A. N. Myhr
1969-Samuel O. Noles
1970-Milton E. Held
1971-Dick B. Whitehead
1972-Orlowe M. Osten
1973-Walter F. Wilson
1974-Earl O. Wright
1975-P. J. Skulborstad
1976-H. E. Thompson, Jr.
1977-H. V. Atherton
1978-David F. Fry
1979-Howard Hutchings
1980-Bill Kempa
1981-William Arledge
1982-Harry Haverland
1983-Robert Marshall
1984-A. Richard Brazis
1985-Archie Holliday
1986-Sidney E. Barnard
1987-Roy Ginn
1988-Leon Townsend
1989-Robert Gravani
1990-Ron Case
1991-Bob Sanders
1992-Damien A. Gabis
1993-Michael P. Doyle
1994-Harold Bengsch

JANUARY 1995 - Dairy, Food and Environmental Sanitation
Researchers Aim to Destroy Salmonella, Campylobacter on Poultry

Researchers in Penn State's College of Agricultural Sciences are developing a better way to destroy Salmonella bacteria, the most common cause of food-borne illness in the United States.

"Raw animal foods, especially poultry products, often are contaminated with pathogenic bacteria such as Salmonella," says Stephen Knabel, assistant professor of Food Science. "Cooking poultry to a minimum internal temperature of at least 165°F makes it safe to eat by killing these bacteria, but we would like to reduce the chance for contamination in case people undercook poultry."

Research indicates that much of the contamination occurs when poultry is processed and packaged. "About 5 percent of live poultry are contaminated with Salmonella," Knabel notes. "But after processing, nearly half of the carcasses contain Salmonella and almost 100% contain Campylobacter, another pathogen. Both spread during defeathering and chilling."

Knabel has teamed up with Stephanie Doores, associate professor of Food Science, to find a way to destroy the microbes during processing. They are determining how quickly Salmonella, Campylobacter, and Listeria monocytogenes die at different pH levels.

Knabel already has demonstrated that using high pH and warm washwater prevents Salmonella contamination in eggs. "Salmonella were very rapidly destroyed in high pH washwater, with the rate increasing dramatically as the temperature rises above 100°F," says Knabel. "Listeria monocytogenes and Yersinia enterocolitica also die more rapidly at higher pH levels and higher temperatures. The high pH washwater causes the cytoplasmic membrane of these cells to weaken and burst. "Basically, they just spill their insides and shrivel up like little raisins," Knabel says. "This appears to be an excellent strategy to destroy food-borne pathogens in general. It totally eliminated cross-contamination of eggs during simulated commercial egg washing, and it costs less than irradiation. This strategy also may dramatically reduce pathogens on poultry, and perhaps on beef and swine carcasses."

To find out just how effective the strategy is and whether it will affect food quality, the researchers will artificially and naturally contaminate broilers, then process them using various pH, temperature and chemical water treatments. The birds will be sampled for contamination before processing, after defeathering, after chilling and after refrigerated storage.

"We determine the total bacteria count and also check for the presence of Salmonella, Campylobacter and Listeria monocytogenes," Knabel says. "To determine if the treatments affect product quality, we're also conducting consumer taste tests on baked chicken. We'll refine any treatments that destroy pathogens without affecting food quality."

Knabel also is working with researchers in Penn State's Dairy and Animal Science and Veterinary Science departments to destroy E. coli O157:H7 on beef carcasses.

"We hope new treatments may be available to processors within a few years," Knabel says.

New Manual, Workshops Help Food Processors Manage Waste

What do apple peels, broccoli stems and whey have in common? They are among the wastes made by food processing companies. In Pennsylvania, nearly 2,500 food processors generate approximately 5 million tons of these wastes each year.

What becomes of those broken chocolate bars, vegetable trimmings, animal fats and other byproducts? Too often in the past, say researchers in Penn State's College of Agricultural Sciences, these food processing residuals have ended up in the state's dwindling landfill space. Now Pennsylvania processors have better options.

"Unlike other industrial waste, food processing by-products rarely have toxic chemicals, heavy metals or pathogens," says Dr. Paul Robillard, associate professor of Agricultural Engineering. "They typically aren't a human health threat, and their nutrient and organic content can even make them valuable."

Wastes such as trimmings from vegetable packing plants often are similar to raw agricultural products. "Some of these 'wastes' can be fed directly to livestock," Robillard says. "Many also can be used as fertilizers or soil conditioners."

Compiled by Robillard, senior research technologist Kelli Martin, and Robin Brandt of GeoDecisions in State College, and with assistance from regulatory and industry officials, the Food Processing Residual Management Manual is a
Pennsylvania dairy farmers will soon have a new tool to help control mastitis, the costliest disease of dairy cattle. A computerized expert system developed at Penn State will be field-tested over the next several months and may be available statewide as early as next year.

"Mastitis is the most expensive cow health problem in the dairy industry," says Dr. William Heald, professor of dairy and animal science. "By cutting milk production, ruining udder tissue and even killing cows, the disease causes estimated annual losses of $200 per cow. That's a loss of about $2 billion in North America every year."

Developed by Heald and other researchers in Penn State's College of Agricultural Sciences, the system can help dairy producers minimize herd udder health problems. Dairy consultants can use it to help their clients develop more effective control programs.

National Dairy Council® Nutrition Education Materials Win Quality Awards

Video and print materials supporting ongoing National Dairy Council nutrition education programs have won four awards for excellence from prestigious organizations this fall. "Eat a Good and Healthy Breakfast Every Day — Day," also known as "E.A.G.A.H.B.E.D.D.," received a Gold Plaque Award from the International Communication Film & Video Festival in the Educational — Child Audience category. The 13-minute video segment also won a 1994 Award of Excellence in Education from the American Society of Association Executives in the Community Service Education Program category. The program stars Marc Weiner, creator of "Weinerville®," a popular children's program broadcast on the Nickelodeon® cable channel.

The video brings the familiar sights, sounds and characters of "Weinerville®" into nutrition education to teach children the importance of eating a healthy breakfast. It is accompanied by a 12-page teacher guide containing ideas for age-appropriate classroom exercises for students in grades three through five.

"The awards represent a 'seal of quality' for nutrition education in video and print media. They will serve to further encourage educators and health professionals to make use of our materials," said Alice Negretti, NDC Senior Vice President.

The development of the above programs was overseen by NDC's Nutrition Education Committee, comprised of staff from UDIA's Nutrition Education Committee, comprised of staff from UDIA's state/regional member organizations.

To order copies of these award-winning materials, or for more information, contact your local Dairy Council. Call 1-800-426-8271 for the number of the Dairy Council nearest you.

General Mills Cereal Case Finds Contractor Guilty

The independent contractor who sprayed an illegal pesticide on General Mills, Inc. oats, resulting in the destruction of millions of boxes of cereal, was found guilty by a federal jury on 13 counts.

Y. George Roggy, 45 years old, was convicted of 11 counts of mail fraud for knowingly billing the company for the wrong spray, and one count each of adulterating food and misusing pesticides. He could face over 50 years in prison and several millions of dollars in fines. No sentencing date was set.

The government contended that Mr. Roggy, of Edina, MN., deliberately used an illegal fungicide, which was cheaper than the authorized spray, apparently because his one-man company was experiencing financial difficulties. His deception lasted over a year and tainted 19 million bushels of oats.

As a result, General Mills was forced to temporarily halt production of some of its best — selling cereals, including Cheerios and Lucky Charms, and destroy millions of boxes of product. The company estimated its loss at $140 million. U.S. Atty. David Lillehaug said Mr. Roggy's conviction shows that "it never pays to tamper with our nation's food supply."

Chr. Hansen’s Sets New Symposium Dates

Chr. Hansen’s Laboratory, Inc. of Milwaukee, Wisconsin, has set April 11 and 12, 1995, as the dates for the second annual Cultured Dairy Products Symposium. The Symposium will once again be held in Milwaukee, Wisconsin, and will feature presentations by industry-leading suppliers, manufacturers, as well as academic and European experts. The 1994 Symposium was termed very successful by the more than 130 participants who benefited from the informative presentations and the lively discussion groups throughout the two day event. Chr. Hansen’s will provide background on 1995 Symposium content, topics and speakers as the information becomes available. Please feel free to contact Chr. Hansen’s Dr. Bill Watrous at 1-800-558-0802 if you have suggestions, comments or questions regarding program content. As last year’s program was quickly filled to capacity, please mark your calendars for April 11 and 12, 1995, and plan to attend.

Food Leaders Meeting to Address Consumer Demands

More than 100 top executives from major American food production companies, trade associations, consumer organizations and government agencies conducted a landmark meeting October 1-6, 1994 in St. Louis to assess consumers' demands and begin charting the future direction of the nation's food industry. The group was seeking to determine what foods American consumers will demand in the future, how those foods will be produced, and how safe and affordable they will be. The results of two major consumer studies will be released at the meeting outlining American public opinion regarding the foods we eat and what consumers will want to eat in the future. The studies are being conducted by FoodWatch and the national 4-H and FFA organizations. In addition, the Gallop Organization presented a summary of their recent consumer polls pertaining to America's food supply. Top executives from companies such as Pet, Inc., Farmland Industries, Purina Mills, Hardee's Food Systems, BASF, Monsanto, Archer Daniels Midland and Merck & Co., will join executives from organizations including the Food Marketing Institute, Project Food Land & People, USDA, FDA, National Livestock and Meat Board, Hudson Institute, National Center for Policy Analysis, Agriculture Council of America and the Animal Health Institute in exploratory sessions and a special town hall meeting to probe consumer opinions in key areas affecting our nation's food production system including:

- Consumers' eating habits today and tomorrow;
- Role of Biotechnology;
- Food safety;
- Role of animals in food production;
- Sustainable agriculture and organic farming;
- Food supply and cost;
- Environment impact of food production; and
- Role of government and industry regulation.

John Stossel of ABC-TV's Prime Time was the moderator of the town hall meeting on October 5 and 6. Also in attendance were more than 100 top youth leaders from the national 4-H and FFA organizations representing all fifty states and U.S. territories. The meeting served as the kickoff of a nationwide campaign to be con- ducted by the American Agribusiness Ambassadors and the national youth organizations to educate consumers about the future direction of the food industry. "We came away from this meeting with a very clear idea of where our country's food production system was headed in the future," said Edward L. McMillan, president and CEO of Purina Mills, Inc., sponsor of the conference. "With the large amount of media attention focused on our food system today coupled with President Clinton's upcoming town hall meeting with farmers in Iowa this winter, this conference and public education campaign was very timely for the American consumer." Purina Mills sponsored the event as part of the company's 100th anniversary celebration. The company is the largest producer and distributor of animal nutrition products and services in the United States. " Consumers are demanding safer, higher quality and more nutritious foods at reasonable prices, while special interest groups are generating increasing public concern over the way foods are produced," McMillan added. "We at Purina Mills see ourselves as a crucial part of the food industry, and we're extremely interested in learning more about what the consumer knows, wants and needs so that we can continue to develop our animal nutrition programs to enhance the quality, safety and quantity of the food that reaches the American dinner table." Purina Mills is headquartered in St. Louis. Both the national 4-H and FFA organizations are headquartered in Washington, D.C.
VICAM Introduces Two 24-Hour Rapid Test Kits for Salmonella enteritidis, and Salmonella

VICAM, has introduced two 24 h rapid test kits, SE Screen/Verify for the detection of Salmonella enteritidis, and Salmonella (Screen/Verify for the detection of Salmonella). VICAM offers the first SE test which is truly specific for the S. enteritidis organism. VICAM is dedicated to developing rapid, accurate tests which are easy to use and AOAC approved. SE Screen/Verify and Salmonella Screen/Verify are solely being utilized in the environment and egg testing portion of the United Egg Producers “5 Star” Quality Food Safety Program.

Dr. Barb Jackson, Chief Scientist and Director of Research & Development for VICAM, stated “The ability to test for SE and Salmonella within 24 h on site is a spectacular breakthrough which will help all of us to more quickly reach the goals of enhanced food safety and confidence. Never before has the technology been available to detect SE and Salmonella so quickly and in house. This breakthrough will catapult food safety assurance to new level, while also ensuring confidentiality.”

Since 1985, VICAM has contributed to food safety by marketing rapid test kits for the detection of pathogens and agricultural toxins in food products and feeds. These contaminants are routinely monitored by the food industry to ensure food safety. VICAM’s products include Aflatest, Fumonitest, Ochratest, and Zearalatest for the detection of fungal toxins. VICAM also markets tests for the detection of Listeria, Listeria monocytogenes, Salmonella and Salmonella enteritidis. VICAM — Watertown, MA.

On-Line Respirometer

New Columbus Instruments’ O₂/CO₂ Respirometer, Enviro-1, is intended for testing respiration of activated sludge in flow through chamber. Supply of air, and hence oxygen, is precisely measured by air mass flow meter. Incoming air is bubbled through the sludge to assure optimal gas exchange between dissolved gases and those in the head space. The depletion of oxygen and the increase in the CO₂ levels in the container’s head space is measured with high precision gaseous oxygen and CO₂ sensors while oxygen consumption is calculated in mg O₂/Liter of sludge/min. utilizing an IBM-PC compatible computer. Results are periodically printed and presented in real time graphs.

Due to Columbus Instruments’ innovative design, there is no need for a complete seal of the chamber. Also, as the Enviro-1 system utilizes gas sensors which are not in contact with measured liquid, there is no problem with sensor contamination and clogging associated with dissolved oxygen sensors.

The Enviro-1 can also be used to measure respiration of a solid sample such as compost. In such application, the only change will be in the design of the measuring chamber, while all other elements (including software, O₂ and CO₂ sensors and air supply system) will remain the same. Columbus Instruments — Columbus, OH.

A Practical Solution to E. coli O157:H7 Screening

The growing impetus upon the meat industry to protect consumers from a dangerous strain of Escherichia coli bacteria has meat processors scrambling to implement new screening procedures. The EHEC-Tek™ test kit offers a practical and efficient method for laboratory testing of ground beef samples. Introduced last year by Organon Teknika, EHEC-Tek™ provides screening for E. coli O157:H7 in just 24 h and reduces the need for confirmatory testing.

EHEC-Tek™ utilizes a monoclonal antibody developed by Doyle and Padhye which is specific for both the O157 and H7 antigens. Other E. coli screening kits may detect only the O157 antigen, resulting in a false positive rate of...
10 to 15%. The highly-specific EHEC-Tek reduces that rate to less than 3% and cuts the need for confirmatory testing by two-thirds.

For example, a laboratory performing 35 E. coli O157:H7 screens per week with a false positive rate of 12% would be required to run confirmatory testing on as many as four presumptive positives. Similarly, a laboratory could expect to run confirmatory procedures on only one presumptive positive per week with EHEC-Tek. Since E. coli is one of the most laborious confirmatory procedures, this substantially adds to laboratories' overall testing costs. Savings with EHEC-Tek can be measured in reduced technician hours, as well as fewer supplies and inventory holding delays.

The assay is capable of detecting one organism in 25 g of raw ground beef. The kit is easy to use — requiring less than 30 min of hands-on test time. The simple procedure employs a 20 to 24 h enrichment, followed by assay with the ELISA. Presumptive positives are indicated by a highly-visible color change in less than 2 h, allowing the laboratory to release negative product as early as the second day. Large or small volume laboratories can make efficient use of the EHEC-Tek kit. With the test's convenient micro-well plate format, up to 93 samples can be assayed simultaneously.

The EHEC-Tek test is based on Organon Teknika's patented enzyme-linked immunosorbent assay (ELISA) technology. This self-contained kit is similar to other pathogen screening kits produced by Organon Teknika — including Salmonella-Tek and EHEC-Tek. The ELISA tests provide reliable, objective results and can be performed using common laboratory equipment. Organon Teknika Corporation is part of the Pharma Group companies of Akzo Nobel.

The IsoScreen Salmonella Detection System

The IsoScreen Salmonella is a new, 18 h detection kit for the presence/absence of Salmonella. This assay is a basic, direct homogeneous system which uses a chemiluminescent labeled monoclonal antibody and picks up all known Salmonella with just one antibody. Total assay time is less than 18 h with no cross reactivity and sensitivity of 5x10^5 p/ml. There are no auger plates or selective broths needed...only an enrichment broth of Buffered Peptone water is needed. The actual test time after the enrichment broth is 25 min on the CapsureVac system versus the standard method of 24-48 h to grow up colonies on auger plates. This antibody is used exclusively with Stratecon's membrane based equipment with quantitative detection using luminescence.

The CapsureVac System is rapid, portable, flexible and disposable. The system is enhanced with quantitative instrumentation that provides sensitivity via the FotoMax luminometer. Stratecon Diagnostics Int'l. — Boston, MA.

"Trained," Invisible Army of Good Bacteria to Gobble Up Food Processing Waste

Food processors can avoid costly plumbing bills and even shutdowns caused by grease-clogged drains with new DB-X200, a bio-formulated product from Bacteria Concepts Inc. The product uses "good bacteria" — living organisms that consume oils, greases and other organic contaminants from food processing operations and convert them into non-polluting, harmless substances.

Nature's waste degraders, bacteria, are found naturally in our rivers and streams. They consume organic waste products and clean up the water. They are present in the human body, and are used in many food processes. These are not harmful "germs," but "good," helpful bacteria essential to healthy living.

DB-X200 is a scientific blend of multiple strains of naturally occurring active bacteria specially "trained" to digest different organic wastes such as fat, grease, oil, protein, starch, cellulose, detergent and more. The bacteria strains work together, multiplying every 15 min, to clean up excessive organic wastes commonly found in drain lines and grease traps of food processing plants. The only by-products from this process are water and carbon dioxide — the naturally occurring harmless gas that puts the fizz into soda. And, best of all, DB-X200 has no corrosive effect on pipes! Bacteria Concepts Inc. — Downers Grove, IL.

Improved GENE-TRAK® Salmonella Assay Granted AOAC Status

GENE-TRAK Systems announced today that the improved colorimetric DNA hybridization method for the detection of Salmonella has been approved by the official Methods Board of the Association of Official Analytical Chemists (AOAC). The GENE-TRAK Salmonella Assay is one of seven colorimetric DNA hybridization assays offered by GENE-TRAK Systems Corporation for detection of food-borne pathogens.

Salmonella, a common food-borne microorganism, can be
present in food and the gastrointestinal tract of animals. When ingested by humans, it is capable of causing serious gastrointestinal disease. Infants, young children, the elderly and immunocompromised individuals are especially susceptible to \textit{Salmonella} infection and fatality rates are highest in these groups. Because of these health risks, \textit{Salmonella} testing is one of the most frequent microbiological assays performed by major food producers and independent food laboratories.

The improved GENE-TRAK \textit{Salmonella} Assay reduces the test's total incubation time to 1 h and 48 min, eliminates several manipulations and still provides the level of performance the food industry has come to expect. The analysis, including the enrichment procedure, is completed in 48 h, as compared with conventional microbiological testing methods that can take 4 to 7 d. GENE-TRAK Systems has demonstrated satisfactory results with a 24 h \textit{Salmonella} Assay for raw poultry and carcass rinse which allows food processors to release their raw materials and finished products into production and distribution channels more quickly. GENE-TRAK Systems is in the process of extending its 24 h claims to additional food types. GENE-TRAK Systems — Framingham, MA.

Automated Workstation for Rapid Diagnostics of Food Pathogens

GENE-TRAK Systems announced that an automated workstation is now available to perform the GENE-TRAK Assays. The workstation automates several steps of the GENE-TRAK Assays, including the \textit{Salmonella}, \textit{Listeria}, \textit{Listeria monocytogenes}, and \textit{E. coli} assays.

The workstation consists of a water bath, incubation chambers, automatic pipettors, a dipstick transfer device, system controls and software combined into one low cost, bench top unit. Assay steps from hybridization through final color development are performed in an automated "hands off" fashion. The instrument can process up to 67 samples in 2 h and 10 min. Hands on time is reduced from 60 min to 15 min. Gene Trak — Framington, MA.

BioMérieux Vitek's VIDAS Automated Microbiology System

BioMérieux Vitek's VIDAS automated microbiological system utilizes a patented Solid Phase Receptacle and special Reagent Test Strips to quickly screen food samples for pathogens, such as \textit{Salmonella}, \textit{Listeria}, and \textit{Staphylococcal enterotoxin}, in as little as 45 min.

VIDAS utilizes a testing format known as ELFA (Enzyme-Linked Fluorescent Immunoassay), a version of the well-known ELISA technology.

The modular architecture of the VIDAS provides random access testing capability for the laboratory. Different assays can be processed simultaneously or initiated at various times, as designated by the operator.

Virtually any combination of assays can be processed in a single batch. The flexibility of the VIDAS allows QA/QC personnel to mix and match quantities and types of assays as dictated by the lab's workflow.

The VIDAS may be operated as a stand-alone system or in concert with the VITEK or Bactometer Systems with the Vitek nerve center computer.

A mini VIDAS is available for laboratories with smaller testing volumes. BioMérieux Vitek, Inc., — Hazelwood, MO.

Bacto Three-Step Gram Stain Set From Difco Saves Time, More Accurate

Difco Laboratories' new Bacto Three-Step Gram Stain Set achieves far greater accuracy and less procedural variation by combining the decolorization and counterstaining steps into a single step.

A technological advance over the common four-step gram stain procedure, Bacto Three-Step Gram Stain offers several benefits. A controlled, standardized decolorization minimizes the chance of over-decolorization, increases the accuracy of interpretation, and diminishes variations related to technique. The product saves time by eliminating a rinse and separate decolorization step, and is economical by using three reagents instead of four.

Difco double-filters its gram stains to minimize precipitates and takes other steps to ensure lot-to-lot consistency. The formula does not contain acetone, eliminating the potential for exposure to this hazardous substance.

Bacto Gram Stain comes in
Bacto® 3-Step Gram Stain: Free Procedure Chart Available

Difco Laboratories offers a laminated procedure chart for its new 3-Step Gram Stain. In addition to providing the procedure in large, highly legible typesetting, the chart contains color photography of typical clinical specimens stained with the 3-Step Gram Stain.

The 3-Step Gram Stain achieves less procedural variation with results comparable to those of traditional gram stains by combining the decolorization and counterstaining process into a single step. The product saves 25% of the time required for gram staining. Using up to 60% less reagent by eliminating a rinse and separate decolorization step, the 3-Step Gram Stain is economical since it uses three reagents instead of four.

The procedure chart featuring the 3-Step Gram Stain is suitable for mounting on the laboratory wall near the staining sink or near the microscope used for interpretation. Difco Laboratories — Detroit, MI.

New Microscope Objective for High-Resolution Imaging in Water

Carl Zeiss, Inc. has introduced a C-Apochromat 40x/1.2 water objective with unsurpassed optical correction for the high-resolution imaging of specimens in aqueous media.

The use of this objective eliminates refractive index mismatch and the effects of temperature changes on image quality. Compensation covers the range of 24°C to 37°C and corrections can also be made for coverslip thicknesses from 0.14 to 0.18mm. With these features, the C-Apochromat 40x/1.2 objective practically eliminates spherical aberration when imaging live tissue or cells and markedly improves the sharpness, contrast and brightness of the image.

In fluorescence microscopy, the high degree of chromatic correction (planapochromatic) assures both axial and peripheral co-localization of UV-green-red excitation/emission and exceptionally high transmission in the near-UV and over the full visible spectrum. This makes the C-Apochromat 40x/1.2 the objective of choice for demanding fluorescence applications. Microscope Division, Carl Zeiss, Inc. — Thornwood, NY.
IndustryProducts, cont’d.

New Zoom Transmission Electron Microscope EM 906

Up to now, adjusting important imaging parameters on a transmission electron microscope, such as kV, magnification, diffraction camera length and image orientation, could only be selected in fixed settings.

The Zeiss EM 906, is a new type of TEM. Its optimized electron optical hardware and intelligent computerization allow, for the first time, continuous control of all these parameters in real time.

With the EM 906, there is:

- continuous magnification zoom from 40x to 600,000x with no change in image orientation,
- constant image brightness throughout the magnification range,
- continuous diffraction camera length zoom from 180 mm to 1,600 m,
- electromagnetic image orientation in all magnification ranges.

These new features allow optimum adjustment of the image size and orientation to the recording format. Together with the instrument’s capability to perform user-defined, computer-controlled operation sequences, the new imaging capabilities of the EM 906 bring about a new level of operator friendliness.

The advanced, multilayer computer technology of the EM 906, together with its optically precise column configuration, are the vital elements that permit on line continuous variation of the image parameters. Brilliant, high-contrast images with excellent resolution are easily obtained with a complete record of all essential information on the micrograph. The capability for image archive interfacing is standard.

Key importance was given to user comfort in the design of the EM 906. Only four controls are needed in normal operation: magnification, focus, stage position (motorized) and photo record. A complete set of instrument data and parameters including operating conditions and specimen positions may be stored on disk for use in a personal data base or for later recall, thereby allowing personalization of the instrument for different users or for dedicated applications. Electron Optics Division, Carl Zeiss, Inc. – Thornwood, NY.

New Basic™ Laboratory Fume Hoods Economically Provide Ventilation Protection in 4-and 6-Foot Widths

Labconco Corporation, offers the NEW Basic Laboratory Fume Hood for a variety of laboratory fume removal needs. Labconco’s most economical chemical fume hood is now available in 4- and 6-foot widths. With its 25” depth and 48” height, it is ideal for rooms with lower ceilings and mobile installations.

The Basic 47 and 70 Laboratory Hoods feature utility ports on the side of the hood that allows electrical cords or tubing from equipment inside the hood to safely pass through to outside utility connections. The NEW Basic Laboratory Hoods are factory prepared for up to three service fixtures and two duplex receptacles. Service fixtures and receptacles are sold separately. A movable blower module mounts in the top of the hood, above the hood or at a remote roof location. The blower may be ordered with the hood or separately.

Other features include an automatic by-pass system assuring fume containment and removal, a removable air foil for easy cleaning and loading, a vertical rising tempered safety glass sash, and a two-piece adjustable baffle.

The Basic Laboratory Hood’s interior and exterior is constructed of glacier white 16 gauge epoxy coated steel and resists chemical exposure. A polymer film liner may be added as an option for additional corrosion resistance. Labconco Corporation – Kansas City, MO.

CQuic™ Plus E. coli O157:H7 Test Kit

CQuic™ Plus Escherichia coli O157:H7 Test from Sun International Trading Ltd. is a rapid immunoassay for the detection of food borne E. coli O157:H7 pathogens in pre-riched cultures. Using CQuic Plus involves only one step; simple pipette 100 µl of sample solution into the test stick and wait for a positive or negative indication. Testing performance and results require 15 min, which eliminates special training and/or equipment.

This rapid immunoassay is user-friendly and omits hand washing steps and laborious pipetting. CQuic Plus’ built-in visual control zone ensures the test’s integrity and provides for a definitive interpretation. CQuic Plus also allows for tailoring the number of tests to available sample size. Sun International, Wilmington, NC.
Where To Find It

BioControl Systems Inc.
19805 N. Creek Parkway, Bothell, WA 98011
Phone 1-800-245-0113 Fax 206-487-1476

1-2 Test® • Assurance® ELAs for Salmonella, Listeria, E. coli 0157:H7
ColiComplete® • ColiConfirm® • ColiTrak™
ColiTrakPlus • BBL Media & Reagents
Identification Systems • Equipment

Innovative Products • Personalized Service • Technical Support

Know Your Product is Listeria-free the Day After You Make It

Listertest

Accurate, Quantitative Results in 24 Hours

Be confident that your production environment is clean with Listertest from VICAM — the only test which gives you accurate, confirmed quantitative results within 24 hours.

313 PLEASANT STREET 800-338-4381
WATERTOWN, MA 02172 817-928-7045

With our patented Aseptic Sampling System and Aseptic Transfer System:
• Effectively document microbiological process control
• Avoid contamination during inoculation
Don't take chances; Take Action

QMI FOOD AND DAIRY QUALITY MANAGEMENT, INC.

245 E. SIXTH STREET • ST. PAUL, MN 55101
Phone: (612) 228-0477 • FAX: (612) 291-9179

QMI Products are protected by the following U.S. Patents (4, 941, 517; 5, 086, 811; 55, 119, 4733). Manufactured under License from Galloway Company, Hannibal, MO USA

Food Analytics Inc.

CAL-EZE
Shelf-stable and liquid standards for Infra-red somatic cell counters using fluorescence principle.

SOMATICAL
Shelf-stable standards for somatic cell counters using fluorescence principle.

Food and Dairy Quality Management

Immediate Cleaning Validation System
Lightening™ (coming soon!)
• Antibiotic Residue Testing
Snap™
• Bacterial Testing
Colillert®

Committed to providing simple solutions for the Dairy Industry

For More Information call
1-800-321-0207

JANUARY 1995 – Dairy, Food and Environmental Sanitation

Listeria, Salmonella Sampling Made Easy

Nasco

Fort Atkinson, WI 53538-0901
Modesto, CA 95352-3837

For a free copy of our Sampling Products Catalog, call: 1-800-558-9595 OR FAX: 1-414-563-8296
Environmental Health Manager
Multnomah County (Portland) Oregon

The environmental health program serves a population of 600,000, has a staff of 32 and a budget of $1.8 million. Activities include inspection of restaurants, pools, and other facilities, childhood lead poisoning prevention, and vector control.

Applicants must have at least three years of public health field management experience and a background in environmental health or a related public health field. A masters degree is preferred. Knowledge and experience in Total Quality Management systems, excellent interpersonal skills, and strong leadership abilities are required.

Contact (Deadline 12/10/95) Gary Oxman, MD MPH, Multnomah County Health Department, 426 SW Stark Street, 8th Floor, Portland, OR 97204. Telephone (503) 248-3674.

Multnomah County is an affirmative action/equal opportunity employer.
Coming Events

FEBRUARY

- 6-9, Freezing Technology Short Course, on the UC-Davis Campus. This intensive course teaches the fundamentals of freezing specific commodities and includes hands-on demonstrations. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 22-25, Pharmaceutical Technology, Current Good Manufacturing Practice (cGMP) for Quality Control Laboratory Personnel, to be held in San Francisco Bay Area, CA. This course provides knowledge about, and an understanding of regulations for drugs and finished pharmaceuticals as they relate to quality control, FDA inspections of quality control laboratories, QC responsibility for clinical trial material and the impact on the industry of “U.S. vs. Barr Laboratories, Inc.” To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 22-Mar. 2, Pharmaceutical Technology, Project Management in Pharmaceutical Development, East Brunswick, NJ. This course focuses on making project management effective across the spectrum of applications so that product development scheduling and resource utilization are enhanced. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 22-26, Food Technology: Flavors: Their Creation, Definitions and use, a short course to provide an understanding of the nature of flavorings, color and colorings. For more information, contact Registrar, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

- 27-Mar. 1, Pharmaceutical Technology, Current Good Manufacturing Practice (cGMP) for the Pharmaceutical and Allied Industries, East Brunswick, NJ. Topics covered will include not only the legal requirements for cGMP in the Federal Food, Drug, and Cosmetic Act but primarily the practical “how to” of purchasing, manufacturing, packaging, labeling and QA/QC, as well as training production personnel in cGMP. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 27-Mar. 2, Food Technology, Sensory Evaluation, East Brunswick, NJ. For more information contact Registrar, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

- 28-Mar. 1, AFFI’s Western Frozen Food Convention, Monterey, Calif.; featuring Guy Vander Jagt — For more information, contact AFFI’s Convention Office at (415) 697-6835.

MARCH

- 2-3, Food Technology, Regulatory Compliance for the Food Industry, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

- 2-3, Pharmaceutical Technology, Writing Standard Operating Procedures to Meet cGMP Requirements, East Brunswick, NJ. Acquire a better understanding of what the FDA is looking for, methods
used for compiling information, assignment of responsibility for departmental procedures, instruction on technical writing, new plant start-up, and plant revision, or companies experiencing rapid growth or expansion. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 2-4, Introduction to Statistical Methods for Sensory Evaluation of Foods, a course to be offered at the UC-Davis campus. The fee is $575.00 and includes one dinner, two lunches and the course text or manual. For more information or to enroll, call toll-free in California (800) 752-0881. Outside California, call (916) 757-8777.

- 3, The Baking Industry Sanitation Standards Committee 1995 Annual Membership Meeting, at the Chicago Marriott Hotel. For more information contact the BISSC headquarters, 401 N. Michigan Ave., Chicago, IL 60611; phone (312) 644-4015. For more information contact the BISSC headquarter, 401 N. Michigan Ave., Chicago, IL 60611; phone (312) 644-4015.

- 6-7, Pharmaceutical Technology, Preparing Clinical Protocols and Managing Clinical Investigations, East Brunswick, NJ. The purpose of this course is to give participants guidance and workshop experience, along with an understanding of government regulations pertaining to clinical protocols. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 6-8, Principles of Cereal Science, a short course sponsored by American Association of Cereal Chemists will be held in Los Angeles, CA. For more information, contact Marie McHenery, AACCS Short Course Coordinator, 3340 Pilot Knob Road, St. Paul, MN 55121; phone (612) 454-7250; FAX (612) 454-0766.

- 6-8, Sensory Evaluation: Overview and Update, an additional course offered at the UC-Davis campus. The fee is $55.00, or $1,000 to attend both this and the “Introduction to Statistical Methods for Sensory Evaluation of Foods.” For more information or to enroll, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 8-10, Pharmaceutical Technology, Practical Considerations in Preparing Investigational New Drug and New Drug Applications (IND/NDA’S), East Brunswick, NJ. This continually updated course meets the need for advanced information on preparing IND applications and NDAs in compliance with the most recent regulations. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 13-15, Pharmaceutical Technology, Drug Product Stability and Shelf-Life, East Brunswick, NJ. The objective of this course is to explore fundamentals of current principles and practice concerning the stability of pharmaceutical and cosmetic products. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 13-15, Food Technology, Confectionery and Chocolate Production, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ. For information or to enroll, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 27-29, Pharmaceutical Technology, Food Irradiation Technology, East Brunswick, NJ. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 27-29, Pharmaceutical Technology, Contracting the Manufacture and Packing of Pharmaceuticals, East Brunswick, NJ. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

- 27-29, Food Technology, Food Hydrocolloids, East Brunswick, NJ. For more information, contact: Registry, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

- 27-29, Maintaining Quality and Safety of Fresh Cut Produce, a course focuses on the physiological, biochemical and microbiological factors that influence quality and safety of fresh-cut (lightly processed) fruits and vegetables. For time and free information, call (800) 752-0881. Outside California, call (916) 757-8777.
• 3-5, Food Technology, Good Manufacturing Practice (GMP) for the Food Industry. This is an introductory course in the laws and regulations enforced by the U.S. Food and Drug Administration as they relate to the processing of foods. For more information, contact Registrar, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

• 3-5, Pharmaceutical Technology, Current Good Manufacturing Practice (cGMP) for the Pharmaceutical and Allied Industries; San Francisco Bay Area, CA. Topics covered will include not only the legal requirements for cGMP in the Federal Food, Drug, and Cosmetic Act but primarily the practical “how to” of purchasing, manufacturing, packaging, labeling and QA/QC, as well as training production personnel in cGMP. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

• 3-5, Pflug’s Microbiology and Engineering of Sterilization Processes; this intensive lecture problem course is for degreed scientists and technical managers involved in the research, development and manufacture of sterilized food, pharmaceutical products and medical devices. For more information, contact Dr. William Schafer, course coordinator, Department of Food Science and Nutrition, 1334 Eckles Ave., St. Paul, MN 55108; phone (612) 624-4793.

• 6-7, Pharmaceutical Technology, Writing Standard Operating Procedures to Meet cGMP Requirements, East Brunswick, NJ. Acquire a better understanding of what the FDA is looking for, methods used for compiling information, assignment of responsibility for departmental procedures, instruction on technical writing, new plant start-up, and plant revision, or companies experiencing rapid growth or expansion. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

• 6-7, Pharmaceutical Technology, The FDA Investigator Comes, East Brunswick, NJ. Recommended actions to be taken before, and after an investigation are outlined in this course. To enroll or request more information, call toll-free in California (800) 752-0881. Outside of California, call (916) 757-8777.

• 10-12, Food Technology, Food Extrusion Technology, This course is designed to provide a thorough background in extrusion principles and practice. For more information, contact Registrar, The Center for Professional Advancement, P. O. Box 1052, East Brunswick, NJ 08816; phone (908) 613-4500; FAX (908) 238-9113.

• 23-25, AFFI’s Mid-Year Board of Directors Meeting, For more information, contact AFFI’s Convention Office at (703) 821-0770.
I AMFES has agreed with the Dairy Practice Council to distribute their “Guidelines for the Dairy Industry.” DPC is a nonprofit organization of education, industry and regulatory personnel concerned with milk quality and sanitation throughout 15 northeastern/mid-Atlantic states. However, its membership and subscriber rosters list individuals and organizations throughout the United States, Canada and Japan.

For the past 25 years, DPC’s primary mission has been the development and distribution of educational guidelines directed to proper and improved sanitation practices in the production, processing, and distribution of high quality fluid milk and manufactured dairy products.

The DPC Guidelines are written by professionals who comprise five permanent Task Forces. Prior to distribution, every Guideline is submitted for approval to the key milk control sanitarian in each of the 15 states which are now active participants in the DPC process. Should any official have an exception to a section of a proposed guideline, that exception is noted in the final document.

The Guidelines are renown for their common sense and useful approach to proper and improved sanitation practices. We think that they will be a valuable addition to your professional reading library.

The entire set consists of 48 guidelines including:

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dairy Cow Free Stall Housing</td>
</tr>
<tr>
<td>2</td>
<td>Effective Installation, Cleaning and Sanitizing of Milking Systems</td>
</tr>
<tr>
<td>3</td>
<td>Selected Personnel in Milk Sanitation</td>
</tr>
<tr>
<td>7</td>
<td>Sampling Fluid Milk</td>
</tr>
<tr>
<td>8</td>
<td>NE Ext. Publ., Conferences, Short Courses, Correspondence</td>
</tr>
<tr>
<td>9</td>
<td>Fundamentals of Cleaning and Sanitizing Farm Milk Handling Equipment</td>
</tr>
<tr>
<td>10</td>
<td>Fluid Milk Shelf-Life</td>
</tr>
<tr>
<td>11</td>
<td>Sediment Testing and Producing Clean Milk</td>
</tr>
<tr>
<td>13</td>
<td>Environmental Air Control & Quality for Dairy Food Plants</td>
</tr>
<tr>
<td>14</td>
<td>Clean Room Technology</td>
</tr>
<tr>
<td>16</td>
<td>Handling Dairy Products From Processing to Consumption</td>
</tr>
<tr>
<td>17</td>
<td>Causes of Added Water in Milk</td>
</tr>
<tr>
<td>18</td>
<td>Abnormal Milk--Fieldman’s Approach</td>
</tr>
<tr>
<td>21</td>
<td>Raw Milk Quality Tests</td>
</tr>
<tr>
<td>22</td>
<td>Control of Antibacterial Drugs and Growth Inhibitors in Milk and Milk Products</td>
</tr>
<tr>
<td>23</td>
<td>Preventing Rancid Flavors in Milk</td>
</tr>
<tr>
<td>24</td>
<td>Troubleshooting High Bacteria Counts of Raw Milk</td>
</tr>
<tr>
<td>25</td>
<td>Cleaning and Sanitizing Bulk Pickup and Transport Tankers</td>
</tr>
<tr>
<td>28</td>
<td>Troubleshooting Residual Films on Dairy Farm Milk Handling Equipment</td>
</tr>
<tr>
<td>29</td>
<td>Cleaning and Sanitizing in Fluid Milk Processing Plants</td>
</tr>
<tr>
<td>30</td>
<td>Potable Water on Dairy Farms</td>
</tr>
<tr>
<td>31</td>
<td>Composition and Nutritive Value of Dairy Products</td>
</tr>
<tr>
<td>32</td>
<td>Fat Test Variations in Raw Milk</td>
</tr>
<tr>
<td>33</td>
<td>Brucellosis and Some Other Milkborne Diseases</td>
</tr>
<tr>
<td>34</td>
<td>Butterfat Determinations of Various Dairy Products</td>
</tr>
<tr>
<td>35</td>
<td>Dairy Plant Waste Management</td>
</tr>
<tr>
<td>36</td>
<td>Dairy Farm Inspection</td>
</tr>
<tr>
<td>37</td>
<td>Planning Dairy Stall Barns</td>
</tr>
<tr>
<td>38</td>
<td>Preventing Off-flavors in Milk</td>
</tr>
<tr>
<td>39</td>
<td>Grade A Fluid Milk Plant Inspection</td>
</tr>
<tr>
<td>40</td>
<td>Controlling Fluid Milk Volume and Fat Losses</td>
</tr>
<tr>
<td>41</td>
<td>Milkrooms and Bulk Tank Installation</td>
</tr>
<tr>
<td>42</td>
<td>Stray Voltage on Dairy Farms</td>
</tr>
<tr>
<td>43</td>
<td>Farm Tank Calibrating and Checking</td>
</tr>
<tr>
<td>44</td>
<td>Troubleshooting Dairy Barn Ventilation Systems</td>
</tr>
<tr>
<td>45</td>
<td>Gravity Flow Gutters for Manure Removal in Milking Barns</td>
</tr>
<tr>
<td>46</td>
<td>Dairy Odor Control</td>
</tr>
<tr>
<td>47</td>
<td>Naturally Ventilated Dairy Cattle Housing</td>
</tr>
<tr>
<td>48</td>
<td>Cooling Milk on the Farm</td>
</tr>
<tr>
<td>49</td>
<td>Postmilking Teat Dips</td>
</tr>
<tr>
<td>50</td>
<td>Farm Bulk Milk Collection Procedures</td>
</tr>
<tr>
<td>51</td>
<td>Controlling the Accuracy of Electronic Testing Instruments for Milk Components</td>
</tr>
<tr>
<td>52</td>
<td>Emergency Action Plan for Outbreak of Milkborne Illness in the Northeast</td>
</tr>
<tr>
<td>53</td>
<td>Vitamin Fortification of Fluid Milk Products</td>
</tr>
<tr>
<td>54</td>
<td>Selection and Construction of Herringbone Milking Parlors</td>
</tr>
<tr>
<td>56</td>
<td>Dairy Product Safety (Relating to Pathogenic Bacteria)</td>
</tr>
<tr>
<td>57</td>
<td>Dairy Plant Sanitation</td>
</tr>
<tr>
<td>58</td>
<td>Sizing Dairy Farm Water Heater Systems</td>
</tr>
</tbody>
</table>

If purchased individually, the entire set would cost $174. We are offering the set, packaged in three loose leaf binders for $125 plus $9 shipping and handling (outside the U.S., $21 for shipping and handling).

Information on how to receive new and updated Guidelines will be included with your order.

To purchase this important source of information, complete the order form below and mail or FAX (515-276-8655) to IAMFES.

Please enclose $125 plus $9 shipping and handling for each set of Guidelines. Shipments outside the U.S. are $125 plus $21 shipping and handling.

Information on how to receive new and updated Guidelines will be included with your order.

To purchase this important source of information, complete the order form below and mail or FAX (515-276-8655) to IAMFES.

Name: ______________________________________ Phone No. ___________________________
Company: __________________________________
Street Address: ________________________________
City, State/Province, Code: ____________________
VISA/MC/AE No.: ____________________________ Exp. Date: ____________________

Payment in U.S. $ drawn on a U.S. Bank or by credit card.

Dairy, Food and Environmental Sanitation — JANUARY 1995
MEMBERSHIP APPLICATION

International Association of Milk, Food and Environmental Sanitarians

6200 Aurora Avenue, Suite 200W, Des Moines, IA 50322-2838 • (515) 276-3344 OR (800) 369-6337

MEMBERSHIP

☐ Membership with JFP and DFES $90
 (12 issues of the Journal of Food Protection and Dairy, Food and Environmental Sanitation)

☐ Membership with DFES $60
 (12 issues of Dairy, Food and Environmental Sanitation)

☐ Check here if you are interested in information on joining your state/province chapter of IAMFES

SUSTAINING MEMBERSHIP

☐ Membership with BOTH journals $450
 (Includes exhibit discount, July advertising discount, company monthly listing in both journals and more)

STUDENT MEMBERSHIP

☐ Membership PLUS including both journals $45

☐ Membership with Journal of Food Protection $30

☐ Membership with Dairy, Food and Environmental Sanitation $30

*FULL-TIME STUDENT VERIFICATION MUST ACCOMPANY THIS FORM

Shipping Charges: Outside U.S. ______ Surface ($22.50 per journal) ______ AIRMAIL ($95.00 per journal)

PRINT OR TYPE...ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

Name_________________________ Company Name_________________________

Job Title_________________________ Office Phone #_______________________

Address_________________________ FAX #______________________________

City_________________________ State/Province__________________________ Country__________ Postal Code__________

Membership: ______ New ______ Renewal

Mail Entire Form to:
IAMFES
6200 Aurora Ave, Suite 200W
Des Moines, IA 50322-2838
USA

OR Use Your Charge Cord:
(800) 369-6337 (U.S. & Canada)
(515) 276-3344
FAX (515) 276-8555

☐ Check or Money Order
☐ Master Card
☐ VISA
☐ American Express

U.S. FUNDS on U.S. BANK

Exp. Date________________________

Signature_______________________

JANUARY 1995 - Dairy, Food and Environmental Sanitation 51
IAMFES Booklets

New Prices Effective May 1, 1994

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Waterborne Illness</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Food-borne Illness - 4th Edition</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Investigate Arthropod-borne and Rodent-borne Illness</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Procedures to Implement the Hazard Analysis Critical Control Point System</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$6.00/member; $9.00/non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Pocket Guide To Dairy Sanitation</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$.50/member; $.75/non-member</td>
<td></td>
</tr>
</tbody>
</table>

Shipping/Handling

- U.S. $2.00 for first item. $1.00 for each additional item
- Outside U.S. $4.00 for first item. $1.00 for each additional item

Pocket Guide To Dairy Sanitation Total

3-A Sanitary Standards

New Prices Effective May 1, 1994

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Complete set 3-A Dairy Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$48 member; $72 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Complete set 3-A Dairy & Egg Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$70 member; $105 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>3-A Egg Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$40 member; $60 non-member</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Five-year Update Service on 3-A Sanitary Standards 3-A Dairy & Egg Standards</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$62 member; $93 non-member</td>
<td></td>
</tr>
</tbody>
</table>

Shipping/Handling

- U.S. $6.25 each item
- Outside U.S. $10.25 each item

3-A Sanitary Standards Total

PRINT OR TYPE . . . ALL AREAS MUST BE COMPLETED IN ORDER TO BE PROCESSED

<table>
<thead>
<tr>
<th>Name</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>MI</td>
</tr>
<tr>
<td>Job Title</td>
<td>Office Phone #</td>
</tr>
<tr>
<td>Address</td>
<td>FAX #</td>
</tr>
<tr>
<td>City</td>
<td>State/Province</td>
</tr>
</tbody>
</table>

MAIL ENTIRE FORM TO:

IAMFES
6200 AURORA AVENUE, STE 200W
DES MOINES, IA 50322-2838

OR USE YOUR CHARGE CARD

- U.S. FUNDS on U.S. BANK
- MASTERCARD
- VISA
- AMERICAN EXPRESS

PAYMENT MUST BE ENCLOSED IN ORDER TO PROCESS

- CHECK OR MONEY ORDER
- CARD #
- EXPIRATION DATE
- YOUR SIGNATURE

52 Dairy, Food and Environmental Sanitation – JANUARY 1995
INTERNATIONAL ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS, INC.

Mail or FAX to (515) 276-8655

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State/Prov.</td>
</tr>
<tr>
<td>Country</td>
<td>Zip/Postal Code</td>
</tr>
<tr>
<td>Phone Number</td>
<td></td>
</tr>
</tbody>
</table>

Reader Service Card

Expires: March 31, 1995
(International expiration: May 31, 1995)

Mail or FAX to (515) 276-8655

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State/Prov.</td>
</tr>
<tr>
<td>Country</td>
<td>Zip/Postal Code</td>
</tr>
<tr>
<td>Phone Number</td>
<td></td>
</tr>
</tbody>
</table>
This publication is available in microform.
Supercharge your HACCP program...

The Charm 4000

Kits available for:

- Sanitation/Hygiene Testing
- Pasteurization Efficiency (Phosphatase)
- Meat Cooking Efficiency (Phosphatase)
- Microbial Quality
- Pesticide Residue Detection
- Milk Shelf Life Prediction

No other luminometer is more versatile, more cost effective, or more accurate.