- IAFP 2002 Registration Form
- 2002-2003 Secretary Candidates
Food Safety First!
Separate 10 minute on-the-job training video series
- Top Ten Causes of Foodborne illness
- Personal Hygiene & Handwashing
- Cross Contamination
- Cleaning & Sanitation
- Time and Temperature Abuse
Teaching principles which are applicable to all aspects of food service
A sample program is available on CD-ROM. See us on the Internet for details!

For More about our products, visit our websites

www.foodsafetyfirst.com www.glogerm.com

Are your employees spreading germs? Find out with Glo Germ!
Glo Germ is a special product allowing people to see germs in a new light! When conventional infection control and proper food handling techniques fail, turn to Glo Germ. Glo Germ’s “Germs You Can See” training solution will help your employees and customers think safer!

Glo Germ™ Food Safety First™
150 East Center St Moab UT. 84532
1 800-842-6622 EXT. 125
Standards and Calibration Sets
- Raw Milk Component Standards
- Raw Lowfat Component Standards
- Pasteurized/Homogenized Lowfat Standards
- High Fat Cream Standards
- Light Cream Standards
- Electronic Somatic Cell Standards
- Skim Condensed Standards
- Urea Standards
- Goat Standards
- A & B Control Samples
- Standards Made to Customer’s Specs

Chemical and Bacteriological Testing
- Milk and Milk Products
- Producer Quality Testing
- Producer Component Testing
- Mastitis Culture-Cow or Bulk Tank Testing
- Third Party Verification/Validation

High Performance Liquid Chromatography
- Carbohydrates and/or Antibiotics in Milk

DQCI Services, Inc., Mounds View Business Park, 5205 Quincy St., Mounds View, MN 55112
(763) 784-0484 phone, (763) 785-0584 fax

Let Us Come to You!
FPI, the Food Processors Institute, is uniquely qualified to conduct company-specific workshops in:

- Better Process Control
- HACCP
 - Basic HACCP
 - Verification and Validation
 - Juice HACCP
- Thermal Processing
- Sanitation and GMPs
- Juice Pasteurization

These workshops are custom tailored to a company’s needs and can be held on-site. To find out more about providing training for your entire HACCP team, supervisors, QA/QC, and line workers, contact FPI at 1-800/355-0983, 202/393-0890, or e-mail us at fpi@nfpa-food.org.

Reader Service No. 129

Reader Service No. 131

MARCH 2002 – Dairy, Food and Environmental Sanitation 165
ABOUT THE COVER...
Photo courtesy of PhotoDisc, Food Essentials, Volume 20.
Use of this photo does not imply endorsement of any product by the International Association for Food Protection.

DAIRY, FOOD AND ENVIRONMENTAL SANITATION

Articles

Milk Production and Mastitis on Midwestern Organic Dairy Farms ... 178

Application of a Commercial Steam Vacuum Unit to Reduce Inoculated Salmonella on Chilled Fresh Beef Adipose Tissue ... 184
R. T. Bacon, J. N. Sofos, K. E. Belk, and G. C. Smith

Thoughts on Today’s Food Safety — The Role of Probiotics in Food Safety 232
Mary Ellen Sanders

Association News

Sustaining Members .. 172
Postcards from Iowa 174
Commentary from the Executive Director 176
New Members ... 197
Affiliate Officers .. 198

Departments

Updates .. 203
News .. 205
Industry Products ... 210
Coming Events .. 222
Advertising Index ... 226

Extras

Special Report: Unique Watermelon Caused Foodborne Illness .. 191
T. K. Pande

2002-2003 Secretary Candidates .. 192
IAFP 2003, Call for Symposia 194
Highlights of the Executive Board Meeting 196
IAFP 2002 — the Association’s 89th Annual Meeting
 Ivan Parkin Lecture ... 214
 Preliminary Program 215
 Event Information ... 216
 Registration Form ... 219

Journal of Food Protection Table of Contents ... 227
Audiovisual Library Order Form 229
Booklet Order Form ... 230
Membership Application 231

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.
Sustaining Membership

Sustaining Membership provides organizations and corporations the opportunity to ally themselves with the International Association for Food Protection in pursuit of "Advancing Food Safety Worldwide." This partnership entitles companies to become Members of the leading food safety organization in the world while supporting various educational programs that might not otherwise be possible.

Organizations who lead the way in new technology and development join IAFP as Sustaining Members. Sustaining Members receive all the benefits of IAFP Membership, plus:

- Monthly listing of your organization in Dairy, Food and Environmental Sanitation and Journal of Food Protection
- Discount on advertising
- Exhibit space discount at the Annual Meeting
- Organization name listed on the Association’s Web site
- Link to your organization’s Web site from the Association’s Web site
- Alliance with the International Association for Food Protection

Gold Sustaining Membership $5,000

- Designation of three individuals from within the organization to receive Memberships with full benefits
- $750 exhibit booth discount at the IAFP Annual Meeting
- $2,000 dedicated to speaker support for educational sessions at the Annual Meeting
- Company profile printed annually in Dairy, Food and Environmental Sanitation

Silver Sustaining Membership $2,500

- Designation of two individuals from within the organization to receive Memberships with full benefits
- $500 exhibit booth discount at the IAFP Annual Meeting
- $1,000 dedicated to speaker support for educational sessions at the Annual Meeting

Sustaining Membership $750

- Designation of an individual from within the organization to receive a Membership with full benefits
- $300 exhibit booth discount at the IAFP Annual Meeting
DAIRY, FOOD AND ENVIRONMENTAL SANITATION

A PUBLICATION OF THE INTERNATIONAL ASSOCIATION FOR FOOD PROTECTION

Dairy, Food and Environmental Sanitation (ISSN-1043-3546) is published monthly beginning with the January number by the International Association for Food Protection, 6200 Aurora Avenue, Suite 200W, Des Moines, Iowa 50322-2864, USA. Each volume comprises 12 numbers. Printed by Heuss Printing, Inc., 911 N. Second Street, Ames, Iowa 50010, USA. Periodical Postage paid at Des Moines, Iowa 50318 and additional entry offices.

Manuscripts: Correspondence regarding manuscripts should be addressed to Donna A. Bahun, Production Editor, International Association for Food Protection.

News Releases, Updates, Coming Events and Cover Photos: Correspondence for these materials should be sent to Donna A. Bahun, Production Editor, International Association for Food Protection.

"Instructions for Authors" may be obtained from our Web site at www.foodprotection.org or from Donna A. Bahun, Production Editor, International Association for Food Protection.

Orders for Reprints: All orders should be sent to Dairy, Food and Environmental Sanitation, International Association for Food Protection. Note: Single copies of reprints are not available from this address; address single copy reprint requests to principal author.

Reprint Permission: Questions regarding permission to reprint any portion of Dairy, Food and Environmental Sanitation should be addressed to: Donna A. Bahun, Production Editor, International Association for Food Protection.

Business Matters: Correspondence regarding business matters should be addressed to Lisa K. Hovey, Managing Editor, International Association for Food Protection.

Membership Dues: Membership in the Association is available to individuals. Dues include a 12-month subscription to Dairy, Food and Environmental Sanitation at a rate of $90.00 US, $100.00 Canada/Mexico, and $115.00 International. Dues including Journals of Food Protection; and $75.00 US, $100.00 Canada/Mexico, and $145.00 International for Dairy, Food and Environmental Sanitation and Journal of Food Protection. All membership dues include shipping and handling. No cancellations accepted. Correspondence regarding changes of address and dues must be sent to Julie A. Cattanach, Membership Services, International Association for Food Protection.

Sustaining Membership: Three levels of sustaining membership are available to organizations. For more information, contact Julie A. Cattanach, Membership Services, International Association for Food Protection.

Subscription Rates: Dairy, Food and Environmental Sanitation is available by subscription for $198.00 US, $208.00 Canada/Mexico, and $223.00 International. Single issues are available for $26.00 US and $35.00 all other countries. All rates include shipping and handling. No cancellations accepted. For more information contact Julie A. Cattanach, Membership Services, International Association for Food Protection.

Claims: Notice of failure to receive copies must be reported within 30 days domestic, 90 days outside US.

Postmaster: Send address changes to Dairy, Food and Environmental Sanitation, 6200 Aurora Avenue, Suite 200W, Des Moines, Iowa 50322-2864, USA.

Dairy, Food and Environmental Sanitation is printed on paper that meets the requirements of ANSI/NISO 239.48-1992.
“Sanitation control in the palm of your hand”

Introducing the Charm

FireFly™

ATP Monitor

- Total Surface Hygiene Indicator:
 Microbial Food Residue Organic Soil
- Results in RLU & Pass/Fail
- Indicator Pass/Fail Lights
- Runs off battery for up to 20 hours
- Download to Any Spreadsheet or DataMaster software

Charm Sciences Inc.

659 Andover Street
Lawrence MA 01843 USA
TEL 978 687 9200 FAX 978 687 9216
info@charm.com www.charm.com

Reader Service No. 164
Future Annual Meetings

IAFP 2002
June 30-July 3
Manchester Grand Hyatt
San Diego
(Formerly Hyatt Regency San Diego)
San Diego, California

IAFP 2003
August 10-13
Hilton New Orleans Riverside
New Orleans, Louisiana

IAFP 2004
August 8-11
Marriott Desert Ridge Resort
Scottsdale, Arizona

DAIRY, FOOD AND ENVIRONMENTAL SANITATION

EXECUTIVE BOARD

President, James S. Dickson, Iowa State University, Department of Microbiology, 207 Science I, Ames, IA 50011-0001; Phone: 515.294.4733; E-mail: jdickson@iastate.edu

President-Elect, Anna M. Lammerding, Health Canada, Health Protection Branch, 110 Stone Road W., Guelph, Ontario, N1G 3W4 Canada; Phone: 519.822.3300 Ext. 247; E-mail: anna_lammerding@hc-sc.gc.ca

Vice President, Paul A. Hall, Kraft Foods, Inc., 801 Waukegan Road, Glenview, IL, 60025-4312; Phone: 847.646.3678; E-mail: phall@kraft.com

Secretary, Kathleen A. Glass, University of Wisconsin, Food Research Institute, 1925 Willow Drive, Madison, WI, 53706-1187; Phone: 608.263.6935; E-mail: kglass@facstaff.wisc.edu

Past President, Jenny Scott, National Food Processors Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005-3305; Phone: 202.639.5985; E-mail: jscott@nfpa-food.org

Affiliate Council Chairperson, Peter Hibbard, Darden Restaurants, Inc., P.O. Box 593330, Orlando, FL 32859-3330; Phone: 407.245.6881; E-mail: phibbard@darden.com

EXECUTIVE DIRECTOR

David W. Tharp, CAE, 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864; Phone: 515.276.3344; E-mail: dtharp@foodprotection.org

SCIENTIFIC EDITOR

William LaGrange, Ph.D., Iowa State University, Department of Food Science and Human Nutrition, Food Sciences Building, Ames, IA 50011-0001; Phone: 515.294.3156; Fax: 515.294.8181; E-mail: lagrange@iastate.edu

SCIENCE NEWS EDITOR

Doug Powell, Ph.D., University of Guelph, Guelph, Ontario N1G 2W1 Canada; Phone: 519.821.1799; Fax: 519.824.6631; E-mail: dpowell@uoguelph.ca

"The mission of the Association is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply."
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARY ACUFF (02)</td>
<td>College Station, TX</td>
</tr>
<tr>
<td>JULIE A. ALBRECHT (03)</td>
<td>Lincoln, NE</td>
</tr>
<tr>
<td>JEAN ALLEN (04)</td>
<td>Toronto, Ontario, CAN</td>
</tr>
<tr>
<td>KEVIN ANDERSON (02)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>HAROLD BENGSCH (03)</td>
<td>Springfield, MO</td>
</tr>
<tr>
<td>PHILIP BLACOYEVICH (03)</td>
<td>San Ramon, CA</td>
</tr>
<tr>
<td>THOMAS G. BOUFFORD (04)</td>
<td>St. Paul, MN</td>
</tr>
<tr>
<td>BOB BRADLEY (02)</td>
<td>Madison, WI</td>
</tr>
<tr>
<td>CHRISTINE BRUHN (03)</td>
<td>Davis, CA</td>
</tr>
<tr>
<td>LLOYD B. BULLERMAN (02)</td>
<td>Lincoln, NE</td>
</tr>
<tr>
<td>DONNA CHRISTENSEN (03)</td>
<td>Calgary, Alberta, CAN</td>
</tr>
<tr>
<td>WARREN S. CLARK (04)</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>WILLIAM W. COLEMAN (02)</td>
<td>Fargo, ND</td>
</tr>
<tr>
<td>PETE COOK (04)</td>
<td>Mt. Airy, MD</td>
</tr>
<tr>
<td>NELSON COX (02)</td>
<td>Athens, GA</td>
</tr>
<tr>
<td>CARL CUSTER (03)</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>JIM DICKSON (04)</td>
<td>Brookings, SD</td>
</tr>
<tr>
<td>RUTH FUQUA (02)</td>
<td>Leroy, NY</td>
</tr>
<tr>
<td>JILL GEBLER (03)</td>
<td>Yarram, Victoria, AU</td>
</tr>
<tr>
<td>THOMAS M. GILMORE (04)</td>
<td>McLean, VA</td>
</tr>
<tr>
<td>B. A. GLATZ (02)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>DAVID GOMBAS (03)</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>DAVID HENNINC (04)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>CHARLOTTE HINZ (02)</td>
<td>Gloucestshire, U.K.</td>
</tr>
<tr>
<td>JOHN HOLAH (03)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>CHARLES HURBURGH (04)</td>
<td>Columbia, SC</td>
</tr>
<tr>
<td>JIM HUSS (02)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>ELIZABETH JOHNSON (03)</td>
<td>Manukau City, Auckland, N.Z.</td>
</tr>
<tr>
<td>PETER KEELING (02)</td>
<td>University Park, PA</td>
</tr>
<tr>
<td>SUSAN KLEIN (04)</td>
<td>Des Moines, IA</td>
</tr>
<tr>
<td>SHERRI L. KOCHEVAR (02)</td>
<td>Greeley, CO</td>
</tr>
<tr>
<td>DOUG LORTON (03)</td>
<td>Fulton, KY</td>
</tr>
<tr>
<td>LYNN McMULLEN (02)</td>
<td>Edmonton, Alberta, CAN</td>
</tr>
<tr>
<td>JOHN MIDDLETON (03)</td>
<td>Manukau City, Auckland, N.Z.</td>
</tr>
<tr>
<td>CATHERINE NETTLES-CUTTER (04)</td>
<td>University Park, PA</td>
</tr>
<tr>
<td>CHRIS NEWCOMER (02)</td>
<td>Cincinnati, OH</td>
</tr>
<tr>
<td>DEBBY NEWSLOW (03)</td>
<td>Orlando, FL</td>
</tr>
<tr>
<td>FRED PARRISH (04)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>DARYL PAULSON (02)</td>
<td>Bozeman, MT</td>
</tr>
<tr>
<td>DAVID PEPER (03)</td>
<td>Sioux City, IA</td>
</tr>
<tr>
<td>MICHAEL PULLEN (04)</td>
<td>White Bear Lake, MN</td>
</tr>
<tr>
<td>K. T. RAIKOWSKI (02)</td>
<td>Wyndmoor, PA</td>
</tr>
<tr>
<td>LAWRENCE A. ROTH (03)</td>
<td>Edmonton, Alberta, CAN</td>
</tr>
<tr>
<td>ROBERT SANDERS (04)</td>
<td>Pensacola, FL</td>
</tr>
<tr>
<td>CAROL SAWYER (04)</td>
<td>East Lansing, MI</td>
</tr>
<tr>
<td>RONALD H. SCHMIDT (02)</td>
<td>Gainesville, FL</td>
</tr>
<tr>
<td>JOE SEBRANK (03)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>PETE SNYDER (04)</td>
<td>St. Paul, MN</td>
</tr>
<tr>
<td>JOHN N. SOFOS (02)</td>
<td>Ft. Collins, CO</td>
</tr>
<tr>
<td>LEO TIMMS (03)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>P. C. VASAVADA (04)</td>
<td>River Falls, WI</td>
</tr>
<tr>
<td>E. R. VEDAMUTHU (02)</td>
<td>Rochester, MN</td>
</tr>
</tbody>
</table>
Sustaining Membership provides organizations and corporations the opportunity to ally themselves with the International Association for Food Protection in pursuit of Advancing Food Safety Worldwide. This partnership entitles companies to become Members of the leading food safety organization in the world while supporting various educational programs that might not otherwise be possible. Organizations who lead the way in new technology and development join IAFP as Sustaining Members.

Gold

Kraft Foods, Inc., Glenview, IL; 847.646.3678

Silver

F & H Food Equipment Co., Springfield, MO; 417.881.6114

Qualicon, A DuPont Subsidiary, Wilmington, DE; 302.695.2262

Silliker Laboratories Group, Inc., Homewood, IL; 708.957.7878

Weber Scientific, Hamilton, NJ; 609.584.7677

Sustaining

3-A Symbol Council, Cedar Rapids, IA; 319.286.9221

3M Microbiology Products, St. Paul, MN; 612.733.9558

ABC Research Corporation, Gainesville, FL; 352.372.0436

AgriLink Foods, Inc., Green Bay, WI; 920.435.5301

Anderson Instrument Co., Fultonville, NY; 518.922.5515

Audits International, Northbrook, IL; 847.480.9898

BD Diagnostic Systems, Sparks, MD; 410.316.4467

Bentley Instruments, Inc., Chaska, MN; 952.448.7600

BioControl Systems, Inc., Bellevue, WA; 425.608.1123

Biolog, Inc., Hayward, CA; 510.785.2564

bioMérieux, Inc., Hazelwood, MO; 800.638.4835

Capitol Vial, Inc., Tucson, AZ; 800.688.9515

Capitol Wholesale Meats, Chicago, IL; 773.890.0600

Celsis, Inc., Evanston, IL; 847.509.7600

Cogent Technologies, Ltd., Cincinnati, OH; 513.369.6800
Sustaining Members

DARDEN Restaurants, Inc., Orlando, FL; 407.245.5330

Dean Foods, Rockford, IL; 815.962.0647

Decagon Devices, Inc., Pullman, WA; 509.332.2756

Deibel Laboratories, Inc., Lincolnwood, IL; 847.329.9900

DiverseyLever, Sharonville, OH; 513.956.4833

Don Levy & Associates, Inc., Merrillville, IN; 219.736.0172

DSM Food Specialties, Menomonee Falls, WI; 262.255.7955

DQCI Services, Inc., Mounds View, MN; 763.785.0484

Dynal Biotech, Inc., Lake Success, NY; 800.638.9416

EM Science, Gibbstown, NJ; 856.423.6300

Ecolab, Inc., St. Paul, MN; 612.293.2364

Electrol Specialties Company, South Beloit, IL; 815.389.2291

Evergreen Packaging, Division of International Paper, Cedar Rapids, IA; 319.399.3236

FoodHandler, Inc., Westbury, NY; 800.338.4438

Food Processors Institute, Washington, D.C.; 800.355.0983

Food Safety Net Services, Ltd., San Antonio, TX; 210.384.3424

Foss North America, Inc., Eden Prairie, MN; 952.974.9892

IBA, Inc., Millbury, MA; 508.865.6911

International BioProducts, Inc., Bothell, WA; 425.398.7993

International Fresh-cut Produce Association, Alexandria, VA; 703.299.6282

Iowa State University Food Microbiology Group, Ames, IA; 515.294.4733

LabPlas Inc., Ste-Julie, Quebec, Canada; 450.649.7543

Land O’Lakes, Inc., St. Paul, MN; 651.481.2541

Marine BioProducts International, Delta, British Columbia, Canada; 604.523.2400

Matrix MicroScience Ltd., Cambridgeshire, UK; +44.1638.723110

Medallion Laboratories, Minneapolis, MN; 612.764.4453

Michelson Laboratories, Inc., Commerce, CA; 562.928.0553

Nasco International, Inc., Fort Atkinson, WI; 920.568.5536

The National Food Laboratory, Inc., Dublin, CA; 925.551.4231

Nelson-Jameson, Inc., Marshfield, WI; 715.387.1151

Neogen Corporation, Lansing, MI; 517.372.9200

Nestlé USA, Inc., Glendale, CA; 818.549.5799

NSF International, Ann Arbor, MI; 734.769.8010

Organon Teknika Corp., Durham, NC; 919.620.2000

Oxoid, Inc., Nepean, Ontario, Canada; 800.267.6391

Penn State University, University Park, PA; 814.865.7535

REMEI, Inc., Lenexa, KS; 800.255.6730

Rhodia Inc., Madison, WI; 800.356.9393

RidgeView Products, LLC, La Crosse, WI; 608.781.5946

Ross Laboratories, Columbus, OH; 614.624.3785

rttech™ laboratories, St. Paul, MN; 800.328.9687

Seiberling Associates, Inc., Dublin, OH; 614.764.2817

Seward Limited, London, United Kingdom; +44.0.181.365.4104

United Fresh Fruit & Vegetable Association, Alexandria, VA; 703.836.3410

Warren Analytical Laboratory, Greeley, CO; 800.945.6669

West Agro, Inc., Kansas City, MO; 816.891.1558

WestFarm Foods, Seattle, WA; 206.286.6772

Zep Manufacturing Company, Atlanta, GA; 404.352.1680
Postcards from Iowa

By JAMES DICKSON
President

"The Foundation Fund is your fund, and by supporting it you are supporting IAFP"

Hello! Well, spring is in sight, although we have had a relatively mild winter this year, at least in our part of the country. As spring approaches, many of us start thinking about gardening and working outside in the yard. While those things can be chores for some, it is in many cases a welcome relief to those who have been indoors most of the winter.

This month, I would like to talk a little bit about IAFP's Foundation Fund. Many of you are aware of this fund, through Harry Haverland's gentle reminders. The silent auction has become one of the favorite non-technical events at the Annual Meeting, and the good things that are supported by the Foundation are almost too numerous to mention. The Ivan Parkin Lecture is supported by the Foundation Fund, as well as the Audiovisual Library and several other activities. Did you ever wonder what the organization would be like without those activities? Well, we would still have an opening event at the Annual Meeting, but certainly nothing like what we have now. And while it is true that not every member uses the Audiovisual Library, those that do tend to be "repeat customers”.

In a very narrow sense, IAFP could get by without the Foundation Fund. We would still be in business, and we would still publish our journals. But think of what we would miss. It would be like the difference between a black and white and a color photograph. We would have the form and the substance, but none of the richness of the hue and color. The Foundation Fund adds a dimension to the Association that would be greatly missed if it weren't there.

By now, you are waiting for the sales pitch to come about donating to the Foundation Fund. And yes, it is coming. I am asking for your continued support of the Foundation Fund. Over the next few months, we will be announcing several new initiatives to strengthen the Fund. But I want you to know that the Foundation Fund is your fund, and by supporting it you are supporting IAFP. We would like to grow the Foundation to a point that it could support scholarships for students, and perhaps even scholarships for continuing education of our regular members. These scholarships will be the basis for helping to educate our next generation of food safety professionals, and also help our existing members continue to grow in their professional development. The Fund could also provide additional support for speakers, not only for the Annual Meeting, but for Affiliate meetings as well. The Foundation Fund really will provide the support that this organization needs to continue to grow and provide services for its current and future members.

I would like to challenge you to think about something that you could donate to the Silent Auction at IAFP 2002, either as an individual or as a group. Think of something that would represent your company or the state (or area) that you live in. These items don’t have to be major donations; some of you will remember a few years ago when some of the most competitive bidding at the Silent Auction was for some Bruce Springsteen CDs. Remember, supporting the Foundation is an investment in the future of IAFP and in the future of food safety professionals everywhere.

I would like to leave you with a few final thoughts. The Foundation plays a major role in enhancing IAFP. We all should be willing to support it in some way, simply because it gives back to all of us far more than we as individuals give to it. Much like the brown spot in my yard that will be this spring's garden, with a little care and attention from all of us the Foundation Fund will provide for IAFP Members of the future.

Same time, next month.
THE BLACK PEARL AWARD
RECOGNITION FOR CORPORATE EXCELLENCE IN FOOD SAFETY AND QUALITY

NOMINATE TODAY!

The Black Pearl Award is presented annually at the International Association for Food Protection Annual Meeting.

The Black Pearl Award, sponsored by Wilbur Feagan and F&H Food Equipment Company, was first presented in 1994. The Black Pearl Award was established to recognize a company for outstanding commitment to and achievement in corporate excellence in food protection. For more information and to receive nomination criteria, contact the International Association for Food Protection office at 800.369.6337 or 515.276.3344; Fax: 515.276.8655; E-mail: info@foodprotection.org.

Visit our Web site at www.foodprotection.org
"We are excited to announce the Board’s approval to place the Journal of Food Protection online."

This month, I want to review the January Executive Board meeting and the Program Committee meeting with you. A few very important decisions were made at both meetings that may affect you as an I AFP Member. Please read on.

The highlights of the Executive Board meeting are shown on page 196 of this issue of DFES. In this column, I will concentrate on only a few of the points covered there. At the Board meeting, it was announced that Jim Dickson, I AFP President would serve a three-year term on the International HACCP Alliance Board of Directors. The Board discussed and agreed in principal to the formation of a new entity, 3-A Sanitary Standards, Inc. This entity will come together to manage and operate the entire 3-A Sanitary Standards process including development of, maintenance of and publishing of uniform standards and practices for the sanitary design, fabrication, installation and operation of food and dairy processing equipment and machinery. In addition to I AFP, there will be four founding member organizations including the 3-A Sanitary Standards Symbol Administrative Council, the American Dairy Products Institute (ADPI), the International Association of Food Industry Suppliers (IAFIS), and the International Dairy Foods Association (IDFA).

At the Program Committee meeting, the Committee approved 23 symposia, two lectures, six technical sessions and five poster sessions for the largest, most complete Annual Meeting program in the history of the Association! This year we experienced a 33% increase in technical abstracts submitted in comparison to last year. This is unprecedented growth, which demonstrates the extreme interest in our Annual Meeting and our Members’ work. The Preliminary Program is outlined on page 215. "Make your plans now to be in San Diego for I AFP 2002 — you surely won’t want to miss this year’s meeting!"

On Friday and Saturday preceding I AFP 2002, we will offer four workshops. The workshop titles are shown on page 224. Additional information is available at the I AFP Web site and will also be available in April’s issue of DFES.

I want to wrap up this month with announcing our Opening Session, Ivan Parkin Lecturer for I AFP 2002. Dr. Mitchell L. Cohen from the Centers for Disease Control and Prevention will deliver his presentation “Food Safety in the Time of Anthrax.” We look forward to hearing Dr. Cohen’s presentation and we hope that you will be in attendance at I AFP 2002, the leading food safety conference!
Monday Night Social
at the San Diego Zoo

Monday, July 1, 2002
6:00 p.m. – 10:00 p.m.

Join us for the Monday Night Social and see first hand some of the world’s rarest wildlife. Dinner will be provided in a reserved area for IAFP 2002 attendees. The Zoo will remain open to you and the public until 10:00 p.m. Explore the Zoo on a three-mile guided double-deck bus tour or go on your own adventure.

Get your ticket today!

See the registration form on page 219 of this issue.
Milk Production and Mastitis on Midwestern Organic Dairy Farms

K. Sato,¹ P. Bartlett,¹ P. Ruegg,² J. Kaneene,¹ B. Robinson-Dunn,³ F. P. Downes,³ and R. Erskine¹
¹Population Medicine Center, Michigan State University, E. Lansing, MI
²Department of Dairy Science, University of Wisconsin, Madison, WI
³Michigan Department of Community Health, Lansing, MI

SUMMARY

Organic dairy farms in and around Wisconsin (n=101) were contacted in July 1999 with a one-page questionnaire. A total of 69 responses were sufficiently complete for analysis. Herd size averaged 61.3 cows. Mean milk production was estimated as 17.2 kg per cow per day, which is less than the Wisconsin state average of 20.73 kg per cow per day. The average bulk tank somatic cell count was 329,000 cells per ml, which was almost identical to the Wisconsin average of 335,000 cells per ml. The overall rate of mastitis was 42 cases per 100 cow years-at-risk, which is within the range of rates reported in the literature. The cull rate based on July 1999 figures was 25% per year, which is low-normal for the Midwestern dairy industry. Only 16% of responding organic farms usually used homeopathic remedies, and 50% of farms never used homeopathic remedies. This preliminary survey suggested that the responding organic herds had herd size, mastitis rate and SCC similar to those of conventional herds in the same geographic area. In contrast, their milk production and culling rates were lower for the organic herds than for most conventional herds.

INTRODUCTION

Organic dairy production is drawing increasing attention because of public concerns about food safety, animal welfare and the environmental impacts of intensive livestock systems (22). Though the United States organic food market is approximately $6 billion, which is less than 1% of total food consumption in the USA, the organic market has been growing at 20-30 percent per year (13). In contrast, the organic milk market in Denmark is approximately 14% of the total milk consumption (16). More than 25% of total sales of dairy products in Switzerland is labeled as organic (11). In the United Kingdom, a 30 to 40% per annum increase of organic products has been observed (21). Organic agriculture is being recognized by governmental bodies as a tool to improve rural income diversity and stability (2).
The definition of “organic” has varied from country to country and among United States certifying organizations, causing consumer confusion. At present, farms are certified as organic dairies by independent certifying organizations based on their own standards. The USDA has attempted to establish federal standards since 1990, and a revised National Organic Standard was recently published in the Federal Register (3). Organic dairies must use organic feedstuffs, which are grown without any chemically synthesized fertilizer, herbicides or insecticides. The use of antibiotics for therapy or prophylaxis and hormones for growth promotion or production enhancement are prohibited. Since many conventional veterinary prophylactic and therapeutic medicines are not permitted, organic dairy farmers have adopted a variety of management practices to prevent clinical disease.

It has been reported that organic dairies had higher culling rates, primarily due to the development of udder infections and reproductive problems (1). However, Wellers et al. (21) reported that the rate of clinical mastitis in 10 organic dairies in the United Kingdom was not significantly different from the rate in conventional dairies. Busato et al. (11) reported the prevalence of subclinical mastitis in organic dairies in Switzerland to be lower than the national average.

The purpose of this survey was to determine if herd size, milk production, mastitis incidence, somatic cell count (SCC), and culling rate of organic dairy farms differ from values reported for conventional dairy farms in the same region.

MATERIALS AND METHODS

In August 1999, a one-page questionnaire regarding milk production, animal movement and mastitis was mailed to 101 dairies (80 in Wisconsin, 13 in Minnesota, seven in Iowa and one in Illinois). Non-responders received a second questionnaire six weeks later. Wisconsin state averages were used as comparison data. Statistical analysis was performed using Excel. A Z test was used to test the hypothesis that the organic farms did not differ from the Wisconsin state average for milk production and herd size.

RESULTS

A total of 73 responses were received, four of which were excluded because of missing data. There were 3,581 cows contributing bulk tank milk on responding farms in July 1999. Based on an assumed 13-month calving interval and two-month dry period (5), the total number of milking cows (cows that have had at least one calf) was estimated at 4,232, or 61.3 head per farm. Only three farms had more than 100 milking cows, and two had less than 20 (Fig. 1). In 1999, the average number of milking cows per farm was 62.3 and 82.1 for dairy herds in Wisconsin and in the United States, respectively (7). Therefore, the organic farms we studied had about the same herd.
size as the average dairy farm in Wisconsin ($P = 0.87$); however, they were much smaller than the United States average ($P = 0.0011$).

The amount of bulk tank milk produced per day per cow in the 69 organic dairy farms was 17.16 kg (75.6 metric ton / 4,232 cows), which was lower than the Wisconsin state average of 20.73 kg ($P = 0.001$) (8). There was considerable variation in reported milk yield; herd average milk production per cow ranged from 8.5 Kg to 25.6 Kg (Fig. 2). Herd bulk tank SCC averaged 329,000 cells/ml of milk. The lowest SCC was 104,000 cells/ml and the highest SCC was 935,000 cells/ml. Two farms reported SCC >900,000 cells/ml during single month, and five farms had approximately 500,000 cells/ml (Fig. 3). The mean bulk tank SCC in Wisconsin for 1995 to 1998 was 335,000 cells/ml for grade A herd and 480,000 cells/ml for grade B herd (20); SCC values for responding organic herds approximated the mean reported values for all Wisconsin dairy herds.

The producers were asked to recall the number of mastitis cases in the “last month” (July 1999) and also the number of mastitis cases in the “last year” (June 1998 – July 1999). Clinical mastitis was defined in this questionnaire as “a period of disease when a cow has noticeable clots or strings in its milk”. When based on “last month”, the mastitis rate was estimated at 42.4 cases per 100 cow years at risk, but when based on “last year”, the mastitis rate was only 17.7 cases per 100 cow-years at risk.

When the organic producers found mastitic quarters, 72% usually treated the quarter by keeping it milked out. Sixty-two percent of responding farms usually massaged the mastitic quarter, but 22 producers (33%) occasionally massaged the quarter, and three farms (5%) never massaged the quarter. Sixty-three percent of producers usually or sometimes used vitamins, but 36% of producers never used vitamins for mastitis treatment. Whey colostrum products for mastitis treatment were usually used by 28% of producers; 29% sometimes used whey products, and 43% of producers never used these products. Sixty-four percent of producers had never used any udder infusions for mastitis treatment, but 36% of producers occasionally used various kinds of non-antibiotic udder infusions, such as aloe products. Only 16% usually used homeopathic remedies, 34% sometimes used homeopathic remedies, and half (50%) of the organic farms never used homeopathic remedies for mastitis.

Sixty-nine responding organic producers reported the number of cows sold for slaughter in the month of July 1999 and between June 1998 and July 1999. The total number of milking-age cows sold for slaughter were 88 in July 1999 and 795 in the previous year. The cull rate was therefore 25.0% (88/4232) and 18.8% (795/4232) for July 1999 and for the previous year, respectively.

Four organic producers reported selling a total of 13 milking-age cows to other organic dairy farms during 12 months in 1998. Eight organic producers sold a total of 32 cows to conventional dairy farms in 1998. Five organic dairy producers treated a total of nine organic cows with antibiotics and sold them to conventional farms.

Organic producers reported that 15 cows died in the month of July 1999, and 92 died in the previous year. Fifty-four producers reported no dead cattle in July 1999, and 19 reported no death in the previous year. The mortality rate was estimated at 4.3% (15*12/4232) based on “last month” and 2.2% (92/4232) based on the “previous year”.

DISCUSSION

The data for this study were from the membership of one particular organic dairy cooperative in Wisconsin and surrounding states. Therefore, the results of this analysis may not be applicable to other organic dairy organizations. The response to our questionnaire was moderately high (72%). However, non-respondents may have differed from respondents in their management and production parameters (10). Although defined on the survey form, the definition of clinical mastitis is subjective and open to interpretation, and reporting bias may therefore have occurred.

Our study found that organic dairy farms were about the same size as other farms in the region. Ogini et al. (17) studied six organic dairies in Ontario and found that...
organic dairy producers had tillable land base and herd size (48 cows per herd) comparable to those of conventional dairies. The study in Switzerland indicated the organic herd size was equal to the national average (11). Herd size may be determined by regional conditions rather than the type of dairy husbandry. Though the organic dairies in our study were much smaller than the United States average, this does not imply that larger organic dairy operations are impractical; large organic dairy operations can be found in other parts of the United States (4).

The mean milk production reported by the organic dairy farms was lower than the Wisconsin state average. Lower milk production per cow when compared to the conventional dairies in the same region is supported by results of other studies (11, 15, 19). Lower milk yield per cow is likely attributable to more pasture and less grain being used for organic dairy production (15). Grazing farms usually produce less milk per cow than do nongrazing farms (14).

The rate of clinical mastitis based on data from July 1999 was slightly higher than rates reported from other regions (10, 21); however, the results based on data from the previous year were lower than what has been reported for other regions. The mastitis rates from other populations are difficult to compare because of the regional differences, poor standardization of case definition and high variance in diagnostic acumen among the studies (9). The mastitis rate, based on the July data, may be higher than the rate based on the “previous year” because the more recently occurring cases were more easily recalled (recall bias). Also, mastitis incidence is usually highest in July and August (12). In and around Wisconsin, July 1999 had record breaking heat. Therefore, the mastitis rate may be overestimated when the July rate is extrapolated to a whole year.

The bulk tank SCC average of the 69 organic dairies, based on July, was within the range of the Wisconsin state average. The SCC data for the organic herds may be underestimated because it was based on the month of a year (July) which has been reported to have the highest SCC (6, 12). Although Weller et al. (23) in a six-year longitudinal study, reported a higher SCC in one organic herd than in conventional herds, other studies have reported lower SCC in organic herds than in conventional herds (11). The SCC data reported here suggested that responding organic dairies may have lower average bulk tank SCC than do most conventional dairies.

Radke et al. (18) reported that culling rates are difficult to compare because of different definitions of culling. The culling rate in our study was defined as number of cows culled per year divided by the average milking herd size. The culling rate in the reports of the Dairy Herd Improvement Associations (DHIA) includes the average herd size plus the number of animals culled in the denominator (18), so the rates become lower than they would be using our definition. The statewide DHIA culling rate of Holstein cattle in Wisconsin was reported as 37.6% (AgSource CR1, personal communication). Therefore, the estimated culling rate of the organic dairies was considerably lower than the Wisconsin average. The estimated culling rate

TABLE 1. Estimated production parameters, based on a presumable calving interval of 13 months and two-month dry period with available Wisconsin state averages. The Wisconsin state average was extracted from USDA-NASS Agricultural Statistics 2000 (7) and SCC from Ruegg et al. (20).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Organic farms (n=69)</th>
<th>Wisconsin state average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cattle per herd</td>
<td>61.3</td>
<td>62.3</td>
</tr>
<tr>
<td>Milk production per cow (Kg per day)</td>
<td>17.8</td>
<td>20.3</td>
</tr>
<tr>
<td>SCC (cells/ml)</td>
<td>329,000 (based on last month)</td>
<td>328,000-335,000 (based on last year)</td>
</tr>
<tr>
<td>Mastitis (case/100 cow-year)</td>
<td>42.4</td>
<td>17.7</td>
</tr>
<tr>
<td>Culling rate (%)</td>
<td>25.0</td>
<td>18.8</td>
</tr>
<tr>
<td>Mortality rate (%)</td>
<td>4.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

APPENDIX 1.

Initial Survey – August 1999

How many cows are now contributing milk to your bulk tank? __________

How many years has your dairy farm been organic? __________ years

If a “case” of mastitis is defined as a period of disease when a cow has noticeable clots or strings in its milk, about how many cases of mastitis have you had in:

the past week? __________ the past month? __________ the past year? __________

About how many milking-age cows:

last month? __________ last year? __________

died __________

were sold for slaughter __________

were sold to an organic farm __________

received antibiotics and were sold to a non-organic farm __________

were NOT treated, but were sold to a non-organic dairy farm __________

Other __________

Please indicate how you usually treat your routine cases of clinical mastitis in which the cow’s milk has clots or strings, but the cow is not sick.

Circle one

Keep the quarter milked out. usually sometimes never

Massage the quarter. usually sometimes never

Use vitamins (B, C, etc.). usually sometimes never

Use Impro (or similar whey colostrum product). usually sometimes never

Use other udder infusions (describe type). usually sometimes never

Other usually sometimes never

in the organic dairies based on “last month” was almost identical to the national average of 25.0% (5), but the 18.8% estimate based on “last year” was lower than the national average. Recall bias in failing to remember animals culled 2 to 12 months ago may have caused some of the difference between our two rates estimates. Also important is the previously discussed issues of extrapolating data from a particularly hot month of July to an annual rate. Reksen et al. (19) reported a significant difference between organic and conventional dairy farms in annual replacement. Norwegian organic dairies had a 23% cull rate, whereas conventional dairies had a 35% cull rate, which resulted in more multiparous cows in organic dairies than in conventional dairy farms. Because a culling rate of 20 to 30% optimizes producer profit (18), the culling rate in the organic dairies (18.8 to 25.0%) may be economically optimized.
These preliminary results suggest that organic Midwestern dairy farms have lower or at most similar rates of bulk tank SCC and mastitis, compared with conventional dairy farms in the same region. Lower milk yield per cow may reduce stress on the udder, causing a lower mastitis rate in organic dairies. Culling on the udder, causing a lower mastitis rate, appears to be lower, or at most similar, in the organic herds, compared with state and national averages. Homeopathic remedies were not widely used by the organic farms, and there was little movement of sick cows from organic to conventional farms.

REFERENCES

CALL FOR PAPERS

Ozone III: Agriculture and Food Processing Applications of Ozone as an Antimicrobial Agent

October 28-30, 2002

A conference presented by G & L AgriTec, with primary sponsorship and support from California State University-Fresno and the California Agricultural Technology Institute (CATI), at the Radisson Hotel, Fresno, California.

Two submissions are required: May 1, 2002 deadline for prospective speakers to submit, via E-mail, presentation title, topic category and identity of the primary speaker; Aug. 1, 2002 deadline to submit, via E-mail, 300 to 400 word abstract of proposed presentation. Identify primary speaker in all correspondence and include phone, fax, E-mail address and complete mailing address.

Contact: Conference Coordinator G & L AgriTec by phone, mail or E-mail at 559.561.0112; 43857 S. Fork Dr., Three Rivers, CA 93271; or confcooordzone3@earthlink.net. Ozone III and CSUF Ozone Research information at www.catl.csufresno.edu/ozone.
Application of a Commercial Steam Vacuum Unit to Reduce Inoculated Salmonella on Chilled Fresh Beef Adipose Tissue

R. T. Bacon, J. N. Sofos, K. E. Belk,* and G. C. Smith
Center for Red Meat Safety, Department of Animal Sciences
Colorado State University
Ft. Collins, CO 80523-1171

SUMMARY

This study evaluated the efficacy of a commercial steam vacuum unit in reducing Salmonella populations on inoculated, chilled beef carcass adipose tissue. Beef carcass tissue samples (N=70) were separated into four treatment groups: (1) uninoculated, without post-chilling steam vacuum application; (2) uninoculated, with post-chilling steam vacuum application; (3) inoculated pre-chilling, without post-chilling steam vacuum application; and (4) inoculated pre-chilling, with post-chilling steam vacuum application. Following inoculation (5.2 log CFU/cm²), chilling (24 h; 2.6°C), and post-chilling steam vacuum application (1.72 bar steam; 130°C; ~0.24 bar vacuum), if required by the assigned treatment, samples were sponge swabbed and excised for microbiological analysis. Despite previous sponge swabbing of the same area, excision proved to be the most effective sampling method to recover and subsequently enumerate bacteria. Inoculated Salmonella were reduced (P < 0.05) to populations of 3.2 to 3.6 log colony-forming-units (CFU)/cm² by steam vacuum application, compared with populations of 3.9 to 4.1 log CFU/cm² for inoculated, untreated control samples. Results indicated that, under the conditions of this study and for the inoculum levels tested, steam vacuuming did not achieve reductions of sufficient magnitude (> 1.0 log CFU/cm²) to support its use in decontaminating chilled beef tissue. The lack of efficacy of steam vacuuming in this study may have resulted from too rapid movement of the unit across the surface of the adipose tissue. Although the manner of application closely simulated use of the device in commercial practice, duration of contact of steam with bacterial cells that were attached, imbedded or protected by biofilm may have been insufficient to kill them.

*A author for correspondence: Phone: 970.491.5826; Fax: 970.491.0278; E-mail: kbelk@ceres.agsci.colostate.edu
INTRODUCTION

The process known as "steam vacuuming" involves application of hot water, steam, or a combination of hot water and steam, followed by the vacuum uptake of condensate and associated contamination (21). In April 1996, the application of steam vacuuming was approved by the Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA) as an alternative to knife-trimming for removing feces, ingesta, and other contamination from carcasses, provided that the spot of visible contamination does not exceed 2.5 cm in diameter (10, 11, 21). The application of steam vacuuming has been found to be at least as effective as knife-trimming and more consistent in effectiveness than water washing for the purpose of spot carcass cleaning/decontamination (6, 18).

Two steam/hot water vacuum systems were evaluated (18) for their efficacy as decontamination treatments when applied to beef carcass surfaces at ≥ 82°C, 0.34 to 1.03 bar, with condensate subsequently removed at ~0.0093 bar. The application of steam/hot water vacuuming before carcass splitting reduced aerobic plate counts (APC) and total coliform counts (TCC) by 1.1 to 2.3 and 1.2 to 2.2 log CFU/cm², respectively, from initial populations of 4.6 to 5.1 and 2.9 to 3.2 log CFU/cm² (18).

In another study (6), steam vacuuming significantly reduced APC, TCC and *Escherichia coli* counts (ECC) on inoculated beef carcass short plates, following an incubation time of 15 min at room temperature, from initial populations of 6.2, 5.0 and 4.8 log CFU/cm², respectively, to 3.2, 1.0 and 0.8 log CFU/cm². In a subsequent study (5), steam vacuuming resulted in 2.0 to 3.0 log CFU/cm² reductions in APC and a 5.5 log CFU/cm² reduction in *E. coli* O157:H7 populations when beef short plates were inoculated with 5.5 and 7.6 log CFU/cm², respectively, and allowed to incubate at room temperature for 15 min.

A 1997 study (7) demonstrated that, following inoculation of beef short plates and a subsequent incubation 15-min period at room temperature, use of steam vacuuming initially resulted in reductions of 1.6 to 3.0 log CFU/cm² of *Listeria innocua*, APC, lactic acid bacteria, *E. coli* O157:H7 and *Clostridium sporogenes* populations. However, following the initial treatment, *L. innocua*, APC and lactic acid bacteria began to grow within 2 days of refrigerated storage and reached populations of at least 7.0 log CFU/cm² by 7 days of storage. Nevertheless, *E. coli* O157:H7 and *C. sporogenes* counts (log CFU/cm²) were reduced by 1.4 and 4.4, respectively, through 21 days of cold storage (7).

Studies evaluating the efficacy of steam/hot water vacuuming, solely or in combination with other decontamination treatments, have generally concluded that use of the technology effectively reduces bacterial populations on fresh beef carcass surfaces. However, little information is available regarding the efficacy of this technology when applied to beef carcass surfaces following chilling. Decontamination of chilled carcass surfaces could further improve end-product microbiological quality by inactivating bacteria that survive the chilling process or by reducing contamination that occurs during shipment of carcasses to other facilities for subsequent fabrication. The objective of this study was to simulate post-dehiding carcass surface contamination with *Salmonella* and to determine if steam vacuuming was an effective means of decontamination when applied following a period of chilling sufficient to allow adequate time for bacterial attachment, penetration, and/or biofilm formation.

MATERIALS AND METHODS

Beef carcass tissue. Samples (N = 70) of adipose tissue (300 to 400 cm²) were excised from the brisket and rib regions of beef carcasses at a commercial slaughtering facility. Following sample collection, which occurred after the slaughtering/dressing process but immediately before carcass chilling, the excised tissue was placed into coolers and transported (approximately 50 km, in about 45 min) to Colorado State University. Tissue samples were placed onto trays and separated into four treatment groups: (1) uninoculated, without post-chilling steam vacuum application (n = 10); (2) uninoculated, with post-chilling steam vacuum application (n = 10); (3) inoculated, without post-chilling steam vacuum application (n = 10); and (4) inoculated, with post-chilling steam vacuum application (n = 40). Treatment 3, an inoculated, untreated control, was subsequently compared to treatment 4 for determination of the efficacy of steam vacuuming in reducing inoculated *Salmonella* populations. The uninoculated controls, without (Treatment 1) and with post-chilling steam vacuum application (Treatment 2), were used to estimate background interference by determining commensal bacterial population levels and their ability to resist the antibacterial effects of streptomycin, as well as determining the efficacy of steam vacuuming in reducing such populations on beef adipose tissue.

Inoculum. A *Salmonella* spp. isolate, confirmed by biochemical testing (API 20E test strip, bioMérieux, Hazelwood, MO), was used to inoculate samples in Treatments 3 (inoculated, without post-chilling steam vacuum application) and 4 (inoculated, with post-chilling steam vacuum application). The isolate was recovered from a beef cattle hide that was sampled after animal stunning and exsanguination, but before hide opening and subsequent hide removal, at a commercial slaughtering facility. The *Salmonella* spp. isolate demonstrated a natural ability to resist the antimicrobial effects of streptomycin at a concentration of > 600
µg/ml and was subsequently maintained on tryptic soy agar (TSA) slants (Difco Laboratories, Detroit, MI) at 4°C for use during this study. The working stock culture was subcultured overnight (18 h), twice in tryptic soy broth containing streptomycin (600 µg/ml; Difco Laboratories) at 37°C, at which time stationary phase cells were diluted (approximately 7.2 x 10^5 CFU/ml) using sterile, 0.1% buffered peptone water (Difco Laboratories). Immediately before inoculation of the adipose tissue samples, a sterile, 100 cm^2 disposable template (USDA Template, International BioProducts, Redmond, WA) was placed onto the adipose tissue and the outer perimeter was traced with a scalpel to make possible sampling of the enclosed inoculated area following chilling. Adipose tissue samples were inoculated with 2 ml of inoculum (approximately 7.2 x 10^5 CFU/ml), resulting in the application of 1.44 x 10^7 cells, which were uniformly spread over the 100 cm^2 (1.44 x 10^5 CFU/cm^2; 5.2 log CFU/cm^2) surface with a sterile glass rod. This recognizable high level of Salmonella was used in order to accurately quantify treatment differences following chilling. Inoculated and uninoculated samples were chilled for 24 ± 2 h at 2.6°C to simulate approximate commercial slaughter plant initial chilling temperatures and times.

Steam Vacuum Application. Following chilling (24 ± 2 h; 2.6°C), a two-drop, commercial steam vacuuming system (BFD Corporation, Aurora, CO) was used to decontaminate Treatment 2 samples (uninoculated, with steam vacuum application) and Treatment 4 samples (inoculated, with steam vacuum application). Steam (1.72 bar; 150°C) was applied to the chilled adipose tissue in four vertical passes of the hand-held application nozzle, with a manner of application that closely simulated use of the device in commercial practice. The subsequent condensate was vacuumed away (-0.24 bar) and collected in a 33.1 liter receiving tank. Sterile gloves (International BioProducts) were used to handle each individual sample; following steam vacuum application, gloves were changed in order to reduce the opportunity for cross-contamination between samples.

Microbiological analysis. Sponge and excision sampling methods were used for enumeration of bacteria on inoculated and uninoculated tissue samples. Immediately before sampling, sterile sponges (BioPro Enviro-Sponge Bags, International BioProducts) were hydrated with 10 ml of sterile, 0.1% buffered peptone water (BioPro, International BioProducts). Sponge sampling of each tissue sample occurred within a 100 cm^2 disposable, sterile template (USDA Template, International BioProducts) and consisted of 10 passes vertically (up-and-down being considered as 1 pass) and 10 passes horizontally (side-to-side being considered as 1 pass) with a pressure equivalent to that which would be used to remove dried blood, as described in the FSIS-USDA Meat and Poultry Inspection regulations (12). Swabbing with sponges was performed aseptically using sterile latex gloves (International BioProducts), which, like the templates, were changed between samples. Following swabbing, an additional 15 ml of sterile, 0.1% buffered peptone water (Difco Laboratories) was added to the sponge bag, bringing the total volume of buffer to 25 ml.

Previously sponged tissue was then aseptically excised using a sterile scalpel blade and forceps. Excision was performed using a sterile 100 cm^2 template (USDA Template, International BioProducts) with, like the scalpel blade and forceps, were changed between samples. The excised tissue (10 cm x 10 cm, < 0.5 cm thick) was placed into a sample bag where it was weighed and diluted (10^-5) using sterile 0.1% buffered peptone water (Difco Laboratories). The previously sponged tissue was excised and evaluated to determine the microbiological population remaining on the 100 cm^2 surface, inasmuch as the time (24 ± 2 h) between inoculation and sampling, even at refrigerated temperatures, may have allowed for increased attachment and tissue penetration of the microorganisms, thereby reducing enumeration accuracy of the sponge sampling method.

Following tissue sampling, sponge and excision samples were individually agitated in a stomacher (Masticator, IUL Instruments, Barcelona, Spain) for one minute, and serial dilutions were made using sterile, 0.1% buffered peptone water (Difco Laboratories). For each dilution tested, an aliquot (0.1 ml) of diluent was dispensed and uniformly spread with a sterile glass rod onto plates of TSA, xylose lysine tergitol 4 (XLT4) agar, TSA containing streptomycin at a concentration of 600 µg/ml (TSA + streptomycin), and XLT4 containing streptomycin at a concentration of 600 µg/ml (XLT4 + streptomycin) (Difco Laboratories). The plates were inverted and incubated for 24 ± 2 h at 35°C, at which point they were removed from the incubator, and colonies were manually counted using a Quebec Darkfield Counter (AO Scientific Instruments, Buffalo, NY). Enumeration on TSA was used to determine the collective aerobic bacterial population, regardless of streptomycin susceptibility. Conversely, XLT4 agar, a selective medium, was used to enumerate all Salmonella regardless of streptomycin susceptibility. Enumeration on TSA + streptomycin was used to determine the extent of streptomycin resistance within the aerobic bacterial population, while XLT4 + streptomycin was used to enumerate streptomycin-resistant Salmonella only.

Statistical Analysis. After enumeration of colonies associated with the sponge sampling method and initial reporting of the data as CFU/ml of diluent plated, each count was multiplied by 25 (the total volume in ml of buffer used) and divided by 100 (the total surface area in cm^2 swabbed) to express...
counts as CFU/cm². Similarly, after enumeration of colonies associated with the excision sampling method and initial reporting of the data as CFU/ml of sample analyzed, each count was multiplied by the total volume of buffer used (excised sample weight diluted 10⁴) and divided by 100 (total surface area in cm² excised) to express counts as CFU/cm². In addition to individual analysis, bacterial populations (CFU/cm²) derived from sponge and excision sampling data for each sample were combined (sum of sampling counts) to assay the total number of cells present before any sampling occurred. The sponge, excision and combination counts (CFU/cm²) were transformed to log₁₀ CFU/cm² for statistical analyses. Minimum detection limits of counts for sponge sampling, excision sampling, and the combination of sponge and excision sampling were 0.4, approximately 1.2, and approximately 1.3 log CFU/cm², respectively, based on maximum sensitivity with no further sample dilution beyond the original buffer volume for sponge swabs (25 ml) or excised tissue (excised sample weight diluted 10⁴). Sponge and excision counts falling below the minimum detection limit were em-

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sponing¹</th>
<th>Excision²</th>
<th>Sponing + Excision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n'</td>
<td>x</td>
<td>s</td>
</tr>
<tr>
<td>Uninoculated</td>
<td>10</td>
<td>3.4</td>
<td>0.38</td>
</tr>
<tr>
<td>Uninoculated + Steam Vacuum</td>
<td>10</td>
<td>3.8</td>
<td>0.07</td>
</tr>
<tr>
<td>Inoculated</td>
<td>10</td>
<td>4.1</td>
<td>0.95</td>
</tr>
<tr>
<td>Inoculated + Steam Vacuum</td>
<td>40</td>
<td>4.1</td>
<td>0.64</td>
</tr>
</tbody>
</table>

¹Uninoculated sponge samples were TNTC above 3.8 log CFU/cm², while inoculated sponge samples were TNTC above 5.8 log CFU/cm²; uninoculated excision samples were TNTC above approximately 4.7 log CFU/cm², while inoculated excision samples were TNTC above approximately 5.7 log CFU/cm².

²Based on repeated measures ANOVA, excision resulted in greater (P < 0.05) bacterial enumeration than the sponge sampling method.

³Number of samples (n) analyzed for each treatment.

⁴Means in the same column with different superscript letters are different (P < 0.05).

RESULTS AND DISCUSSION

No differences were observed (P > 0.05) between untreated and treated inoculated tissues with regard to bacterial counts of samples obtained by sponging following enumeration on TSA, XLT, TSA + streptomycin, or XLT + streptomycin (Tables 1-4). However, enumeration of excised samples (untreated vs. treated inoculated tissues) reflected reductions (P < 0.05) in bacterial populations of 0.5, 0.5, 0.6 and 0.8 log CFU/cm² for TSA, XLT, TSA + streptomycin, and XLT + streptomycin, respectively, follow-

TABLE 1. Least squares means (x) and standard deviations (s) of the log values for plate counts (CFU/cm'), and the number of samples (n) taken in which bacterial populations were too numerous to count (TNTC) following recovery on tryptic soy agar (TSA)
TABLE 2. Least squares means (x) and standard deviations (s) of the log values for plate counts (CFU/cm²), and the number of samples (n') in which bacterial populations were not detected (ND°) following recovery on xylene lysine tergitol 4 (XLT₄) agar

<table>
<thead>
<tr>
<th>Method of Sampling</th>
<th>Spawning²</th>
<th>Excision²</th>
<th>Sparging + Excision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>x</td>
<td>s</td>
<td>n'</td>
</tr>
<tr>
<td>Uninoculated</td>
<td>0.9</td>
<td>0.61</td>
<td>2</td>
</tr>
<tr>
<td>Uninoculated +</td>
<td>1.4</td>
<td>0.61</td>
<td>0</td>
</tr>
<tr>
<td>Steam Vacuum</td>
<td>2.6''</td>
<td>0.63</td>
<td>0</td>
</tr>
<tr>
<td>Inoculated</td>
<td>2.4''</td>
<td>0.51</td>
<td>0</td>
</tr>
<tr>
<td>Inoculated +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²Counts were not detected (ND) at detection limits of 0.4 and approximately 1.2 log CFU/cm² for sponging and excision sampling methods, respectively.
²Based on repeated measures ANOVA, excision resulted in greater (P<0.05) bacterial enumeration than the sponge sampling method.
²Number of samples (n) analyzed for each treatment.
²²Means in the same column with different superscript letters are different (P<0.05).

TABLE 3. Least squares means (x) and standard deviations (s) of the log values for Salmonella counts (CFU/cm²), and the number of samples (n') in which Salmonella counts were not detected (ND°), following recovery on tryptic soy agar containing streptomycin at a concentration of 500 μg/ml (TSA + Streptomycin)

<table>
<thead>
<tr>
<th>Method of Sampling</th>
<th>Spawning³</th>
<th>Excision³</th>
<th>Sparging + Excision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>x</td>
<td>s</td>
<td>n'</td>
</tr>
<tr>
<td>Uninoculated</td>
<td>0.5</td>
<td>0.19</td>
<td>2</td>
</tr>
<tr>
<td>Uninoculated +</td>
<td>0.6</td>
<td>0.30</td>
<td>3</td>
</tr>
<tr>
<td>Steam Vacuum</td>
<td>3.0''</td>
<td>0.57</td>
<td>0</td>
</tr>
<tr>
<td>Inoculated</td>
<td>2.7''</td>
<td>0.33</td>
<td>0</td>
</tr>
<tr>
<td>Inoculated +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³Counts were not detected (ND) at detection limits of 0.4 and approximately 1.2 log CFU/cm² for sponging and excision sampling methods, respectively.
³Based on repeated measures ANOVA, excision resulted in greater (P<0.05) bacterial enumeration than the sponge sampling method.
³Number of samples (n) analyzed for each treatment.
³³Means in the same column with different superscript letters are different (P<0.05).

ing the application of steam vacuuming (Tables 1-4).

There was little evidence of background growth and consequently no interference on media containing streptomycin (TSA + streptomycin; XLT₄ + streptomycin), regardless of sampling method, as uninoculated samples produced detectable bacterial populations close to the detection limits (Tables 3 and 4). In contrast, recovery on TSA and XLT₄ resulted in average counts of 4.7 and 3.3 log CFU/cm², respectively, for the uninoculated without post-chilling steam vacuum application treatment, and corresponding counts of 4.7 and 3.3 log CFU/cm², respectively, for the uninoculated with post-chilling steam vacuum treatment (Tables 1 and 2).

Sponge sampling results of the uninoculated treatments, following
TABLE 4. Least squares means (\bar{x}) and standard deviations (s) of the log values for Salmonella counts (CFU/cm2), and the number of samples (n) in which Salmonella counts were not detected (ND*), following recovery on xylose lysine deoxycholate 4 agar containing streptomycin at a concentration of 600 μg ml$^{-1}$ (XLT + Streptomycin)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Method of Sampling</th>
<th>n</th>
<th>\bar{x}</th>
<th>s</th>
<th>n</th>
<th>\bar{x}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninoculated</td>
<td>Sponging*</td>
<td>10</td>
<td>0.4</td>
<td>0.00</td>
<td>10</td>
<td>1.2</td>
<td>0.06</td>
</tr>
<tr>
<td>Uninoculated + Steam Vacuum</td>
<td>Sponging*</td>
<td>10</td>
<td>0.4</td>
<td>0.00</td>
<td>10</td>
<td>1.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Inoculated</td>
<td>Excision*</td>
<td>10</td>
<td>2.6*</td>
<td>0.66</td>
<td>0</td>
<td>3.9*</td>
<td>0.33</td>
</tr>
<tr>
<td>Inoculated + Steam Vacuum</td>
<td>Excision*</td>
<td>40</td>
<td>2.3*</td>
<td>0.40</td>
<td>0</td>
<td>3.1*</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Sponging + Excision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Counts were not detected (ND) at detection limits of 0.4 and 1.2 log CFU/cm2 for sponging and excision sampling methods, respectively.

Based on repeated measures ANOVA, excision resulted in greater ($P<0.05$) bacterial enumeration than the sponge sampling method.

Number of samples (n) analyzed for each treatment.

*Means in the same column with different superscript letters are different ($P<0.05$).

recovery on TSA and XLT, suggest an increase in bacterial populations following steam vacuum application. While this trend was not seen in larger bacterial populations associated with the inoculated treatments, steam vacuum application may have facilitated bacterial cell deattachment and subsequent removal during sponge swabbing. Nonetheless, no differences were observed between uninoculated treatment means following tissue excision or when bacterial populations obtained by use of both sampling methods were combined (Tables 1-4).

Overall, sponge sampling was inferior to the excision sampling method in recovering and accurately enumerating bacterial populations following chilling. The excision sampling method detected differences in inoculated tissue treatments that were not reflected when the sponge sampling method was used. Furthermore, after bacterial population counts obtained using both sponge swab and excision methods were combined for each sample individually, the enumerated total population (mean log value of the summed data) closely mirrored mean log values for plate counts obtained using the excision sampling method alone (Tables 1-4).

Results from this study confirmed previous data indicating that excision sampling is superior to sponge sampling for the purpose of enumerating total bacterial populations, especially following prolonged exposure and/or tissue chilling (1, 9, 14, 20, 22). It is possible that the 24-h period following inoculation may have allowed for firmer bacterial attachment, penetration, or biofilm formation (3, 4, 8), thereby decreasing cell recovery during sampling and subsequently reducing the accuracy of the sponge sampling method. The combination counts, including enumerations from both sampling methods, revealed that application of steam vacuuming to post-chilled beef adipose tissue reduced ($P<0.05$) Salmonella populations by 0.5 and 0.7 log CFU/cm2, leaving 3.6 and 3.2 log CFU/cm2 of Salmonella on the treated beef-tissue surfaces (Tables 3 and 4). Obviously, residual levels of Salmonella of this magnitude on beef products after treatment would not be acceptable.

Although previous research has demonstrated total coliform count reductions of 1.67 log CFU/cm2 (18) and 4.0 log CFU/cm2 (6) on inoculated beef tissue, both of those studies performed steam vacuuming on hot (non-chilled) beef tissue, leaving bacteria with less time (approximately 15 min) to firmly attach to, and/or penetrate into, the tissue. Results of the present study suggest that, as steam vacuuming was applied in the present study, the procedure may reduce Salmonella populations, but used alone, it will not remove or destroy enough Salmonella (if the population approximates 5.0 log CFU/cm2) to provide an end-product of suitable microbiological quality. We believe that steam vacuuming, performed in rapid up-and-down or side-to-side movements, is analogous to passing a human hand very quickly through an open flame—no damage is done to either bacteria or human flesh if contact time is insufficient to cause protein coagulation/denaturation.

Steam vacuuming was designed as a spot decontamination treatment, and results following whole carcass application may prove to be inconsistent. As has proven to be the case in research designed to decontaminate beef carcasses in...
association with the harvesting process (slaughtering/dressing), greater reductions in microbial populations are achieved when decontamination treatments are combined than when they are used separately and individually (6, 7, 16). Especially if the microorganisms have been given time and opportunity to attach, to penetrate, or to form biofilms on beef-tissue surfaces, application of steam vacuuming alone (especially if vacuuming is performed without allowing adequate contact time between heat and pathogen) will not inactivate Salmonella. Sequential applications of several decontamination processes (e.g., organic acid rinsing, water washing, steam vacuuming, etc.) should prove much more successful in reducing Salmonella on the surfaces of beef tissue, especially if application of steam and/or hot water, in spot decontamination, is done carefully and slowly to achieve maximum contact between heat and bacterial cells.

REFERENCES
INTRODUCTION

Gastroenteritis was linked to ingestion of watermelon contaminated by a novel method. The method consisted of injection, into the whole fruit, of a contaminated solution that contained sweetener and coloring agent(s) and that was intended to improve flavor and color of the fruit.

Foodborne diseases result from ingestion of foods contaminated by either infectious or toxic agents. These diseases, which are sometimes (inaccurately) referred to as food poisoning, represent one of the most widespread and overwhelming public health problems of the modern world. Infants, children, the elderly and the immunocompromised are most commonly affected (1). Involvement of a 6-member family is described here.

The head of the family (age 61), his wife (age 59), their son (age 38), daughter-in-law (age 35), and two male grandchildren (ages 14 and 11) had consumed freshly cut watermelon at 6:00 p.m., about 4 hours before being admitted to the hospital with gastroenteritis. During the previous 7 days, they had consumed home-cooked food and plain water from the domestic supply. The head of the family, who had consumed the lion’s share of the fruit and who was the most severely affected, was in a state of shock and was experiencing acute renal failure. Three days were required for his urinary output and renal parameters to improve. He was treated with intravenous fluids, ciprofloxacin, metronidazole and other conservative measures for 5 days. Other members of the family were discharged on the second day of an uneventful stay in the hospital. The daughter-in-law, who had consumed the least fruit, was affected least, experiencing only two or three loose stools during her hospital stay. Haemogramme, urinalysis and chest X-rays of all family members produced normal results. Blood biochemistry of the head of the family suggested uremia and acidosis. Stool cultures of all the members of the family yielded evidence of Entero invasive E. coli, which were non-motile and non-lactose fermenting.

A detailed inquiry regarding the watermelon led to disclosure of the fact that it had been treated with a method that makes it more colorful and sweeter without cutting it open. A long needle inserted into the core, can be used to inject sweetener and coloring agents 3 to 4 hours prior to sale of the fruit. The nature of the injected agents was not revealed by the fruit seller, for obvious reasons. Later, a culture prepared with the solution to be injected (which had been prepared and stored in an earthenware bowl) also grew multiple colonies of Entero invasive E. coli, which were biochemically lactose positive, non motile and non-lactose fermenting. A pathogen-contaminated water supply, diarrhea diseases are commonly attributed to but it is now recognized that food plays an equally important role in approximately 70% of such illnesses. Besides the usual items, food vehicles such as raw fish, shellfish, bivalve molluscs (oysters, cockles, mussels), raw shrimp, pork, mixed hors d’oeuvre, crabs, prawns, rock lobster, cooked squid, turkey, street foods, eggs, egg salad, cold asparagus, aquatic plants, bottle feeds (for infants), ice creams, chocolates, candies etc. have been shown to be contaminated. The chief contaminants are bacteria (E. coli, Shigella, Salmonella, Vibrio cholera 01, Campyllobacter jejuni, Brucella, Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum), helminthes (Trichinella spiralis, Taenia saginata, Taenia solium, Clonorchis, Fasciola opisthorchis, Paragonimus spp.), protozoa (Entamoeba hystolitica, Giardia lamblia, Cryptosporidium spp.), and enteric viruses (Rotavirus Hepatitis A&E virus, etc.) (1).

Infections caused by pathogenic strains of E. coli are probably the most common cause of diarrhea in developing countries. Contamination of food with microorganisms is due to:

1. use of contaminated equipment
2. infected food handlers
3. use of raw and contaminated ingredients
4. cross contamination
5. addition of toxic chemicals, or use of foods containing natural toxicants such as poisonous mushrooms.

Gastroenteritis caused by Salmonella javiana (1) contamination of watermelon in 1991 has been described in 26 cases in the United States, but contamination of fruits by a novel method such as that described in this case report may prove to be an important public health hazard.

REFERENCES

2002–2003
Secretary Election

The following page contains biographical information for the 2002-2003 Secretary candidates. Review the information carefully as you make your voting decision. Ballots were mailed to all International Association for Food Protection Members during the first week of February. Completed ballots are due back to the Association office by March 22, 2002. Sealed ballot envelopes are forwarded to the Tellers Committee for opening and counting. Watch for the election results in the May issue of Dairy, Food and Environmental Sanitation.

If you have questions about the election process, contact David W. Tharp, CAE, Executive Director at 800.369.6337, or 513.276.3344, or E-mail dtharp@foodprotection.org.

The Candidates

J. Stan Bailey

Jeffrey M. Farber
Biographical Information

J. Stan Bailey

J. Stan Bailey is a Lead Scientist and Research Microbiologist for the US Department of Agriculture, Agricultural Research Service where he is responsible for research directed toward monitoring, controlling, reducing and ultimately eliminating contamination of live poultry by human enteric pathogens. During his 28 year career, Dr. Bailey has authored or co-authored over 450 scientific publications in the area of food microbiology, concentrating on controlling Salmonella in poultry production and processing, Salmonella methodology, Listeria methodology, and rapid methods of identification.

Dr. Bailey’s professional stature is recognized both nationally and internationally as is seen in: (1) election to the position of Chairman of the food microbiology division of the American Society for Microbiology in 1992; (2) serving as Secretary of the Microbiological Methods Committee of the AOAC (Association of Official Analytical Chemists) from 1990-95; (3) appointment to the position of Professor in the Poultry Science Department at the University of Georgia, 1994; (4) national and international invitations to speak, teach, participate in committees, and symposia including appointment as Expert Consultant on Animal Feeding and Food Safety by the Food and Agriculture Organization of the United Nations; (5) serving as faculty for 18 years at the “Rapid Methods and Automation in Microbiology Workshop” taught at Kansas State University educating over 900 scientists from 50 countries; (6) being named Fellow of the American Academy of Microbiology, 1994; (7) appointment as technical advisor on poultry production to the National Advisory Committee on Microbiological Criteria in Foods, 1995; (8) appointment as scientific advisor to the International Life Sciences Institute, 1997 to present; (9) winning the ARS Technology Transfer Award and Federal Laboratory Consortium Award for technology transfer; (10) being awarded 7 US Patents; and (11) receiving 14 USDA Certificates of Merit.

Dr. Bailey has been an active Member of IAFP since 1987. His involvement includes organizing and convening numerous symposia, serving as a member of the Program Committee from 1997 to 2001 and serving as Chairperson of this committee in 2001. Dr. Bailey also served as Chairperson of the Poultry Safety and Quality Professional Development Group from 1993-95 and has served on the Editorial Board of the Journal of Food Protection since 1997.

Dr. Bailey has a B.S. in Environmental Health Sciences, a M.S. in Food Science and a Ph.D. in Poultry Science all from the University of Georgia. Other professional affiliations for Dr. Bailey include serving on the Editorial Boards of Poultry Science, Journal of Rapid Methods and Automation in Microbiology and Journal of Applied Poultry Research and membership in; Southern Poultry Science Society, Worlds Poultry Science, American Society for Microbiology, American Academy of Microbiology, Poultry Science Society, Georgia Association of Food and Environmental Sanitarians, and AOAC.

Jeffrey M. Farber

Jeffrey M. Farber is currently Director of the Bureau of Microbial Hazards, for the Food Directorate of Health Canada, where he is responsible for the management of research and policy development in the area of microbiological food safety. Prior to assuming the Director’s position, Dr. Farber was a Research Scientist in the Bureau of Microbial Hazards for 17 years after completing an NSERC post-doctoral fellowship at Health Canada in 1983. He became Acting Chief of the Microbiology Research Division in 1998, and Associate Director in 2000.

During his 19-year career, Dr. Farber has published over 100 papers in refereed journals, 6 book chapters, edited 2 books, has been, and continues to be an invited lecturer on food microbiology and food safety, internationally. His main areas of expertise are Listeria monocytogenes, modified atmosphere packaging, fresh-cut produce, Enterobacter sakazakii, and molecular typing of foodborne pathogens. He currently also holds International Life Sciences Institute (ILSI) and Biotechnology grants for work on the virulence, molecular typing and biochip detection of L. monocytogenes in foods. In 1999, Dr. Farber was awarded the Seafood Technology Division, Divisional Lecturer award and also received 2 Food Directorate Team Awards in 2001.

Since joining the International Association for Food Protection (IAFP) in 1986, Dr. Farber served on the Program Committee for close to six years, the last year of which he was the Chairperson. Dr. Farber has also given many invited talks, as well as organized numerous symposia at the IAFP Annual Meetings, and has been involved with a number of the Professional Development Groups (PDGs). He has also been a member of the Nominating Committee, Chairperson of the Developing Scientist Award Committee, and actually started the very successful Fruit and Vegetable Safety and Quality PDG, of which he is still a member.

Dr. Farber is currently a member and Treasurer of the International Commission on Microbiological Specifications for Foods (ICMSF). In terms of editorial work, Dr. Farber is currently the Editor of the International Journal of Food Microbiology and on the Editorial Board of the Journal of Food Protection and the Italian Journal of Food Science, as well as being on the Journal of Food Protection Management Committee. He has served on Expert Committees for the WHO, FAO and IFT, as well as Scientific and Technical Panels for recent IFT Task Force efforts.

Locally, Dr. Farber has been an Adjunct Professor of Microbiology at the University of Ottawa since 1992, and currently supervises two graduate students.

Dr. Farber obtained his B.Sc. and M.Sc.(A) degrees in Applied Microbiology and Immunology from McGill University in Montreal and his Ph.D. from Food Microbiology, McGill University in Ste. Anne de Bellevue, Quebec.
CALL FOR SYMPOSIA
IAFP 2003
AUGUST 10–13, 2003
NEW ORLEANS, LOUISIANA

The Program Committee invites International Association for Food Protection Members and other interested individuals to submit a symposium proposal for presentation during the 2003 Annual Meeting, August 10-13, 2003 in New Orleans, Louisiana.

WHAT IS A SYMPOSIUM?
A symposium is an organized, half-day session emphasizing a central theme relating to food safety and usually consists of six 30-minute presentations by each presenter. It may be a discussion emphasizing a scientific aspect of a common food safety and quality topic, issues of general interest relating to food safety and quality, a report of recent developments, an update of state-of-the-art materials, or a discussion of results of basic research in a given area. The material covered should include current work and the newest findings. Symposia will be evaluated by the Program Committee for relevance to current science and to Association Members.

SUBMISSION GUIDELINES
To submit a symposium, complete the Symposium Proposal form in its entirety. When submitting a proposal, the presenters do not need to be confirmed, only identified. Confirmation of presenters takes place after acceptance of your symposium.

SYMPOSIUM FORMAT
Symposium sessions are 3 and 1/2 hours in length including a 30-minute break. A typical format is six 30-minute presentations. However, variations are permitted as long as the changes fit within the allotted time frame. If varying from the standard format, be sure to indicate this on the Symposium Proposal form.

SYMPOSIUM PROPOSAL DEADLINE
Proposals may be submitted by mail to the International Association for Food Protection office for receipt no later than June 14, 2002 or by presenting the proposal to the Program Committee at its meeting on Sunday, June 30, 2002 in San Diego, California. Proposals may be prepared by individuals, committees, or professional development groups.

The Program Committee will review submitted symposia and organizers will be notified in August 2002 as to the disposition of their proposal.

PRESENTERS WHO ARE NOT MEMBERS
International Association for Food Protection does not reimburse invited presenters for travel, hotel, or other expenses incurred during the Annual Meeting. However, invited presenters who are not Association members will receive a complimentary registration. Presenters who are Association Members are expected to pay normal registration fees.

ASSOCIATION FOUNDATION SPONSORSHIP
The International Association for Food Protection Foundation has limited funds for travel sponsorship of presenters. After formal acceptance of the symposium, symposia organizers may make requests in writing to the Program Committee Chairperson. Requests are reviewed on an individual and first-come-first-served basis. The maximum funding grant will be $500 per symposium. Organizers are welcome to seek funding from other sources and the Association will provide recognition for these groups in our program materials. Organizers are asked to inform the Association if they obtain outside funding.

HAVE AN IDEA BUT YOU ARE UNABLE TO ORGANIZE IT?
Many Association Members have excellent suggestions for symposia topics, but are unable to organize the session. Such ideas are extremely valuable and are welcome. If you have an idea for a symposium topic, please inform the Program Committee Chairperson as soon as possible. Symposia topics are among the most valuable contribution an Association Member can make to enhance the quality of our Annual Meeting.

WHO TO CONTACT:
Bev Corron
International Association for Food Protection
6200 Aurora Ave., Suite 200W
Des Moines, IA 50322-2864, USA
Phone: 800.369.6337; 515.276.3344
Fax: 515.276.8655
E-mail: bcorron@foodprotection.org
SYMPOSIUM PROPOSAL
IAFP 2003
AUGUST 10–13, 2003
NEW ORLEANS, LOUISIANA

Title: ____________________________
Organizer's Name: ____________________________
Address: ____________________________
Phone: __________________ Fax: ______ E-mail: ____________________________

Topic – Suggested Presenter, Affiliation
(Example: 1. HACCP Implementation — John Smith, University of Georgia)
1. ____________________________
2. ____________________________
3. ____________________________
4. ____________________________
5. ____________________________
6. ____________________________

Suggested Convenors: ____________________________

Description of Audience: ____________________________

Signature of Organizer: ____________________________

Submit by mail by June 14, 2002 to:
International Association for Food Protection
Symposium Proposal
6200 Aurora Ave., Suite 200W
Des Moines, IA 50322-2864, USA

Submit in person on June 30, 2002 to:
Program Committee Meeting
IAFP 2002, the Association's 89th Annual Meeting
San Diego, California

or Contact: Bev Corron
International Association for Food Protection
6200 Aurora Ave., Suite 200W
Des Moines, IA 50322-2864, USA
Phone: 800.369.6337; 515.276.3344
Fax: 515.276.8655
E-mail: bcorron@foodprotection.org
Highlights of the Executive Board Meeting
January 20, 2002

Following is an unofficial summary of actions from the Executive Board Meeting held January 20, 2002 in San Diego, California:

Approved the following:
• Minutes of November 2, 2001 Teleconference Executive Board Meeting
• E-mail votes taken since the November 2, 2001 Executive Board Meeting
• Proposal to place Journal of Food Protection online
• Affiliate Charter for Southern California Association for Food Protection pending acceptance of the name by the new Affiliate
• Minimum payment of $2,500 to SCAFP for Local Arrangements support at IAFP 2002

Discussed the following:
• Discussed DFES manuscript status. Contact to be made with Student PDG inviting write-ups of short research projects for publication in DFES. The Board invites comments by April 15 on DFES name change to Applied Food Protection
• JFP continues to publish articles timely. Record number of submitted articles during 2001 = 499
• Membership Update: Membership continues steady. New Member efforts to expand and online renewal is being studied
• Advertising Update: Ad sales revenue continue to outpace last year’s results
• Financial Update: November financial statements reviewed and compared to budget
• Computer network administration outsourced
• Winter Affiliate Newsletter mailed in January and is available online
• IAFP Officers made presentations to two Affiliate organizations this winter. Three are scheduled for spring meetings
• Revisions to the IAFP slide show for Affiliate meetings
• Update on non-compliant Affiliates
• Update on Affiliate Award restructuring
• Possible new Affiliate organizations
• First meeting of new Water Safety and Quality PDG at IAFP 2002

• Encourage colleagues to nominate Members for Awards recognition
• Name the 2002 Oral Developing Scientists First Place Award in honor of Peggy Foegeding, North Carolina State University
• Name the 2002 Poster Developing Scientists First Place Award in honor of Don Splittstoesser, Cornell University
• Student PDG Newsletter sent via E-mail in December
• Planning for IAFP 2002 – tours and social events
• Program Committee report – 23 symposia, 2 lectures, 6 technical sessions, 5 poster sessions
• Ivan Parkin Lecturer confirmed – Dr. Mitchell Cohen, Centers for Disease Control and Prevention
• Exhibit Hall 57% sold out, sponsorship commitments exceed last year
• IAFP 2002 security issues
• Extension of Annual Meeting vs. three days
• Retired Member activities room
• Four workshops presented with IAFP 2002
• Future Annual Meeting site selection
• IAFP on the Road – United 2/16-18, Food Safety Summit 3/13-15
• ILSI Food Security Workshop held December 12-13, 2001
• IAFP Foundation Fund Corporate Challenge letters mailed in January
• World Health Organization Non-Governmental Organization
• Proposed bioMerieux scientific symposium
• 3-A Sanitary Standards, Inc. – agree in principal and encourage completion
• Trademark issues on “Advancing Food Safety Worldwide” and “Applied Food Protection”
• IAFP to hold a 3-year board position on the International HACCP Alliance Board

Next Executive Board meeting: Des Moines, Iowa April 20-21, 2002
New Members

ARGENTINA
Fernando Valdez
Vinas Argentinas S. A.
Maipu, Mendoza

CANADA
Peggy Cheyne
Canadian Food Inspection Agency
Ottawa, Ontario

Thomas G. Hinsperger
The Minute Maid Co., Canada
Mississauga, Ontario

Ron Kuriyedath
SGS Canada Inc.
Vancouver, British Columbia

JAPAN
Yutaka Kikoku
Aohata Corporation
Takehara-shi, Hiroshima

Masaaki Sugiyama
Marudai Food Co. Ltd.
Takatsuki, Osaka

SPAIN
Elvira Matas Pablo
ACDHA, S.L., Barcelona

UNITED STATES
Alabama
Jonathan Searles
Blue Bell Creameries, Sylacauga

Jean O. Weese
Auburn University, Auburn

California
Dina Barras-Ellorin
REHS, San Diego

Andrew Kesler
Jack in the Box Inc., San Diego

Mark Updike
Ecolab Inc., Lake Forest

Colorado
Stan D. Bruntz
Wyoming Air National Guard
Colorado Springs

Florida
Lucia A. James Davis
Steritech Corp., Orlando

Suzanne L. Mandelstein
Satellite Metal Detection, Tampa

Francisco C. Rodrigues
Citrosuco North America Inc.
Lake Wales

Georgia
Michelle D. Danyluk
University of Georgia, Griffin

Kansas
Cassondra M. Gordon
Kansas State University, Manhattan

Louisiana
Lance Roberie
Wright Group, Crowley

Maine
Ann Baker
Naturally Potatoes, Mars Hill

Minnesota
Lance Olson
Oak Grove Dairy
Norwood Young America

Jill Tabatt
Sunny Fresh Foods, Monticello

Missouri
Gala Jaramillo
City of Jefferson, Jefferson City

Paul Terry
Stone County Health Dept.
Galena

New York
Christopher R. Loss
Cornell University, Ithaca

Kyle Sasahara
Cornell University, Ithaca

Oklahoma
Michele L. Westley
J-M Foods Inc., Miami

Pennsylvania
Linda Tofft
Moyer Packaging Co., Souderton

Texas
Rebecca A. Pfundheller
Analytical Food Laboratories, Inc.
Grand Prairie

Krista A. Steines
City of Carrollton, Carrollton

Virginia
Kenneth E. Bookmyer
Bowman Apple Products
Mount Jackson

Washington
Michele R. Maddox
Starbucks Coffee Co., Seattle

Wisconsin
A. J. Christianson
Lone Rock

Mitzi Schwertfeger
American Dairy Brands, Plymouth

Jae Weis
Foremost Farms USA, Baraboo
Affiliate Officers

ALABAMA ASSOCIATION FOR FOOD PROTECTION
Pres., Jon Searles ... Sylacauga
Pres. Elect, Brian Bowers ... Headland
Vice Pres., Pat Nelson .. Birmingham
Past Pres., Tollie Haley Meggs .. Tuscaloosa
Sec’y, Treas., Karen Crawford Tuscaloosa
Delegate, Tom McCaskey .. Auburn
Mail all correspondence to:
Karen Crawford
Tuscaloosa County Health Dept.
P.O. Box 70190
Tuscaloosa, AL 35407
205.554.4546
E-mail: pcrawfor@adph.state.al.us

ALBERTA ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Gary Gensler .. Edmonton
Pres. Elect, Michelle Sigwaldson Edmonton
Past Pres., Elaine Dribnenky .. Red Deer
Sec’y, Kelly Sawka ... Edmonton
Treas., Bonnie Jensen .. Edmonton
Delegate, Lynn M. McMullen ... Edmonton
Mail all correspondence to:
Lynn M. McMullen
University of Alberta
Dept. of Ag., Food and Nutritional Science
4-10 Ag. For. Center
Edmonton, Alberta T6G 2P5 Canada
780.429.6015
E-mail: lynn.mcmullen@ualberta.ca

BRITISH COLUMBIA FOOD PROTECTION ASSOCIATION
Pres., Clive Kingsbury .. Surrey
Vice Pres., Terry Peters .. Richmond
Sec’y, Ernst Schoeller ... West Vancouver
Treas., John Boyce ... Vancouver
Delegate, Clive Kingsbury ... Surrey
Mail all correspondence to:
Clive Kingsbury
J. M. Schneider
5523 - 176th St.
Surrey, BC V3S 4C2 Canada
604.576.1191 ext. 5740
E-mail: ckgingsbury@home.com

CALIFORNIA ASSOCIATION OF DAIRY AND MILK SANITARIANS
Pres., Giselle Puckett .. Fairfield
1st Vice Pres., Dawn Stead ... Woodland Hills
2nd Vice Pres., Frances Valles Ontario
Past Pres., Anne Quilter Goldstein Sacramento
Exec. Sec’y/Treas., John Bruhn Davis
Recording Sec’y, Michelle Clark Hayward
Delegate, John Bruhn .. Davis
Mail all correspondence to:
John C. Bruhn
Dairy Research and Information Center
University of California-Davis
Food Science and Technology
One Shields Ave.
Davis, CA 95616-8598
530.752.2192
E-mail: jcbruhn@ucdavis.edu

SOUTHERN CALIFORNIA ASSOCIATION FOR FOOD PROTECTION
Pres., Margaret Burton .. San Diego
Pres Elect., Jennylynd James ... Westlake Village
Vice Pres., Howard Malberg .. Anaheim
Sec’y, Robert Delmore .. Los Angeles
Delegate, Jennylynd James ... Westlake Village
Mail all correspondence to:
Margaret Burton
Jack in the Box
9320 Balboa Ave.
San Diego, CA 92123
858.571.2441
E-mail: margaret.burton@jackinthebox.com

CAPITAL AREA FOOD PROTECTION ASSOCIATION
Pres., Jill Snowden ... Washington, D.C.
Vice Pres., Jianghong Meng ... College Park, MD
Sec’y, Treas., Brett Podoski .. Washington, D.C.
Treas., Carl Custer ... Washington, D.C.
Delegate, Faye Feldstein ... Washington, D.C.
Mail all correspondence to:
Brett W. Podoski
FDA-CFSAN
200 C St., SW
Washington, D.C. 20204
202.401.2377
E-mail: brett.podoski@cfsan.fda.gov

CAROLINAS ASSOCIATION FOR FOOD PROTECTION
Pres., Beth Johnson ... Columbia, SC
Past Pres., Susan Grayson .. Cary, NC
Sec’y, Jeff Rhodehamel ... Duncan, SC
Vice Pres., Michael Rhodes ... Raleigh, NC
Treas., John Rushing .. Raleigh, NC
Delegate, Michael Rhodes ... Raleigh, NC
Mail all correspondence to:
Beth M. Johnson
S.C. DHEC Bur. of Labs
2809 Knightbridge Road
Columbia, SC 29223-2126
803.896.0872
E-mail: johnsom@columb68.dhec.state.sc.us
CONNECTICUT ASSOCIATION OF DAIRY AND FOOD SANITARIANS, INC.

Pres., Colleen Mears Windsor Locks
Vice Pres., David Herrington Middlefield
Sec'y., Donald Shields Hartford
Treas., Kevin Gallagher Hartford
Delegate, Satyakani Sen Bristol
Mail all correspondence to:
Kevin Gallagher
Dept. Consumer Protection (Food Div.)
State Office Bldg., Rm #167
165 Capitol Ave.
Hartford, CT 06106
860.713.6186

ASSOCIATED ILLINOIS MILK, FOOD AND ENVIRONMENTAL SANITARIANS

Pres., Steve DiVincenzo Springfield
Pres. Elect, Mark Kloster North Aurora
1st Vice Pres., Don Wilding Springfield
2nd Vice Pres., Pat Callahan Carlinville
Past Pres., Tom Grueitzmacher Rockford
Sec'y, Larry Terando Champaign
Treas., Nicolette Oates Chicago
Delegate, Steve DiVincenzo Springfield
Mail all correspondence to:
Larry Terando
Illinois Dept. of Public Health
2125 S. First St.
Champaign, IL 61820-7499
217.333.6914
E-mail: terando@idph.state.il.us

CONTRIBUTIONS TO THE ASSOCIATIONS

FLORIDA ASSOCIATION FOR FOOD PROTECTION

Pres., Zeb E. Blanton Altamonte Springs
Pres. Elect, Marjorie Jones Port St. Lucie
Vice Pres., Rusty Reece Tampa
Past Pres., Frank Yiannas Lake Buena Vista
Sec'y, Sharon Grossman Orange City
Treas., Bill Thornhill Winter Haven
Delegate, Peter Hibbard Oviedo
Mail all correspondence to:
Zeb E. Blanton
FL Dept. of Agri. & Consumer Service
3125 Conner Blvd., Room 288
Tallahassee, FL 32399-1650
850.488.3951
E-mail: blantonz@doacs.state.fl.us

INDIANA ENVIRONMENTAL HEALTH ASSOCIATION, INC.

Pres., Robert Lewis Shelbyville
Pres. Elect, Jason LeMaster Noblesville
Vice Pres., Scott Gilliam Indianapolis
Past Pres., Rhonda Madden Indianapolis
Treas., George Laraway Indianapolis
Sec'y, Margaret Voyles Indianapolis
Delegate, Helene Uhrlman Hammond
Mail all correspondence to:
Helene Uhrlman
Hammond Health Dept.
649 Conkey St., East
Hammond, IN 46320-1101
219.833.6358

GEORGIA ASSOCIATION OF FOOD AND ENVIRONMENTAL SANITARIANS

Pres., Pamela Metheny Atlanta
Vice Pres., Traci Sayer Stone Mountain
Past Pres., Sid Camp Atlanta
Sec'y, Robert Brooks Gainesville
Treas., James C. Camp Newman
Delegate, David Fry Lilburn
Mail all correspondence to:
Robert W. Brooks
Woodson Tenant Laboratories
2035 Atlas Circle
Gainesville, GA 30501
770.536.5909
E-mail: robertbrooks3@compuserve.com

IOWA ASSOCIATION FOR FOOD PROTECTION

Pres., Jimmy Clark Seymour
Vice Pres. Pro Tem, Randy Stephenson Stacyville
1st Vice Pres., Dennis Murphy Waukon
2nd Vice Pres., Bill Nietert Arlington
Past Pres., Mike Klein Waterloo
Sec'y, Phyllis Borger Sibley
Treas., Jim Mills Sibley
Delegate, Jimmy Clark Seymour
Mail all correspondence to:
Phyllis Borger
AMPI
1020 - 4th Ave., P.O. Box 36
Sibley, IA 51249
712.754.2511
E-mail: borgerp@ampi.com

IDAHO ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Ron Baird Boise
Pres. Elect, Angela Markham Pocatello
Past Pres., Rich Gabriel Moscow
Sec'y, Treas., Dee Dawson Pocatello
Delegate, Frank Isenberg Boise
Mail all correspondence to:
Frank Isenberg
Bureau of Env. Health and Safety
P.O. Box 85720
Boise, ID 83720-0036
208.334.5947
E-mail: isenberg@idhw.state.id.us

KANSAS ASSOCIATION OF SANITARIANS

Pres., Dennis Foster Troy
1st Vice Pres., Steve Johnson McPherson
2nd Vice Pres., Angela Kohls Salina
Past Pres., Dan Partridge Hutchinson
Sec'y, Tim Wagner Newton
Treas., Greg Willis Hays
Delegate, Dennis Foster Troy
Mail all correspondence to:
Tim Wagner
Harvey Co. Health Dept.
316 Oak St.
Newton, KS 67114
316.284.6822
E-mail: nekenv@ccp.com

MARCH 2002 – Dairy, Food and Environmental Sanitation 199
KENTUCKY ASSOCIATION OF DAIRY,
FOOD AND ENVIRONMENTAL SPECIALISTS

Pres., David Burton .. Bowling Green
Pres. Elect, Sam Bunette .. Frankfort
Vice Pres., James Sullivan ... Louisville
Sec'y, Brenda Haydon ... Frankfort
Treas., Effie Hudson ... Frankfort
Delegate, David Burton .. Bowling Green

Mail all correspondence to:
David Burton
Barren River Health Dept.
P.O. Box 1157
Bowling Green, KY 42102
270.781.8039 ext. 116
E-mail: davidr.burton@mail.state.ky.us

KOREA ASSOCIATION OF MILK,
FOOD AND ENVIRONMENTAL SPECIALISTS

Pres., Kook Hee Kang .. Kyunggido
1st Vice Pres., Duck Hwa Chung Kyungnam
2nd Vice Pres., Dong Suk Chung Pusan
Past Pres., Choong Il Chung .. Seoul
Sec'y, Deog Hwan Oh .. Kangwondo
Auditor, Yoh Chang Yoon .. Seoul
Delegate, Dong Kwan Jeong ... Pusan

Mail all correspondence to:
Deog Hwan Oh
Division of Food and Biotechnology
College of Agriculture and Life Sciences
Kangwon National University
192-1, Hyoja 2 Dong
Chunchon, Kangwondo 200-701, Korea
82.361.250.6457
E-mail: deoghwa@cc.kangwon.ac.kr

MASSACHUSETTS MILK, FOOD AND ENVIRONMENTAL INSPECTORS ASSOCIATION

Pres., Barbara Kulig .. West Springfield
Vice Pres., Barry Searle .. Westfield
Past Pres., Gail Stathis .. Springfield
Sec'y, Treas., Lisa Hebert .. Greenfield
Delegate, Barbara Kulig .. West Springfield

Mail all correspondence to:
Barbara A. Kulig
Town of West Springfield
Municipal Office Bldg.
26 Central St.
West Springfield, MA 01089
413.263.3204

METROPOLITAN ASSOCIATION OF DAIRY,
FOOD AND ENVIRONMENTAL SPECIALISTS

Pres., Patrick Boyle .. Whitehouse, NJ
Vice Pres., Gary Moore .. Pittstown, NJ
Past Pres., Steven Mitchell .. Plainview, NY
Sec'y, Treas., Carol A. Schwarz Washington, NJ
Delegate, Fred Weber .. Hamilton, NJ

Mail all correspondence to:
Carol Schwarz
Warren County Health Dept.
519 W. Washington Ave.
Washington, NJ 07882
908.689.6693
E-mail: mncschwar@enter.net

MEXICO ASSOCIATION FOR FOOD PROTECTION

Pres., Alejandro Castillo .. Guadalajara
Vice Pres., Lydia Mota de la Garza Mexico City
Sec'y, Fausto Tejeda-Trujillo ... Puebla
Treas., Nanci E. Martinez-Gonzalez Guadalajara
Delegate, M. Rufugio Torres-Vitela Guadalajara

Mail all correspondence to:
Alejandro Castillo
University of Guadalajara
Monte Alban 1341
Guadalajara, Jal. 44340 Mexico
52.3.619.8158 ext. 16
E-mail: acastillo@cucei.udg.mx

MICHIGAN ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Mike Juhasz ... Saginaw
Pres. Elect., Lori Simon .. Lansing
Past Pres., Keith Krim .. Southfield
Treas., Bruce DuHamel .. Hemlock
Sec'y, Alan Hauck ... Ann Arbor
Delegate, Lori Simon ... Lansing

Mail all correspondence to:
Lori K. Simon
603 Parkview Dr.
St. Johns, MI 48879
517.887.4513
E-mail: simon@voyager.net

MISSISSIPPI ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Romana Reed .. Oxford
Pres. Elect, Willie Brown ... Jackson
1st Vice Pres., Jesse Shields ... Tupelo
2nd Vice Pres., Anne Hogue .. Canton
Past Pres., Susan Howell ... Starkville
Sec'y, Treas., Rick Hill .. Ripley
Delegate, Regina Holland .. New Augusta

Mail all correspondence to:
Romana Reed
P.O. Box 1395
Oxford, MS 38655
E-mail: romanareed@cocodist02@msdh.mt

MISSOURI MILK, FOOD AND ENVIRONMENTAL HEALTH ASSOCIATION

Pres., Joel VanHoose ... Jefferson City
Pres. Elect, Linda Haywood ... Cabool
Vice Pres., Deborah Seck ... St. Louis
Past Pres., Linda Wilson ... Springfield
Sec'y, Andrew Hoffman ... Warrennton
Treas., Gal Jaramillo .. Jefferson City
Delegate, Linda E. Wilson ... Springfield

Mail all correspondence to:
Linda E. Wilson
Springfield/Greene Co. Health Dept.
227 E. Chestnut Expressway
Springfield, MO 65802-3847
417.866.1661
E-mail: linda_wilson@ci.springfield.mo.us

200 Dairy, Food and Environmental Sanitation – MARCH 2002
NEBRASKA ASSOCIATION OF MILK AND FOOD SANITARIANS
Pres., Gary Hosek .. Lincoln
Vice Pres., Tom Tieso .. Lincoln
Past Pres., Roger Bitlof Oak
Treas., Jill Schallehn .. Omaha
Delegate, Tom Tieso .. Lincoln
Mail all correspondence to:
Tom Tieso
Nebraska Dept. of Agriculture
3703 S. 4th
Lincoln, NE 68502
402.471.2176
E-mail: tom.tieso@agr.state.ne.us

NEW YORK STATE ASSOCIATION FOR FOOD PROTECTION
Pres., John P. Schrade ... Jamaica
Pres. Elect, Bill Young ... LeRoy
Past Pres., Connie Kuhlman Rome, PA
Council Chairman, John Grom Yonkers
Exec. Sec'y, Janene Lucia Ithaca
Delegate, Steven Murphy Ithaca
Mail all correspondence to:
Janene Lucia
c/o Cornell University
172 Stocking Hall
Ithaca, NY 14853
607.255.2092
E-mail: jgg3@cornell.edu

NORTH DAKOTA ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Dick Bechtel .. Mandan
1st Vice Pres., Terry Ludlum Fargo
2nd Vice Pres., Grant Larson Fargo
Past Pres., James Schothorst Grand Forks
Sec'y, Debra Larson ... Bismarck
Treas., Lisa Well .. Bismarck
Delegate, Dick Bechtel .. Mandan
Mail all correspondence to:
Debra Larson
Division of Food and Lodging
ND Dept. of Health
600 E. Boulevard Ave., Dept. 301
Bismarck, ND 58505-0200
701.328.6150
E-mail: dljarson@state.nd.us

OHIO ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Roger Tedrick ... Reynoldsburg
1st Vice Pres., Dixie Lauer Powell
2nd Vice Pres., Merle Vitug Cincinnati
Past Pres., Hermine Willey Columbus
Sec'y, Treas., Donald Barrett Canal Winchester
Delegate, Gloria Swick New Lexington
Mail all correspondence to:
Donald Barrett
Ohio Health Dept.
6855 Diley Road NW
Canal Winchester, OH 43110
614.645.6195

ONTARIO FOOD PROTECTION ASSOCIATION
Pres., D. Wayne Sprung Mississauga
Vice Pres., Helen Ellisworth Rexdale
Past Pres., Robert Tiffin Kitchener
Sec'y, Treas., Melodie Wynne Guelph
Delegate, D. Wayne Sprung Mississauga
Mail all correspondence to:
Glenna Haller
Ontario Food Protection Association
28-380 Eramosa Road, Suite 279
Guelph, Ontario N1E 7E1 Canada
519.823.8015
E-mail: ofpa-info@worldchat.com

PENNSYLVANIA ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Troye A. Cooper Lebanon
Pres. Elect, Brett Brumbaugh Brockway
Vice Pres., Doug Kennedy Lititz
Past Pres., Patricia L. McKenty Gibsonia
Sec'y, Eugene R. Frey ... Lancaster
Treas., Robert K. Mock .. Boyertown
Delegate, Eugene R. Frey Lancaster
Mail all correspondence to:
Eugene R. Frey
Land O’Lakes, Inc.
307 Pin Oak Place
Lancaster, PA 17602-3149
717.397.0719
E-mail: efrey@landolakes.com

QUEBEC FOOD PROTECTION ASSOCIATION
Pres., Marie-Claude Lamontagne St. Anselme
Pres. Elect, Gisèle LaPointe Quebec
Vice Pres., André Giguère St. Romuald
Sec'y, Noël Brousseau .. Candiac
Treas., Carl Piatraisko ... St. Anselme
Delegate, Marie-Claude Lamontagne St. Anselme
Mail all correspondence to:
Marie-Claude Lamontagne
J.M. Schneider Inc.
253 Rue Principale
St. Anselme, Quebec G0R 2N0 Canada
418.855.4474 ext. 3409
E-mail: mlamonta@jms.ca

SOUTH DAKOTA ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Rod Coker .. Pierre
Pres. Elect, Scott Hipple Pierre
Past Pres., Curtis Thelen Sioux Falls
Sec'y, Treas., Gary J. Van Voert Sioux Falls
Delegate, Darwin Kurtenbach Pierre
Mail all correspondence to:
Gary J. Van Voert
South Dakota Environmental Health Association
132 N. Dakota Ave.
Sioux Falls, SD 57104
605.367.8787
E-mail: gvanvoert@sioux-falls.org
TENNESSEE ASSOCIATION OF MILK, WATER AND FOOD PROTECTION
Pres., Ronnie Wade ... Martin
Pres. Elect, Jim Howie Huntersville
Vice Pres., Robert Owen Murfreesboro
Past Pres., Jim Byington Blountville
Sec'y. Treas., Ann Draughon Knoxville
Archivist/Delegate, Ruth Fuqua Mt. Juliet

Mail all correspondence to:
Ann Draughon
University of Tennessee
105 Food Safety & Processing Bldg.
P.O. Box 1071
Knoxville, TN 37901-1071
865.974.7425
E-mail: draughon@utk.edu

TEXAS ASSOCIATION FOR FOOD PROTECTION
Pres., Gregory G. Crishi Dallas
Past Pres., Mike Giles .. Tyler
Sec'y. Treas., Ron Richter College Station
Delegate, Janie Park .. Austin

Mail all correspondence to:
Ron Richter
Texas A & M University
Dept. of Animal Science
2417 TAMU
College Station, TX 77843-2417
979.845.4409
E-mail: rlr8942@acs.tamu.edu

UPPER MIDWEST DAIRY INDUSTRY ASSOCIATION
Pres., Dale Heinz ... Eyota
Vice Pres., Bruce Steege Zumbrota
Past Pres., Jack Ulrich Litchfield
Gen. Mgr., Gene Watnass Vining
Sec'y. Treas., Paul Nierman Mounds View
Delegate, Dan Erickson North St. Paul

Mail all correspondence to:
Paul Nierman
Dairy Quality Control Institute
5205 Quincy St.
Mounds View, MN 55112-1400
763.785.0494
E-mail: paul@dqci.com

VIRGINIA ASSOCIATION OF SANITARIANS AND DAIRY FIELD MEN
Pres., Doug Greenway Roanoke
1st Vice Pres., Ronnie Frazier Abingdon
Past Pres., Lowell Moyers Mt. Crawford
Sec'y. Treas., Mary Jane Wollinger Orange
Delegate, Mary Jane Wollinger Orange

Mail all correspondence to:
Mary Jane Wollinger
17066 Tyson’s Center Road
Orange, VA 22960
540.851.6208

WASHINGTON ASSOCIATION FOR FOOD PROTECTION
Pres., Michael Nygaard Seattle
Pres. Elect, Robert Brooke Seattle
Past Pres., Paul Nelson Seattle
Sec'y. Treas., William Brewer Seattle
Delegate, Stephanie Olmsted Kent

Mail all correspondence to:
William Brewer
12509 10th Ave., NW
Seattle, WA 98177-4309
206.363.5411
E-mail: rlr8942@juno.com

WISCONSIN ASSOCIATION OF MILK AND FOOD SANITARIANS, INC.
Pres., Kathy Glass ... Madison
Pres. Elect, Geoff Marcks Brownsville
1st Vice Pres., Virginia Deibel Madison
Past Pres., Dean Sommer Waupun
Sec'y. Randall Daggs Sun Prairie
Treas., Neil Vassau .. Verona
Delegate, Randall Daggs Sun Prairie

Mail all correspondence to:
Randall Daggs
State of Wisconsin
6699 Prairie View Dr.
Sun Prairie, WI 53590-9430
608.266.9376
E-mail: daggsra@dhfs.state.wi.us

WYOMING ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Shirley Etzell .. Casper
Pres. Elect, Roy Kroeger Cheyenne
Past Pres., Laurie Leis Cheyenne
Sec'y, Sherry Maston Wheatland
Treas., George Larsen Thermopolis
Delegate, Sherry Maston Wheatland

Mail all correspondence to:
Sherry Maston
208 Washington Road
Wheatland, WY 82011
307.322.9671
E-mail: smasto@state.wy.us
Page Named to Head American Dairy Products Institute

Mr. James J. Page became the new chief executive officer of the American Dairy Products Institute (ADPI), effective March 1, 2002. Page will succeed Dr. Warren S. Clark, Jr. who has been with the ADPI for 35 years, 26 of those years as its CEO.

Jim has over 30 years of experience in the dairy industry, serving in management positions at Kraft Inc., Dean Foods Co., and Land-O-SUN Dairies. Jim received his BBA in Marketing from the University of Georgia in Athens, GA.

Jim has extensive experience in the sales, marketing and general management areas within the dairy industry. He was named marketer of the year by Advertising Age in 1998 for his contributions to the development and execution of Dean’s Milk Chug beverage program.

Thermo Electron Corporation Assigns New President to Its Weighing and Inspection Business Unit

Ralph Sperrazza has joined Thermo Electron Corporation as president of the thermo electron weighing and inspection business unit, which is part of Thermo Electron’s Process Instruments Division.

Ralph is responsible for global management of all the weighing and inspection operations of Thermo Ramsey, Thermo Goring Kerr, Thermo Allen Coding, Thermo Detection and Thermo Moisture Systems.

The Thermo Electron Weighing and Inspection companies are global manufacturers of industrial weighing, inspection, monitoring and control equipment.

Previously, Sperrazza spent 14 years with Honeywell and was most recently the site general manager of the West Coast operations of Honeywell’s Burbank, California repair and overhaul facility. Prior to that, he provided financial and operational leadership at the Luton, United Kingdom site during the facility integration with Honeywell.

Sperrazza has also had prior assignments in Greer, South Carolina and Stratford, Connecticut in business and financial operations.

Sperrazza has a bachelor degree in business administration from St. Bonaventure University in Olean, NY and a MBA from Sacred Heart University in Fairfield, CT.

FiberMark Appoints New President Duncan Middleton

FiberMark, Inc. has announced the appointment of Duncan Middleton as president of FiberMark. Duncan joins FiberMark following a career with Dexter Corp. and Ahlstrom Corp. He will assume responsibility for leading FiberMark’s five divisions.

Most recently, Middleton served as senior vice president for Ahlstrom FiberComposites in Windsor Locks, CT. He previously held the roles of both president and senior vice president in Dexter’s nonwovens business, gaining significant international experience in the United States, Belgium, Scotland and Scandinavia. Earlier with Dexter, he held the positions of director of business development, director-operations planning, and financial director Europe.

HACCP Consulting Group Announces Two Additional Principals

The HACCP Consulting Group, L.L.C. has announced that Mr. John Miller, and Mr. Robert (Bob) Galbraith have joined the growing professional staff of the Fairfax, VA based company. “The addition of John and Bob ensures that we will continue to provide highly creditable food safety systems service in a timely manner to our domestic and international clients,” says L. L. (Lou) Gast, CEO. Miller and Galbraith both are IAFP Members.

Chr. Hansen Appoints Mr. Thomas Barry as Group Vice President

Chr. Hansen, Inc. announces the formation of a Savory Ingredients Group within the company’s North American structure. The Savory Ingredients Group consists of the North America Flavor Business Unit and the North America Seasoning Business Unit.

With the formation of this new Savory Ingredients Group, Chr. Hansen appoints Mr. Thomas A. Barry as group vice president, Savory Ingredients. Mr. Barry has over 20 years of international management experience in North America, Europe and Asia, with a depth of knowledge and experience in the savory ingredient business. He received his B.S. in biology at Marquette University, his M.S. in human nutrition at the University of Missouri, and his M.B.A. at Southern Illinois University.
In addition, Mr. Barry has been appointed site manager of Chr. Hansen’s facility in Mahwah, NJ, with responsibility for the day-to-day supervision of all functions within the facility.

Anderson and Lazaro Promoted at AIB International

Jon R. Anderson has been promoted to vice president of audit services from head of audit services at AIB International.

Judi Lazaro has been promoted to head of audit services and assumes Anderson’s overall responsibility for AIB audit programs within North America. Anderson now becomes responsible for all AIB food safety and occupational safety audit services worldwide. He was director of occupational safety education before becoming head of audit services. Before that, he worked for ten years as the senior safety consultant and before that, worked five years as an all food safety auditor. He earned a B.S. degree in biological sciences from Kansas State University in 1981.

Lazaro is a graduate of the University of Houston where she was the pre-law society president and the national leadership society president. Prior to her work with AIB International, Lazaro was a commissioned officer in the US Army and also worked for Frito-Lay, Inc. as a production supervisor and quality assurance manager.

The International Inflight Food Service Association (IFSA) Announces New Chairperson

IFSA is pleased to announce that Ms. Julie Butner is the new chairperson of its Government Affairs Committee. Ms. Butner is the director, global quality systems with LSG Sky Chefs in Arlington, Texas.

Ms. Butner’s background includes both bachelor’s and master’s degrees in food related specialties, several certifications and licenses, and extensive industry experience.

Applied Food Protection

What do you think?

The DFES Management Committee proposed to change the name of *Dairy, Food and Environmental Sanitation* to **Applied Food Protection**. The Executive Board will vote on this change at their April board meeting. Contact any Board Member with your input before April 15, 2002.
Tracking Path of Virulent Bacteria Via the Web

Cornell University food science, engineering and computer science students have joined forces to develop a web-based software and a database to track and compare genetic footprints, or characteristics, of bacteria. For scientists who track the spread and sources of virulent bacteria, the students’ PathogenTracker software reduces from days and hours to minutes the time spent making tedious strain comparisons. “Before PathogenTracker, in this laboratory we were using three different databases and two spreadsheets,” says Martin Wiedmann, Cornell assistant professor of food science. The food scientists sought the help of the computer science and engineering students, he says, because, “we knew what we wanted but we didn’t know how to put the idea together.” The new database is novel in that it allows easy comparisons of strain characteristics and visual images of molecular subtypes (DNA fingerprints). The tool thus allows researchers quickly to assemble strain subtype data from different laboratories in order to analyze outbreaks and epidemics of many different infectious diseases and to assess the biodiversity of bacteria in general.

Before PathogenTracker, scientists used off-the-shelf database programs to track foodborne pathogens. But in 1999 Wiedmann first used his then-primitive database to help limit the death toll from a listeriosis outbreak. Between October 1998 and February 1999, more than 100 people became ill and 21 people died around the country after eating hot dogs contaminated with a rare strain of Listeria monocytogenes — the deadlist of all foodborne bacteria. Wiedmann’s work allowed the Centers for Disease Control (CDC) in Atlanta to determine the cause of the outbreak. Consequently, the contaminated hot dogs were immediately recalled in what was to become one of history’s largest food recalls. That early version of PathogenTracker found that seven of the 15 samples had identical genetic fingerprints, meaning that the same strain had caused the illness in seven people. The CDC also had noticed a rise in the number of listeriosis cases, but until Wiedmann’s fingerprints, they did not know the strain to look for.

One of the students who developed the new database in Wiedmann’s laboratory, Michael Chung began by assembling the pathogen characteristics that the database would need. This included ribotype, DNA sequence and phenotype characteristics. Last fall, Chung began working with a team of computer science students who programmed the software, set up the web server and developed the software’s image-recognition capabilities.

By the end of fall 2000, the program was complete. But, says Chung, “it could not be transferred onto multiple computers and it was difficult to add new features.” Over the past year, Chung, Cornell graduate student Steven Cai, undergraduate student Mike Bohlander and Qi Sun, of the Cornell Computational Biology Service Unit, have greatly improved the program so that it can now be installed on larger web servers and handle a larger load of data and queries.

Currently within the database there are thousands of digital fingerprints, or “isolates,” of foodborne pathogens, spoilage organisms and other bacteria such as L. monocytogenes, Pseudomonas, Vibrio parahaemolyticus, Streptococcus and lactic acid bacteria.

Ecolab Announces New Food Safety Services

Ecolab announced it has purchased Audits International, a Chicago, Illinois-based premier provider of food safety audits and food retail quality evaluations. Audits International is a provider of national food safety services with annual sales of approximately $3 million. Terms of the transaction were not announced. Audits International has been providing food safety services to the foodservice industry since 1982. Utilizing audit procedures designed to identify food safety procedures that comply with local, state and federal food safety codes, Audits International provides quality assurance to restaurants, hotels, supermarkets, hospitality and other foodservice establishments through over 150 company-trained field auditors located throughout the country. Audits International’s food safety evaluations are custom designed to evaluate and improve performance at the individual property. It will form a new Ecolab service business and operate within the Industrial and Services Sector as a separate business. This business is designed to provide our customers with food safety services including program design, on-site training and certification, audits and reporting.

“As part of the continued pursuit of our Circle the Customer, Circle the Globe strategy, food safety services is a natural extension of our service offer-
ing,” said Ecolab’s chairman and chief executive officer Allan L. Schuman. “Food safety is one of the top issues facing our customers today, and Audits International is designed to provide scientific food safety services with our technology-based and certified service team. We are now in an even better position to partner with our food service customers on the behavioral and training aspects of food safety.”

Plum Good in Killing E. coli, Other Pathogens in Meat

Behold, the power of ... dried plums? Long the subject of many medical jokes, dried plums, according to a Kansas State University food microbiologist, can also serve an additional purpose – they possess antimicrobial properties that can help make meat products safer. Daniel Y.C. Fung, a K-State professor of animal sciences and industry, and his graduate research assistant, Leslie Thompson, have tested the effect that varying levels of dried plum mixtures had on ground meat that was contaminated with common foodborne pathogens. Their research, sponsored by the California Dried Plum Board, indicates that raw meats mixed with as little as 3 percent of plum extract are over 90 percent effective in suppressing the growth of major foodborne pathogens such as *E. coli* O157:H7, *Salmonella*, *Listeria*, *Y. enterocolitica* and *Staphylococcus*.

Fung has previously conducted research using spices such as garlic and cinnamon to kill foodborne pathogens in ground beef. Unlike spices, which can alter the taste of meats, Fung said the plum extracts lack a “plum taste” so foods taste “normal.” Similar research conducted by scientists at Texas A&M University has found that adding dried plum mixtures to raw meat improved the quality of reheated products by enhancing the moisture of the meat. Fung said adding dried plum mixtures to meat works as an antioxidant to prevent lipid oxidation, which is similar to freezer burn in meat, as well as being an antimicrobial agent to kill pathogens.

Fung said he is excited about the use of plum extracts. In addition to suppressing pathogens, he said the extract also has “good functionality” as it can enhance the moistness of meat and increase the yields. He said adding a prune mixture would be most applicable to school lunch programs, where meat products are prepared at central locations and rewarmed at satellite kitchens. Fung hopes to expand the research to poultry products such as chicken and turkey. Future research will involve experiments to determine if plum extracts can extend the shelf life of meats as well. “The potential is unlimited, this is a win-win situation for everybody involved in food science and safety.” Fung said.

Transporters and Retailers: Food Security Preventive Measures Guidance

This guidance represents the FDA’s current thinking on appropriate measures that can be taken by food establishments to minimize the risk of food being subjected to tampering or criminal or terrorist actions. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. This guidance is being issued in accordance with FDA’s Good Guidance Practices regulation (21 CFR 10.115; 65 FR 56468; September 19, 2000).

This guidance is designed as an aid to operators of food establishments (i.e., firms that produce, process, store, repack, relabel, distribute, or transport food or food ingredients or that prepare or distribute food at retail). It identifies preventive measures that they can take to minimize the risk that food under their control will be subject to tampering or criminal or terrorist actions. It is relevant to all sectors of the food system (i.e., from farm-to-table), including farms, aquaculture facilities, fishing vessels, producers, transportation operations, processing facilities, packing facilities, warehouses, and retail and food-service establishments. Operators of food establishments are encouraged to review their current procedures and controls in light of the potential for tampering or criminal or terrorist actions and make appropriate improvements. This guidance is designed to focus operators sequentially on each segment of the farm-to-table system that is within their control, to minimize the risk of tampering or criminal or terrorist action at each segment.

Implementing enhanced preventive measures requires the commitment of management and employees to be successful and, therefore, both should participate in their development and review. This guidance is divided into seven sections that relate to individual components of a food establishment operation: management of food security; physical security; employees; computer systems; raw materials and packaging; operations; and finished products. It also covers security strategies and evaluation of the security system. Not all of the guidance contained in this document is appropriate or
practical for every food establishment. Operators should review the guidance in each section that relates to a component of their operation, and assess which preventive measures are suitable for their operation. A process called Operational Risk Management (ORM) may also help operators prioritize the preventive measures that are most likely to have the greatest impact on reducing the risk of tampering or criminal or terrorist actions against food under their control (See: Food Safety and Security: Operational Risk Management Systems Approach, November 26, 2001; www.cfsan.fda.gov).

Risk Assessment of Campylobacter spp. in Broiler Chickens and Vibrio spp. in Seafood

Preliminary documents on hazard identification, exposure assessment, and hazard characterization of Campylobacter spp. in broiler chickens and Vibrio spp. in seafood have now been posted on both the FAO (www.fao.org/WAICENT/FAOINFO/ECONOMIC/ESN/pagerisk/techdocs.htm) and WHO (www.who.int/fsf/mbriskassess/Tech%20docs.htm) Web sites. These documents were reviewed during the Joint FAO/WHO Expert Consultation on Risk of Microbiological Hazards in Foods which took place in WHO Headquarters, Geneva July 23 to 27, 2001 (www.fao.org/WAICENT/FAOINFO/ECONOMIC/ESN/pagerisk/reportCV.pdf) and (www.who.int/fsf/mbriskassess/reportCV.pdf). A “Call for Public Comment, Scientific Data and Information” has also been issued (www.fao.org/WAICENT/FAOINFO/ECONOMIC/ESN/pagerisk/callcom2.htm) (www.who.int/fsf/mbriskassess/Call_for_comments2.htm). This invites all interested parties to review these documents and provide FAO and WHO with their comments as well as any pertinent data and information that they may have. If you have further comments on these documents, please submit them to FAO and WHO for consideration in the revision of the documents in the course of 2002.

Outbreak of Salmonella Serotype kottbus Infections Associated with Eating Alfalfa Sprouts — Arizona, California, Colorado, and New Mexico

On March 12, 2001, the California Department of Health Services (CDHS) identified a cluster of Salmonella kottbus isolates with indistinguishable pulsed-field gel electrophoresis (PFGE) patterns. During February 1–May 1, CDHS identified 23 patients with S. kottbus infections in several California counties and an additional patient from Arizona. This report summarizes the results of the investigation of this outbreak, which identified cases in four states and implicated alfalfa sprouts produced at a single facility. The median age of case-patients was 36 years (range: 9 to 72 years); 16 patients (67%) were female. Twenty-one patients developed an acute diarrheal illness, and three patients had urinary tract infections. Three patients were hospitalized.

Using a standardized questionnaire, a matched case-control study was conducted. A case was defined as culture-confirmed S. kottbus infection with onset after January 2001 in a California resident with an isolate having the outbreak PFGE pattern. The first 10 reported California patients were matched with two controls by age group, sex, and city prefix code. Fifteen (65%) of 23 patients ate alfalfa sprouts during the week before becoming ill. A significant association was found between eating alfalfa sprouts and illness (matched odds ratio: 5.5; 95% confidence interval=1.2–26.1). No other food or restaurant exposure was significantly associated with illness. Following the case-control study, 52 patients infected with the outbreak strain of S. kottbus were identified in California (24), Arizona (six), Colorado (one), and New Mexico (one).

A traceback investigation identified a single sprout producer as the source of the contaminated sprouts. Review of the sprouter’s production records indicated that a single seed lot was temporarily associated with the dates of illness onset. A culture of a sample of this seed lot yielded S. kottbus. These seeds were imported from Australia in November 2000, but no further information about the distribution of this seed lot was available. Cultures from two floor drains in the production facility also yielded S. kottbus. Patient, seed, and environmental isolates all had indistinguishable PFGE patterns. Although the implicated seed lot was last used on March 29, the sprouter issued a voluntary recall of all sprout products on April 17, and ceased all sprout production pending further internal review of their production processes. Review of decontamination and distribution records indicated that at least some seeds underwent heat treatment followed by a 2,000-ppm sodium hypochlorite treatment for 15 minutes. The U.S. Food and Drug Administration (FDA) recommends decontamination of seeds with one or more treatments (e.g., soaking in a 20,000-ppm calcium hypochlo-
rite for 15 minutes) that have been approved for reduction of pathogens in seeds. The effectiveness of alternative seed decontamination has not been established. The sprout producers subsequently agreed to use only the FDA-recommended 20,000-ppm soak when sprout production resumed.

With Updated Information, “You Can Prevent Foodborne Illness”

Each year there are an estimated 76 million cases of foodborne illness in the United States. They result in 5,000 deaths and 75,000 hospitalizations, according to the Centers for Disease Control and Prevention. Many of these illnesses can be avoided by following a few basic food safety guidelines outlined in a newly updated 20-page bulletin available through Washington State University Cooperative Extension. It is designed to help consumers, as well as food professionals, understand the causes and consequences of foodborne illnesses, and act to reduce the risks. The bulletin, “You can prevent foodborne illness,” is a collaborative project of Washington State University, the University of Idaho and Oregon State University.

According to WSU food specialist Val Hillers, the bulletin is unique in that it reflects the opinion of experts from around the nation as to what is the most important information to provide the public about safe food handling and preparation. “It’s more detailed than our previous publications, and it’s more extensive than any I’ve seen in the country,” Hillers said. “It’s designed primarily for interested consumers but will also be useful for food safety professionals and educators.” When it comes to preventing foodborne illnesses, following five basic food safety guidelines is still the best approach: Practice good personal hygiene, cook foods adequately, avoid cross-contamination with uncooked meats, keep foods at safe temperatures and avoid foods from unsafe sources.

“The single most important thing you can do to prevent foodborne illness is to wash your hands frequently, just like your mother told you,” Hillers said. The bulletin provides practical and comprehensive information on how to put the five food safety guidelines to use and which foods present the most risk. It also details the most common known contaminants that are carried by food and how they get into food. It also has information on populations that are at highest risk from foodborne pathogens and the foods they should avoid.

Copies of “You can prevent foodborne illness” (Bulletin PNW0250) can be ordered through the WSU Cooperative Extension Bulletins office for $1.00, plus $1.00 for shipping. To order, call toll-free at 800.723.1763 and request Bulletin PNW0250, or order on-line by visiting http://pubs.wsu.edu. An abbreviated version of the information contained in the bulletin also can be viewed at the recently updated Web site www.foodsafety.wsu.edu.

European Food Safety Authority Approved

A chronology of outbreaks of foodborne disease and food scares, notably bovine spongiform encephalopathy and dioxins in animal feed, has damaged consumer confidence in the safety of the food supply and the ability and commitment of the regulatory agencies to ensure that food is safe. In November 2000, the European Commission put forward a proposal for a Regulation laying down the general principles of food law and establishing the European Food Authority. The European Parliament approved the creation of an independent European Food Safety Authority (EFSA) in a final agreement on December 11, 2001 so that the EFSA can start operating in the first half of 2002. “Safety” has also been added to the title of the new body through an amendment adopted by the Parliament. The EFSA will have a broad mandate, including a wide range of scientific and technical support tasks on all matters having a direct or indirect impact on food safety. The EFSA’s mission, therefore, includes the provision of scientific opinions on all issues in relation to animal health and welfare, plant health, and genetically modified organisms without prejudice to the competence conferred to the Agency for the Evaluation for Medicinal Products (EMEA). The EFSA will also have a major task in informing the public about its activities.

The European Parliament also adopted an amendment that would put in place a management board of 15 members, including a representative of the Commission. Four members of the Board will have backgrounds in consumer and industry matters. Members would be appointed by the Council in consultation with the European Parliament. The Parliament has also agreed that the management board will nominate a candidate executive director, who will be required to give a statement and answer questions in front of Parliament before appointment. The location of the new authority is, however, yet to be decided and will be hosted in the interim in Brussels, Helsinki (Finland), Parma (Italy), Lille (France), and Barcelona.
(Spain) are among the reported candidates for its permanent location. Further information on the EFSA can be found on the European Commission’s Web site at http://europa.eu.int/comm/food/fs/efa/index_en.html.

Escherichia coli **O157**

Outbreak Associated with the Ingestion of Unpasteurized Goat’s Milk in British Columbia, 2001

Public health inspectors from the Central Vancouver Island Health Region (CVIHR) investigated an outbreak of *Escherichia coli* O157:H7 in August 2001. The source of the implicated goat’s milk in this outbreak was from a co-operative farm south of Nanaimo, on Vancouver Island, British Columbia (B.C.). Nubian goats were co-owned by 18 families at the time of the outbreak. The product label on the distributed milk read as follows: “milked under the strictest sanitary conditions. If pasteurization is desired, heat at 72.8°C for 30 seconds then refrigerate.”

Unpasteurized milk from this facility had been distributed to participating families for approximately 10 years. *E. coli* O157:H7 was first isolated from a 1 year old child in a stool specimen submitted to the Nanaimo Hospital on August 14, 2001. Follow-up by public health inspectors implicated either a visit to a petting farm August 5, 2001 or the consumption of unpasteurized goat’s milk. No other food source seemed to be implicated. Two other children from the same family (ages 2 and 7) also became ill with bloody diarrhea within 2 to 4 days of the first child falling ill. The family with the three ill children had joined the co-operative 3 months earlier. Two children from another family, visiting the co-operative farm, also became infected. Two of these five infected children were hospitalized and developed hemolytic-uremic syndrome.

Two 1 litre glass bottles of milk from a batch of seven bottles purchased by the first family on August 5, 2001 were sent to the Food Poisoning section, British Columbia Centre for Disease Control Society (BCCDCS) Laboratory Services on August 17, 2001. Milk was enriched in Doyle’s broth overnight at 44.5°C and the following morning one bottle was found presumptively positive by VIP® (BioControl Systems, Inc.), a visual immuno-precipitate assay that detects enterohemorrhagic *E. coli*. Subsequent isolation of typical colorless colonies on sorbitol MacConkey agar (*E. coli* O157:H7 does not ferment sorbitol) were identified as verotoxin gene positive *E. coli* O157:H7 in the Enterics section, BCCDCS Laboratory Services. All three stools samples received from infected individuals matched the fingerprinting by pulsed field gel electrophoresis (PFGE) subtyping pattern found in the goat’s milk. Of interest, fifteen typical colonies picked from direct plates (before enrichment) were not found to be *E. coli* O157:H7 biochemically. This observation, and failure to isolate *E. coli* from the second bottle of milk indicates the pathogenic *E. coli* O157:H7 was present in low numbers in the milk.

On August 23, 2001 an advisory for raw milk suspected in this *E. coli* O157:H7 outbreak was issued by the Acting Medical Health Officer in the CVIHR. No further cases were identified. Commercial pasteurization of milk was first introduced in 1893 after Louis Pasteur discovered the process inactivated spoilage organisms in wine. Today milk is pasteurized both to destroy pathogenic bacteria that may be present, and to improve the shelf life. Pasteurization of milk is required by law in B.C.

Although the link between consumption of raw milk and disease is well established for several organisms (*E. coli*, *Campylobacter*, *Listeria*, *Salmonella*, *Staphylococcus*, *Yersinia*) there are still uninformed individuals who persist in the belief that raw dairy products are healthier, and that pasteurized products are less beneficial, and even harmful.
L. J. Star Incorporated Sterile Visual Flow Indicators Meet 3A and FDA Requirements

*Designed to be mounted inline for high purity applications, these sterile-design visual flow indicators provide operators with a clear view of the flow of virtually any process pipeline fluid or powder. They feature an internal-flush style that meets FDA and 3A specifications, based on a unique O-ring seal design that minimizes traps where bacteria can build up. Polished stainless steel connections include sanitary clamp as standard, with butt weld and flange as special order items.

Other premium standard features include the use of borosilicate glass, a product contact surface of 220 Grit Electropolish and an armored housing to help protect the glass from external objects and pipe stress. Units can be used during SIP/CIP and sterilizing/autoclaving.

Units are available in tube OD sizes from 1/2 to 4 inches with standard lengths from 2-3/4 to 6 inches, depending on OD and ratings up to 150 PSIG. Custom designs and lengths are also available.

Standard material of construction is 316L stainless steel with满 material traceability. For corrosive service, Hastelloy is also available. EPDM is the standard O-ring material with Silicone, Viton, and FEP jacketed silicone as options.

L. J. Star Incorporated, Twinsburg, OH

Reader Service No. 348

LF490/LF420 Sanitary Electromagnetic Flowmeter from Toshiba

*The LF490/LF420 Series Teflon™ lined magmeter is 3-A approved for applications handling food and beverages.

Toshiba's LF490 Series Sanitary Magmeter is available with a mechanically retained Teflon or ceramic liner. These liners have been specially designed to operate in Clean-in-Place situations where steam cleaning or continuous slurry exposure could damage or stress normal Teflon liners over time. The Teflon liner is molded into a special stainless steel mesh that is mechanically retained in the flowtube giving it exceptional durability and long life in steam cleaning applications. An optional high temperature ceramic lined magmeter is also available for those applications requiring operation up to 180°F.

Suspended particles and other organic materials found in food applications are picked up as electrochemical noise by the magmeter's electrodes. This excess noise can make the magmeter's output erratic and inaccurate if not properly filtered out. In 1993, Toshiba developed a special patented noise suppression circuit that virtually eliminates any noise caused by food particles. The result is a magmeter with a very stable and accurate output in food applications.

Toshiba's patented Functional Field Distribution Technology works effectively to eliminate the errors of non-symmetrical flow caused by upstream projections such as an elbow. There is no need to make expensive piping changes to accommodate the Toshiba sanitary magmeter. Simply mount the meter anywhere.

Toshiba International Corporation, Houston, TX

Reader Service No. 349

Wall Mounted CO₂ Analyzer from CEA Instruments, Inc.

*The newly improved CEA 266 is a wall mounted infrared CO₂ gas analyzer contained in a water and dust tight NEMA 4× enclosure with digital display readout. Ranges of 0-2000 ppm, 0-5000 ppm, 0-1%, 0-2%, 0-5%, 0-10%, or 0-20% are available. The sample gas is continuously drawn into the unit through a built-in air pump. A self-draining water trap
and dust filter are also provided.
The unit includes 0-5 VDC and
4-20 mA outputs and two user
adjustable alarms and contact
relays.

The CEA 266 is applicable
for use in indoor air monitoring,
food related industries, breweries,
mushroom growing, greenhouse
horticulture, welding, office
ventilation systems, cooling
systems, hazardous environments,
laboratory and research projects,
and various other applications
where CO₂ levels have to be
monitored and/or controlled.
CEA Instruments, Inc.,
Emerson, NJ

Reader Service No. 350

Sensotec, Inc. Amplified
Miniature Pressure Transmitter

The Sensotec Model A-105a is
a versatile, flush diaphragm,
miniature pressure transducer
which delivers a high-level,
internally-amplified 1-5VDC,
1-10VDC, or 4-20mA output
signal. It has an integral voltage
regulator and will accept an
excitation of 1-6 or 1-11 VDC.
The flush diaphragm is welded
and measures only .355" in
diameter. This design creates
zero dead volume and makes the
A-105a ideal for operations which
involve the robotic spraying or
application of paints or other
media which can clog conven¬
tional pressure ports. The A-105a
is fully welded from 17-4PH
stainless steel and hermetically
sealed, making it a solid per¬
former in harsh or corrosive
environments.

The A-105a is sensitive
enough to measure ranges from
0-200 psig, yet sturdy enough to
handle pressures of 0-15,000 psig.
Designed with a one piece, heavy-
sidewall body, this rugged unit
provides overload protection to
100% (safe) and 300% (burst).

Operating temperature is from
-65° to 300°F and a number of
compensated ranges are available.
The A-105a features a 7/16-20
UNF thread.

Sensotec, Inc., Columbus, OH
Reader Service No. 351

Ventilex Fluid Bed Dryer with
Unique Design is Ideal for
Conditioning in the Food and
Dairy Industries

Fluid Bed Dryers from Ventilex
USA, with a revolutionary yet
simple transport design and
unique drive system, are ideal for
conditioning a wide variety of
dairy and food products from
cheese and lactose to cereals,
chocolate, breadcrumbs and soya.

The Ventilex design is unique
because the entire dryer is part
of the movement or conveyance
of the dairy or food product.
The amplitude of the movement
remains constant while the
frequency can be varied over a
wide range according to the
required transport speed, which
enables accurate adjustment of
the product drying times. Since
the amount of air needed for
drying is minimal, Ventilex Fluid
Bed Dryers produce big benefits
in terms of smaller ancillary
equipment and large energy
savings.

The heart of the Ventilex
transport system is the revolution¬
ary but logical drive mechanism,
in which the dryer is supported
on air bellows, which are accu¬
ately adjusted according to the
product requirements. The entire
dryer is attached to the upper
steel C beams and the entire
product bed is raised and moved
forward within the Fluid Bed
Dryer simultaneously.

The air bellows keep the
correct amount of spring action
across the Fluid Bed Dryer as they
are all connected to the same
pressurized control system. A
pressure monitor closely checks
the air pressure to ensure that the
bellows are not over- or under-
pressurized and the pressure is
kept within a very accurate range.

With this simple system,
processors are assured that
product is transported in a first
first-out series, one of the
biggest advantages the Ventilex
mechanism offers over vibatory
drives. The entire time-proven
drive system has few moving parts
and is simple in design, so it is
easy to maintain and is mechani¬
cally reliable.

All Ventilex Fluid Bed Dryers
are constructed with stainless
steel in the process areas. Op¬
tional equipment available
includes a Clean In Place (CIP)
system and a Sanitary Design
Standard that exceeds strict USDA
guidelines for hygiene and
sanitation.

Ventilex USA, Mason, OH
Reader Service No. 350

Genesis Bioventures, Inc.

Genesis Bioventures, Inc.
(formerly BioLabs, Inc.) has
announced that one of its port¬
folio companies, Prion Develop¬
mental Laboratories, Inc. (PDL) is
currently in late-stage discussions
with a European pharmaceutical
company to provide them with an
easy-to-use, patents pending rapid
strip test for detecting Bovine
Spongiform Encephalopathy (BSE), or Mad Cow Disease.

The lateral flow strip test, developed by scientists at PDL, has been tested at Case Western Reserve University (CWRU) in Cleveland, Ohio and the Institute for Basic Research and Developmental Disabilities (IBR) in Staten Island, New York. It is similar to a home pregnancy test and will be used on-site using brain tissue taking less than five minutes to complete with accurate, easily interpreted results. To date, there are no rapid tests that can be performed at the slaughterhouse that will ensure that BSE infected cattle do not enter the human food chain. In addition to BSE, the PDL test platform has also been used to successfully detect prion diseases in human and other animal brain tissue.

The strip test, utilizing PDL's patents pending proprietary reagents and assay technology has been proven to be simple yet accurate and inexpensive. It is anticipated that the test will be reviewed and evaluated in Europe Q1 2002 prior to being certified for commercial release in the massive global cattle industry. The vitality of the beef industry in Europe, and more recently Japan, depends on the development of such a test. The detection of BSE in Japan suggests that the disease may in fact be worldwide. The ultimate size of the world market for a post-mortem test is nearly 100 million head of cattle per year.

Employing a new methodology, researchers in Israel recently discovered prions in urine samples of infected animals by using PDL's proprietary reagents. Research is currently underway to adapt the PDL test for analysis of urine samples, which would provide the world's first practical pre-mortem diagnostic test for BSE. Once the test has been proven in cattle, development and completion of a similar test for humans and other animals would be accelerated, ensuring safe blood products, donor tissue and surgical instruments.

Genesis Bioventures, Inc., New York, NY

Reader Service No. 353

Italcoppie “TRE” Low Cost RTD Probes from the Instrumentation Group

The Instrumentation Group has introduced a new series of low cost, high performance Italcoppie® brand RTD probes. These rugged, long-lasting, cost-effective and accurate sensors provide a temperature measurement alternative for many applications.

The TRE series probes are constructed from a single Platinum 100 RTD sensor meeting IEC 751 Class B accuracy standards. The sensor is insulated with densely packed magnesium oxide and imbedded in a 3 mm O.D. shank formed from 316 stainless steel.

Shank lengths of 100, 150, and 250 mm (3.94", 5.91", and 9.84") are available. The resulting probe assembly is molded into a nylon terminal measuring 8 mm in diameter by 25 mm in length (3.15" x .984"). The TRE probe is finished with a length of copper connection cable (22 AWG) covered with a silicon rubber insulation that provides protection up to 180°C (356°F). The connecting cable is available in 1,000 or 2,000 mm (3' 3" or 6' 6") lengths.
The resulting temperature sensing probe is strong, extremely flexible, watertight, and accurate. Suitable for measuring temperatures from -50° to 500°C (-58° to 932°F), TRE probes are ideal for a wide range of applications, including process monitoring and control, HVAC/R, water treatment, oil and gas production, and many others. The rugged one-piece construction is an advantage in harsh environments and seals out harmful, corrosive liquids.

To further aid accuracy and facilitate recalibration, individual TRE probes are permanently etched with the exact resistance test value (in Ohms) at 0°C, loop resistance included. The manufacturing date and a traceable lot number are also etched in the probe shank surface.

Instrumentation Group, Asheville, NC

Cox Technologies to Provide Temperature Labels to Monitor Ground Beef Shipments for American Foods Group

Cox Technologies, Inc. has announced the addition of American Foods Group, Inc., a major beef producer for US markets, as a customer of its innovative time and temperature sensing labels, the Vitsab® Time Temperature Integrator (TTI).

The Vitsab® TTI label reveals if a product has been time and temperature abused. If either abuse occurs during refrigerated distribution or storage, the product quality, appearance and weight at retail end-point can be degraded. Retailers who have tested the Vitsab® TTI labels report that they are very effective in stock management and in maintaining a safe “cold chain” for products shipped from supplier to distribution warehouses and finally to retail stores.

The Vitsab® TTI labels are inexpensive adhesive labels that are attached to wholesale food cartons. They indicate — by simple color-changing dot — whether a particular carton has been exposed to damaging lengths of time and high temperatures.

Cox Technologies, Inc., Belmont, NC

Alfa Laval Releases New Consolidated Sanitary Fluid Handling Product Line

Alfa Laval announces the release of a new consolidated product line. The line includes pumps, valves and fittings previously sold under the Alfa Laval and Tri-Clover brand names. The broadened product range is a result of the consolidation of Alfa Laval and Tri-Clover in December 2000. The consolidated product line results in the most comprehensive portfolio offered by any company in the North American sanitary processing industry.

At the time of the consolidation, Alfa Laval added sanitary plate heat exchangers and Contherm® scraped-surface heat exchangers to the product line. Other products include fittings and tubings, single-seat processing valves, double-seat mixproof valves including the Unique Mixproof Valve, control and indication units such as the ThinkTop, centrifugal pumps, positive displacement pumps, blenders, filters and strainers, tank equipment and instrumentation.

Alfa Laval Inc., Pleasant Prairie, WI

Eriez Magnetics’ New 275 tph Vibratory Feeder Saves Power

Eriez has added the new 68B Heavy-Duty Feeder to its line of AC operated vibratory products. The 68B is designed to accurately feed large quantities of bulk materials in rugged environments. Standard setup features a suspended 24" x 42" tray anchored to a below-deck drive with a rated capacity of 275 tph when installed at a 10° slope. Eriez’ patented, heavy duty electromagnetic AC drive requires 45% less electricity than other feeders in its class.

Ideal for handling aggregates, slag, coal, ores or grains, the 68B is available in a variety of open and tubular trays made of stainless steel or mild steel. The dust-tight, epoxy-coated, AC drive requires no rectifier or rheostat and ships with a N12 solid-state 100% variable speed control unit.

Normally suspended from rods, the feeder can be floor mounted as well. Setup with an overhead drive mount is also available.

Eriez Magnetics, Erie, PA

Reader Service No. 358
Ivan Parkin Lecture

will be presented by

Mitchell L. Cohen, M.D.

Director
Division of Bacterial and Mycotic Diseases
National Center for Infectious Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

Food Safety in the Time of Anthrax

Sunday, June 30, 2002
Opening Session — 7:00 p.m.

Dr. Mitchell L. Cohen received his undergraduate and medical degrees from Duke University. His postgraduate training was in internal medicine at the University of Texas Southwestern Medical School, and his Infectious Disease Fellowship was completed at the University of Washington in Seattle. Since 1976, he has held positions in the Enteric Diseases Branch; Hospital Infections Program; and Office of the Director in the Division of Bacterial and Mycotic Diseases. His research interests include the epidemiology of antimicrobial resistance, foodborne diseases, and the application of molecular biology techniques to answer epidemiologic questions. He has been editor and reviewer for a number of scientific journals. He is a Fellow in the American College of Physicians and the Infectious Diseases Society of America. Dr. Cohen has been a member of several advisory committees including the Recombinant DNA Advisory Committee, National Institutes of Health, and the National Advisory Committee on Microbiological Criteria for Foods.
Sunday, June 30, 2002 – 7:00 p.m.

Opening Session — Ivan Parkin Lecture: "Food Safety in the Time of Anthrax"

Monday, July 1, 2002

Morning — 8:30 a.m. - 12:00 p.m.

Symposium Topics
- Antibiotic Resistance in Humans and Feed Animals
- Viruses in Food
- Development in Intervention Technologies to Enhance Produce Safety
- Safety of Latin-Style High Moisture Fresh Cheese

Technical Session
- Meat and Poultry Microbiology

Poster Session (10:00 a.m. - 1:00 p.m.)
- Microbiological Methods and Antimicrobials

Afternoon — 1:30 p.m. - 5:00 p.m.

Symposium Topics
- Enhancing Agricultural Security
- Minimizing the Risk of Salmonella Enteritidis in Shell Eggs
- Microbiological Food Safety at Retail
- Extended Shelf Life Meat Products — Issues and Interventions

Technical Session
- Microbiological Methods

Poster Session (3:00 p.m. - 6:00 p.m.)
- General Food Microbiology

Tuesday, July 2, 2002

Morning — 8:30 a.m. - 12:00 p.m.

Symposium Topics
- Cooperating to Improve Foodborne Outbreak Investigations
- Integrated Approaches for the Study and Control of Foodborne Pathogens in Meat and Poultry
- E. coli Research Update
- Current Issues in Seafood Safety

Technical Session
- GMOs and Produce

Poster Session (10:00 a.m. - 1:00 p.m.)
- Produce, Meat, and Seafood Microbiology

Wednesday, July 3, 2002

Morning — 8:30 a.m. - 12:00 p.m.

Symposium Topics
- Chronic Wasting Disease and Other Transmissible Spongiform Encephalopathies
- Applications of DNA Chip Technology in the Food Safety Area
- Sanitary Design of Plants and Equipment
- Risk Assessment of Food Workers Hygiene Practices and Intervention Strategies

Technical Session
- General Food Microbiology

Poster Session (9:00 a.m. - 12:00 p.m.)
- Produce and Meat Microbiology

Afternoon — 1:30 p.m. - 5:00 p.m.

Symposium Topics
- Customized Approaches to Microbial Risk Assessment
- Control of Escherichia coli O157:H7 in Cattle
- Current Practices in Produce Safety
- Food Safety Education Update

Technical Session
- Antimicrobials

Poster Session (2:00 p.m. - 5:00 p.m.)
- Poultry, Meat and General Food Microbiology
89th Annual Meeting
June 30-July 3, 2002

Event Information

EVENING EVENTS

Cheese and Wine Reception
Sunday, June 30, 2002 • 8:00 p.m. - 10:00 p.m.
Attendees and guests are invited to this traditional reception in the exhibit hall.

Exhibit Hall Reception
Monday, July 1, 2002 • 5:00 p.m. - 6:30 p.m.
Network with fellow food safety professionals during this informal reception while seeing the latest developments in the industry.

Monday Night Social at the San Diego Zoo
Monday, July 1, 2002 • 6:00 p.m. - 10:00 p.m.
Polar Bear Plunge, Tiger River, Gorilla Tropics and Iluri Forest — sound interesting? The World-Famous San Diego Zoo has been the gem of the city of San Diego for more than 80 years. Join us for the Monday Night Social and see first hand some of the world's rarest wildlife. Dinner will be provided in a reserved area for IAFP 2002 attendees. The Zoo will remain open to you and the public until 10:00 p.m. Explore the Zoo on a three-mile guided double-deck bus tour or go on your own adventure. Price includes admission to the Zoo, dinner, and transportation. Get your ticket today!

San Diego Dinner Cruise
Tuesday, July 2, 2002 • 6:00 p.m. - 10:30 p.m.
The celebration begins the moment you board the Hornblower Yacht. Watch the sun go down, sip champagne and enjoy a three-course dinner prepared fresh on board by talented chefs. Then dance to music or watch the San Diego sights drift by from the outdoor decks. Tickets are limited so get yours today.

Awards Banquet
Wednesday, July 3, 2002 • 7:00 p.m. - 9:30 p.m.
A special occasion to formally recognize the accomplishments of deserving food safety professionals. An elegant reception and dinner are followed by the awards ceremony. Business attire requested.

IAFP FUNCTIONS

New Member Reception
Saturday, June 29, 2002 • 4:30 p.m. - 5:30 p.m.
If you recently joined the Association or if this is your first time attending an IAFP Annual Meeting, welcome! Attend this informal reception to learn how to get the most out of attending the Meeting and meet some of today's leaders.

Affiliate Reception
Saturday, June 29, 2002 • 5:30 p.m. - 7:00 p.m.
Affiliate officers and delegates plan to arrive in time to participate in this educational reception. Watch your mail for additional details.

Committee Meetings
Sunday, June 30, 2002 • 7:00 a.m. - 5:00 p.m.
Committees and professional Development Groups (PDGs) plan, develop and institute many of the Association's projects, including workshops, publications, and educational sessions. Share your expertise by volunteering to serve on any number of committees or PDGs.

Student Luncheon
Sunday, June 30, 2002 • 12:00 p.m. - 1:30 p.m.
The mission of the Student PDG is to provide students of food safety with a platform to enrich their experience as Members of IAFP. Sign up for the luncheon to help start building your professional network.

IAFP Job Fair
Sunday, June 30, 2002 thru Wednesday July 3, 2002
Employers, take advantage of recruiting the top food scientists in the world! Post your job announcements and interview candidates. Watch for additional information at www.foodprotection.org.
DAYTIME TOURS
(Lunch included in all daytime tours)

Wine Country Tour
Saturday, June 29, 2002 • 10:00 a.m. - 3:00 p.m.

The Temecula Valley Wine Country tour takes you on a visit to the Callaway and Thornton (formerly Culbertson's) Wineries. Guests will enjoy a private in-depth tour and a lecture-tasting of white wine at Callaway.

Afterwards, we will cross the road to Thornton for a short tour on the art of making fine champagnes. Thornton still employs the French method of hand turning the bottles during the fermenting process.

A box lunch will be served. You will be sure to enjoy this Southern California wine tasting experience!

Scenic San Diego by Land and Sea
Sunday, June 30, 2002 • 10:00 a.m. - 3:00 p.m.

Visit San Diego, the city that glistens by the sea! The highlights of “America’s Finest City” will be presented on this narrated guided tour. You will see areas such as: Old Town, Balboa Park, and San Diego’s Downtown areas including the Gaslamp District and Horton Plaza. We will then tour and enjoy lunch in one of California’s most charming coastal resort towns, Coronado Island.

After seeing the city by land, you will board a yacht to cruise the calm waters of the San Diego Bay. Guides will narrate points of interest such as the Coronado Bay Bridge, the Navy shipyards and aircraft carriers, Shelter Island, Harbor Island and North Island. You will enjoy this relaxing day of learning about the city that glistens by the sea!

La Jolla: The Jewel of San Diego
Monday, July 1, 2002 • 10:00 a.m. - 3:00 p.m.

La Jolla, with the tantalizing charm of a Mediterranean Isle, unique shops and breathtaking views of the Pacific, is a refreshing change of pace sure to delight even the most discriminating visitor! You will see the La Jolla Bay and Cove area. The famed La Jolla Underwater Park, maintained as an ecological reserve, is a favorite spot for scuba divers and snorkelers.

Tour guests will delight in a special 45-minute historical walking tour of La Jolla. This tour will bring the history of La Jolla to life with a personal docent who is a resident expert.

Shopping is always an extraordinary experience in La Jolla. Among the many boutiques, import shops, galleries and specialty food shops, you are sure to find unique and exclusive gifts.

A delicious lunch at George’s at the Cove, one of the many fine restaurants in La Jolla, will be a special treat for all.

Behind the Scenes at the Wild Animal Park
Tuesday, July 2, 2002 • 9:00 a.m. - 2:00 p.m.

The San Diego Wild Animal Park began more than 20 years ago as a breeding facility for the San Diego Zoo’s large animals. Dr. Charles Schroeder had the vision to open the 2,100-acre wildlife sanctuary for visitors to view animals roaming freely in settings similar to their native homelands. Known worldwide for its conservation efforts, the Wild Animal Park boasts over 3,000 animals from over 250 species and over 3,000 different exotic plant species.

You will enjoy a “Beastly Business” tour at the Wild Animal Park. This tour offers participants a private guided program focusing on the mammal, bird, and plant collection at the Wild Animal Park. Guests will enjoy a private monorail tour to view the extensive Asian and African field enclosures where rhinos, antelopes, giraffes, monkeys, elephants, and flamingo can be spotted from the train.

The entire program is conducted by a personal guide who can share the latest updates on animal births, new exhibit plans, and ways to help conserve endangered animals and their habitat.

As part of the “Behind the Scenes Tour,” you will also experience a privately guided walking tour and an up close encounter with an exotic animal and its trainer in a special VIP Program. A lunch voucher is included so you can grab a bite to eat while enjoying your day at the Wild Animal Park.

HOSPITALITY ROOMS

Spouse/Companion Room
Register your spouse/companion and they will have access to the hospitality room where a continental breakfast and afternoon snacks are provided Sunday through Wednesday.

Retired Member Room
At the request of IAFP Retired Members, a room has been set aside for their use. A cribbage board, cards, and other games will be available. You are invited to bring your favorite game to challenge your fellow retired colleagues.
IMPORTANT! Please read this information before completing your registration form.

MEETING INFORMATION
Register to attend the world’s leading food safety conference.
Registration includes:
♦ Technical Sessions
♦ Symposia
♦ Poster Presentations
♦ Ivan Parkin Lecture
♦ Exhibit Hall Admittance
♦ Cheese and Wine Reception
♦ Exhibit Hall Reception
♦ Program and Abstract Book

EXHIBIT HOURS

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, June 30, 2002</td>
<td>8:00 p.m. - 10:00 p.m.</td>
</tr>
<tr>
<td>Monday, July 1, 2002</td>
<td>9:30 a.m. - 1:30 p.m.</td>
</tr>
<tr>
<td>Tuesday, July 2, 2002</td>
<td>9:30 a.m. - 1:30 p.m.</td>
</tr>
</tbody>
</table>

DAYTIME TOURS
(Lunch included in all daytime tours)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday, June 29, 2002</td>
<td>10:00 a.m. - 3:00 p.m.</td>
</tr>
<tr>
<td>Sunday, June 30, 2002</td>
<td>10:00 a.m. - 3:00 p.m.</td>
</tr>
<tr>
<td>Monday, July 1, 2002</td>
<td>10:00 a.m. - 3:00 p.m.</td>
</tr>
<tr>
<td>Tuesday, July 2, 2002</td>
<td>9:00 a.m. - 2:00 p.m.</td>
</tr>
</tbody>
</table>

EVENING EVENTS

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, June 30, 2002</td>
<td>7:00 p.m. - 8:00 p.m.</td>
</tr>
<tr>
<td>Monday, July 1, 2002</td>
<td>8:00 p.m. - 10:00 p.m.</td>
</tr>
<tr>
<td>Monday, July 2, 2002</td>
<td>6:00 p.m. - 10:30 p.m.</td>
</tr>
<tr>
<td>Tuesday, July 3, 2002</td>
<td>6:00 p.m. - 7:00 p.m.</td>
</tr>
</tbody>
</table>

REFUND/CANCELLATION POLICY
Registration fees, less a $50 administration fee and any applicable bank charges, will be refunded for written cancellations received by June 7, 2002. No refunds will be made after June 7, 2002; however, the registration may be transferred to a colleague with written notification. Refunds will be processed after July 8, 2002. Event and tour tickets purchased are nonrefundable.

HOTEL INFORMATION
For reservations, contact the hotel directly and identify yourself as an International Association for Food Protection Annual Meeting attendee to receive a special rate of $143 per night, single or double. Make your reservations as soon as possible; this special rate is available only until May 30, 2002.

Manchester Grand Hyatt San Diego
(Formerly Hyatt Regency San Diego)
One Market Place
San Diego, California 92101
Phone: 800.213.1234 619.232.1234
Name (Print or type your name as you wish it to appear on name badge)

Member Number:

Employer

Title

Mailing Address (Please specify: Home Work)

City

State/Province

Country

Postal/Zip Code

Telephone

Fax

E-mail

First time attending meeting

Regarding the ADA, please attach a brief description of special requirements you may have.

I AFP occasionally provides Attendees' addresses (excluding phone and E-mail) to vendors and exhibitors supplying products and services for the food safety industry.

If you prefer NOT to be included in these lists, please check the box.

PAYMENT MUST BE RECEIVED BY MAY 30, 2002 TO AVOID LATE REGISTRATION FEES

REGISTRATION FEES:

<table>
<thead>
<tr>
<th></th>
<th>MEMBERS</th>
<th>NONMEMBERS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>$ 295 ($145 late)</td>
<td>$ 445 ($495 late)</td>
<td></td>
</tr>
<tr>
<td>Student Luncheon</td>
<td>$ 5 ($10 late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday Night Social</td>
<td>$ 39 ($44 late)</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Dinner Cruise</td>
<td>$ 14 ($19 late)</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Awards Banquet</td>
<td>$ 45 ($15 late)</td>
<td>$ 25 ($25 late)</td>
<td></td>
</tr>
<tr>
<td># OF TICKETS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAYMENT OPTIONS:

☐ Check Enclosed

☐ Visa

☐ MasterCard

☐ Discover

☐ American Express

☐ Diners Club

☐ Discover

☐ Expiration Date

JOIN TODAY AND SAVE!!!

(Attach a completed Membership application)

(See page 231 of this issue for a Membership application)

EXHIBITORS DO NOT USE THIS FORM
The Foundation of the International Association for Food Protection will hold its Annual Silent Auction during IAFP 2002, the Association’s 89th Annual Meeting in San Diego, California, June 30–July 3, 2002. The Foundation Fund supports the:

★ Ivan Parkin Lecture
★ Travel support for exceptional speakers at the Annual Meeting
★ Audiovisual Library
★ Developing Scientist Competition
★ Shipment of volumes of surplus JFP and DFES journals to developing countries through FAO in Rome

Support the Foundation by donating an item today. A sample of items donated last year included:

★ Charleston Sweetgrass Basket
★ Food Safety Videos & Publications
★ Jeff Gordon Jacket
★ Phantom of the Marsh Print
★ Waterford Crystal Frame
★ White House 2001 Ornament
★ Wine
★ Wisconsin Master Cheesemaker Cheese Selection

Complete the form and send it in today.

Description of auction items
Estimated Value
Name of Donor
Company (if relevant)
Mailing Address (Please specify: Home Work)
City State or Province
Postal Code/Zip + 4 Country
Telephone # Fax #
E-mail

Return to:
Donna Gronstal
International Association for Food Protection
6200 Aurora Avenue, Suite 200W
Des Moines, IA 50322-2864, USA
Fax: 515.276.8655
E-mail: dgronstal@foodprotection.org
Sponsorships

We invite you to participate as a sponsor for IAFP 2002. Sponsorship participation provides an excellent opportunity to position your company or organization as a supporter of the Association.

Several exciting opportunities will be available in 2002. Please review the event listing to select the one that will best position your organization. Reservations will be taken in order received for any open sponsorship events. A waiting list for events with a right of first option will be established.

SPONSORSHIP EVENT LIST

<table>
<thead>
<tr>
<th>Amount</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16,000</td>
<td>Monday Evening Social</td>
</tr>
<tr>
<td>$14,000</td>
<td>Opening Reception (Sunday)</td>
</tr>
<tr>
<td>$14,000</td>
<td>Exhibit Hall Reception (Monday)</td>
</tr>
<tr>
<td>$10,000</td>
<td>President's Reception (Tuesday)</td>
</tr>
<tr>
<td>$7,500</td>
<td>Badge Holders w/Lanyards</td>
</tr>
<tr>
<td>$3,250</td>
<td>Exhibit Hall Pastries and Coffee (Monday Morning)</td>
</tr>
<tr>
<td>$2,750</td>
<td>Exhibit Hall Coffee Break (Monday Afternoon)</td>
</tr>
<tr>
<td>$3,250</td>
<td>Exhibit Hall Pastries and Coffee (Tuesday Morning)</td>
</tr>
<tr>
<td>$2,750</td>
<td>Coffee Break (Tuesday Afternoon)</td>
</tr>
<tr>
<td>$2,750</td>
<td>Coffee Break (Wednesday Morning)</td>
</tr>
<tr>
<td>$2,250</td>
<td>Coffee Break (Wednesday Afternoon)</td>
</tr>
<tr>
<td>$3,500</td>
<td>Spouse/Companion Hospitality Room</td>
</tr>
<tr>
<td>$3,500</td>
<td>Student PDG Luncheon (Sunday)</td>
</tr>
<tr>
<td>$3,000</td>
<td>IAFP New Member Orientation (Saturday)</td>
</tr>
<tr>
<td>$3,000</td>
<td>Affiliate Reception (Saturday)</td>
</tr>
<tr>
<td>$2,000</td>
<td>Exhibitor Move-in Refreshments (Sunday)</td>
</tr>
<tr>
<td>$1,800</td>
<td>Awards Banquet Flowers (Wednesday)</td>
</tr>
<tr>
<td>$1,750</td>
<td>Committee Day Refreshments (Sunday)</td>
</tr>
<tr>
<td>$1,000</td>
<td>Speaker Travel Support</td>
</tr>
<tr>
<td>$600</td>
<td>Golfers' Continental Breakfast (Sunday)</td>
</tr>
<tr>
<td>$Various</td>
<td>Golf Tournament Prizes (Sunday)</td>
</tr>
</tbody>
</table>

Partial sponsorship for the above events is available. Contact Dave Larson for details.

SPONSORSHIP PARTICIPANT

Name
Company
Address
City __________________ State or Province __________________
Country __________________ Postal Code/Zip + 4 __________________
Phone __________________ Fax __________________
E-mail __________________

Desired Event to Sponsor __________________

Amount Paid __________________

Payment: ☐ Check ☐ Mastercard
☐ VISA ☐ American Express

Contact:

Dave Larson
Phone: 515.440.2810
Fax: 515.440.2809
E-mail: larson6@earthlink.net

Payment Must be Enclosed for Order to be Processed

* US Funds on US Bank

Account Number __________________
Expiration Date __________________
Cardholder Signature __________________
Coming Events

APRIL
- **3-5**, Missouri Milk, Food and Environmental Health Association Annual Meeting, Ramada Inn, Columbia, MO. For further information, contact Linda Haywood at 417.962.4243.
- **9-10**, Upper Midwest Dairy Industry Association Spring Meetings, April 9, 2002 at the Best Western Hotel, Mankato, MN. April 10, 2002 at the Holiday Inn, Alexandria, MN. For further information, contact Paul Nierman at 763.785.0484.
- **11-12**, Lead Auditor Seminar, St. Louis, MO. For further information, contact Kelly Mayberry at 800.477.0778 ext. 302.
- **11-13**, International Fresh-cut Produce Association’s (IFPA) 15th Annual Conference and Exhibition, Millennium Biltmore Hotel and the Los Angeles Convention Center, Downtown Los Angeles, CA. For additional information, call 703.299.6282; Web site: www.fresh-cuts.org.
- **16**, Indiana Environmental Health Association, Inc. Spring Conference, Valle Vista, Greenwood. For further information, contact Helene Uhlman at 219.853.6358.
- **19-24**, Conference for Food Protection, Sheraton Nashville, Nashville, TN. For further information, contact Trevor Hayes at 408.848.2255; E-mail: TWHgilroy@aol.com.
- **22-24**, Microbiology I: Practical Microbiology & Troubleshooting Course, Guelph Food Technology Centre, Guelph, Ontario, Canada. For further information, contact Marlene Inglis at 519.821.1246 ext. 5028; E-mail: minglis@gftec.ca.
- **23-24**, HACCP Seminar, Chicago, IL. For further information, contact Kelly Mayberry at 800.477.0778 ext. 302.
- **24-25**, HACCP Workshop, Cherry Hill, NJ. For further information, contact AIB at 785.537.4750.
- **24-30**, Interpack 2002, Düsseldorf, Germany. For further information, call 312.781.5180; E-mail: info@mdna.com.
- **26**, Fifth Annual Symposium on Industrial and Fermentation Microbiology, Radisson Center, La Crosse, WI. For further information, contact Dr. S. N. Rajagopal at 608.785.6976; E-mail: rajagopa.s@uw lax.edu.
- **30-May 1**, Advanced HACCP Workshop, Chicago, IL. For further information, contact AIB, at 785.537.4750.

MAY
- **8**, Metropolitan Association of Dairy, Food and Environmental Specialists Spring Seminar, Cook College Campus Center, Rutgers University, New Brunswick, NJ. For further information, contact Carol Schwar at 908.689.6693.
- **8-10**, Environmental Health: Protecting Children, West Coast Olympia Hotel, Olympia, WA. For further information, contact Rick Zahalka at 253.539.5250; E-mail: rzahalka@shd.snohomish.wa.gov.
- **13-15**, Pennsylvania Association of Milk, Food and Environmental Sanitarians Spring Meeting, Nittany Lion Inn, State College. For further information, contact Eugene Frey at 717.397.0719.
- **14-15**, Applied Dairy Chemistry Short Course, University of Wisconsin-Madison, Madison, WI. For further information, contact Dr. Bill Wendorff at 608.263.2015.
- **20-24**, 3-A Sanitary Standards Committee Annual Meeting, Sheraton Four Points Hotel, Milwaukee Airport, Milwaukee, WI. For more information, contact Tom Gilmore at 703.761.2600; E-mail: tgilmore@iafis.org.

JUNE
- **4-5**, Clean-In Place (CIP) Short Course, Michigan State University, East Lansing, MI. For further information, call 517.355.7713 ext. 177; E-mail: partridg@msu.edu.
- **4-6**, Penn State Food Microbiology Short Course: Detection and Control of Foodborne Pathogens, Penn State Berks Campus, Reading, PA. For further information, Dr. Cathy Cutter at 814.865.8862; E-mail: cnc3@psu.edu.
- **28-29**, IAFP Workshops, San Diego, CA.
 - Workshop I - “Critical Steps in Laboratory Methods for the Detection of _Listeria monocytogenes_”
 - Workshop II - “Current Practices in Produce Safety: GAPS and GMPs”
- **29**, IAFP Workshops, San Diego, CA.
 - Workshop III - “Control of Pathogens in the Dairy Processing Environment”
 - Workshop IV - “Media Training for the Scientific Community”
 - Additional workshop information available in the next issue of _DFES_.
- **30-July 3**, IAFP 2002, the Association’s 89th Annual Meeting, San Diego, CA. For more information, contact Tom Gilmore at 703.761.2600; E-mail: tgilmore@iafis.org.

JULY
- **12-19**, 22nd International Workshop/Symposium on Rapid Methods and Automation in Microbiology, Manhattan, KS. For further information, contact Daniel Y. C. Fung at 785.532.5654; E-mail: dfung@oznet.ksu.edu.
... to produce the highest quality product at the lowest per unit cost.

Michelson Laboratories, Inc.

6280 Chalet Drive, Commerce, CA 90040
(562) 928-0553 • (888) 941-5050
FAX (562) 927-6625

COMPLETE LABORATORY TESTING

SPECIALIZING IN

- ISO 25 Accredited Through A2LA
- Nutritional Labeling Programs
- Recognized Lab For FDA Blocklisted Items
- Extraneous Material Identification
- Decomposition
- Chemical Analysis
- Microbiological Analyses
- Water/Wastewater Analyses
- Quality Assurance Programs
- Consulting
- FDA Recognized
- USDA Certified
- Approved By The Japanese Ministry

Our Experience Is Your Protection

International Association for Food Protection.

Reader Service Card

DFES March ‘02

Expires: June 30, 2002 (International expiration: September 30, 2002)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State/Prov.</td>
</tr>
<tr>
<td>Country</td>
<td>Zip/Postal Code</td>
</tr>
<tr>
<td>Phone Number</td>
<td></td>
</tr>
</tbody>
</table>

PROGRESS/OIP Engineering

- Process/CIP/SIP Design
- Control System Integration
- Software Development
- Start-up & Training
- On-going Support

Roscoe, IL
(815) 623-7311
Livermore, CA
(925) 960-1815

Dublin, OH
(614) 764-2817
London, England
44 1483 237628

SEIBERLING Associates, Inc.

Roscoe, IL
(815) 623-7311
Livermore, CA
(925) 960-1815

Dublin, OH
(614) 764-2817
London, England
44 1483 237628

Reader Service No. 108
Pre-Meeting Workshops

Friday–Saturday, June 28-29, 2002

- Critical Steps in Laboratory Methods for the Detection of *Listeria monocytogenes*
- Current Practices in Produce Safety: GAPs and GMPs

Saturday, June 29, 2002

- Control of Pathogens in the Dairy Processing Environment
- Media Training for the Scientific Community

More details will be available in the April issue of DFES, or visit our Web site at www.foodprotection.org for the latest information.

In Memory of...

Peggy Matthews Foegeding

Dr. Peggy Matthews Foegeding, a leading food microbiologist and long time Member of IAFF, passed away on January 15, 2002. She obtained her B.S. degree from the University of Missouri and M.S. and Ph.D. degrees from the University of Minnesota. Dr. Foegeding joined the Food Science Department at North Carolina State University where she served as a professor from 1982 until her retirement in 1999.

In addition to Dr. Foegeding’s involvement with IAFF, she was an active member in the Institute of Food Technologists (IFT) and the American Society for Microbiology (ASM). Over the course of her career, she taught food microbiology to hundreds of undergraduate students, mentored over 25 graduate students, and published over 70 papers. Her awards include the NC State University Sigma Xi Research Award (1989) and the IFT William V. Cruess Award for outstanding teaching and advising (1994). Peggy was elected as a Fellow in the American Academy of Microbiology in 1994 and as an IFT Fellow in 1999.

Peggy Foegeding was an innovative researcher, a gifted teacher, and an enthusiastic advocate for food safety. Although having made so many contributions, she is perhaps best remembered as a caring and devoted teacher who saw the potential for success in all students. She has influenced the lives of countless young food scientists and her loss will be felt by many. Perhaps the words of one of our IAFF colleagues expressed it best when he said, “...a bright and shining star has gone out way too soon. Let’s all work a little harder to keep the food microbiology torch burning, keep pushing in new directions to honor all the good things that Peggy stood for.”

A scholarship has been established at North Carolina State University in memory of Dr. Foegeding. Contributions may be sent to: The Peggy Foegeding Memorial Fund, c/o Food Science Department, North Carolina State University, Box 7624, Raleigh, NC 27695-7624.
Continued from page 232

an immune system less prone to allergic response. In other developments on the horizon, the genetic engineering of bacteria to express a shiga toxin binding site has been documented. In a mouse model, these bacteria reduce the infectivity of STEC (Paton et al., 2000). In another recent approach, Lactococcus lactis was engineered to secrete interleukin-10 and was used to reduce colitis symptoms in a mouse model; the organism was proposed as an approach for treating inflammatory bowel disease (Steidler et al., 2000). Capitalizing on the mucosal immune response of the gut, the largest immune organ in the body, scientists have been engineering live lactic acid bacteria as carriers of antigens to serve as oral vaccines against a variety of targets (Pouwels et al., 1996). These studies demonstrate the versatility of probiotics as useful tools for the functional food industry and the promotion of public health.

As thrilling as many of these developments are, numerous gaps still exist in our understanding of the mechanisms and of the extent to which probiotics play roles in human health. Mechanisms of action need to be clarified, with an eye to understanding strain- and dose-dependency of effects. More long-term, controlled evaluations in meaningful numbers of human subjects with physiologically relevant endpoints are needed. Technological problems of survival and maintenance of relevant biological activities during product manufacture and storage must be better understood. Addressing many of these issues is a group of scientists of the International Scientific Association for Probiotics and Prebiotics (www.fp.rdg.ac.uk/isapp/) at a workshop to be held in London, Ontario, in May 2002. The power of genomics is being applied to these problems, with announcement of the sequencing of the complete genomes of several lactic acid bacteria expected to be completed early in 2002.

It has been a long path from the observation in 1906 that fermented milk with live bacteria played a role in the health of Bulgarians to applying the power of modern microbial genetics and medical technology to understanding and use of probiotics in human health. But perhaps the situations of today suggest a great need. We face a new millennium in which the realities include crises of antibiotic-resistant pathogens, threats of super-virulent pathogens from animal agriculture, rising health care costs in which a prevention focus is more cost effective, as well as more humane and prudent, and an aging population looking for ways to stay healthy. Development of multi-faceted approaches to dealing with these issues, including probiotic bacteria, makes sense. Additional information on probiotics can be found at www.usprobiotics.org.

REFERENCES

Search, Order, Download 3-A Sanitary Standards

To order by phone in the United States and Canada call 800.699.9277; outside US and Canada call 734.930.9277; or Fax: 734.930.9088.

Order online at www.3-A.org

ADVERTISING INDEX

Charm Sciences Inc. ... 169
DQCI Services, Inc. ... 165
Food Processors Institute 165
Glo Germ Company ... Inside Front Cover
Michelson Laboratories, Inc. 223
Qualicon .. Back Cover
Seiberling Associates, Inc. 223

"Innovations in Food Microbiology Award" for University Departments working on development of new technologies or methodologies for use in microbiological safety and quality of food. For more information,

Contact: Stuart Ray
Seward Ltd.
98 Great North Road
London N2 0GN United Kingdom
E-mail: stuart.ray@seward.co.uk

This Award will be presented July 3, 2002 in San Diego, California at IAEP 2002—the 89th Annual Meeting.

Application deadline is April 30, 2002.
Inactivation of *Escherichia coli* O157:H7 on Inoculated Alfalfa Seeds with Ozonated Water and Heat Treatment
Rana R. Sharma, Ali Demirci,* Larry R. Beuchat, and William F. Fett
447
Detection and Elimination of *Salmonella* Mbandaka from Naturally Contaminated Alfalfa Seed by Treatment with Heat or Calcium Hypochlorite
Trevor V. Suslow,* Jiangchun Wu, William F. Fett, and Linda J. Harris
452
Survival and Growth of *Listeria monocytogenes* and *Escherichia coli* O157:H7 in Ready-to-Eat Iceberg Lettuce Washed in Warm Chlorinated Water
Pascal Delaquis,* Sandra Stewart, Sandra Cazaux, and Peter Toivonen
459
Cross-Contamination of Lettuce with *Escherichia coli* O157:H7
Marian R. Wachtel* and Amy O. Charkowski
465
Prevalence of *Escherichia coli*Associated with a Cabbage Crop Inadvertently Irrigated with Partially Treated Sewage Wastewater
Marian R. Wachtel,* Linda C. Whitehand, and Robert E. Mandrell
471
Addition of Fumaric Acid and Sodium Benzoate as an Alternative Method To Achieve a 5-log Reduction of *Escherichia coli* O157:H7 Populations in Apple Cider
Justin E. Comes and Robert B. Beelman
476
Salmonella spp. Shedding by Alberta Beef Cattle and the Detection of *Salmonella* spp. in Ground Beef
Ole Sorensen,* Joyce Van Donkersgoed, Margaret McFall, Ken Manninen, Gary Gensler, and Gerald Ollis
484
Adhesion and Colonization of *Vibrio cholerae* O1 on Shrimp and Crab Carapaces
J. Castro-Rosas and E. F. Escartin*
492
Effects of Heat Shock on the Thermotolerance, Protein Composition, and Toxin Production of *Vibrio parahaemolyticus*
Hin-Chung Wong,* Po-Yen Peng, Shang-Lun Lan, Yu-Chih Chen, Kai-Hsi Lu, Chi-Tsong Shen, and Shih-Feng Lain
499
Laboratory-Scale Preparation of Soft Cheese Artificially Contaminated with Low Levels of *Escherichia coli* O157, *Listeria monocytogenes*, and *Salmonella enterica* Serovars Typhimurium, Enteritidis, and Dublin
Renata G. K. Leuschner* and Martin P. Boughflewer
508
Control of Natural Microbial Flora and *Listeria monocytogenes* in Vacuum-Packaged Trout at 4 and 10°C Using Irradiation
Ioannis N. Savvidis,* Panagiotis Skandamis, Kiriaki A. Riganakos, Nikolaos Panagiotakis, and Michael G. Kontominas
515
Effects of Diacetyl and Carbon Dioxide on Spoilage Microflora in Ground Beef
Anisha M. Williams-Campbell* and James M. Jay
523
Inhibition, Resistance Development, and Increased Antibiotic and Antimicrobial Resistance Caused by Nutraceuticals
Paula Marie L. Ward,* Shamalata Facatas, and Stanley E. Katz
528
Adhesion of Dairy Propionibacteria to Intestinal Epithelial Tissue In Vitro and In Vivo
Gabriela Zárate, Vílma I. Morata de Ambrosini, Adriana Perez Chaia, and Silvia N. Gonzalez
534
Yersinia pseudotuberculosis with Limited Genetic Diversity Is a Common Finding in Tonsils of Fattening Pigs
Maria Fredriksson-Ahomaa, and Hannu Korkeala
540
Modification of Niven's Medium for the Enumeration of Histamine-Forming Bacteria and Discussion of the Parameters Associated with Its Use
Panagiotis Mavromatis* and Peter C. Quantick
546

Research Notes

Detection of *Salmonella* in Foods Using Tecra *Salmonella* VIA and Tecra *Salmonella* UNIQUE Rapid Immunocassays and a Cultural Procedure
Ana Maria Ramalho de Paula, Dilma Scalà Gelli, Mariza Landgraf, Maria Teresa Destro, and Bernadette Dora Gombossy de Melo Franco*
552
Radiation Resistance of Virulence Plasmid-Containing and Plasmid-Less *Yersinia enterocolitica*
Christopher H. Sommers* and John S. Novak
556
Effects of Refrigeration and Alcohol on the Load of *Aeromonas hydrophila* in Oysters
J. M. Birkenhauer and J. D. Oliver*
560
Determination of MICs of Streptomycin for Resistant *Salmonella* Isolates in Swine and Poultry Using a Micro-Broth Dilution System
Thomas S. Edrington,* Roger B. Harvey, Leigh A. Farrington, and David J. Nisbet
563
Recovery of *Listeria monocytogenes* from Vacuum-Sealed Packages of Frankfurters: Comparison of the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service Product Composite Enrichment Method, the USDA Agricultural Research Service (ARS) Product Composite Rinse Method, and the USDA-ARS Package Rinse Method
Donkersgoed, Margaret McFall, Ken Manninen, Gary Gensler, and Gerald Ollis
567
Reduction of Spoilage Microorganisms in Fresh Beef Using Hydrodynamic Pressure Processing
Anisha M. Williams-Campbell* and Morse B. Solomon
571

Review

Aeromonas Species in Foods
Jamie H. Isonhood and MaryAnne Drake*
575

* Asterisk indicates author for correspondence.

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or
DPC is a non-profit organization directed to proper and improved sanitation practices in the development and distribution of educational guidelines organizations throughout the world.

The Dairy Practices Council®

This newly expanded Four-volume set consists of 66 guidelines.

1. Planning Dairy Freestall Barns
2. Effective Installation, Cleaning, and Sanitizing of Milking Systems
3. Selected Personnel in Milk Sanitation
4. Installation, Cleaning, & Sanitizing of Large Parlor Milking Systems
5. Controlling Fluid Milk Volume and Fat Losses
6. Natural Ventilation for Dairy Tie Stall Barns
7. Sampling Fluid Milk
8. Good Manufacturing Practices for Dairy Processing Plants
9. Fundamentals of Cleaning & Sanitizing Farm Milk Handling Equipment
10. Maintaining & Testing Fluid Milk Shelf-Life
11. Sediment Testing & Producing Clean Milk
12. Tunnel Ventilation for Dairy Tie Stall Barns
13. Environmental Air Control and Quality for Dairy Food Plants
14. Clean Room Technology
15. Milking Center Wastewater
16. Handling Dairy Products from Processing to Consumption
17. Prevention of & Testing for Added Water in Milk
18. Fieldperson’s Guide to High Somatic Cell Counts
21. Raw Milk Quality Tests
22. Control of Antibacterial Drugs & Growth Inhibitors in Milk and Milk Products
23. Preventing Rancid Flavors in Milk
24. Troubleshooting High Bacteria Counts of Raw Milk
25. Cleaning & Sanitization Responsibilities for Bulk Pickup & Transport Tankers
27. Dairy Manure Management From Barn to Storage
28. Troubleshooting Residual Films on Dairy Farm Milk Handling Equipment
29. Cleaning & Sanitizing in Fluid Milk Processing Plants
30. Potable Water on Dairy Farms
31. Composition & Nutritive Value of Dairy Products
32. Fat Test Variations in Raw Milk
33. Brucellosis & Some Other Milkborne Diseases
34. Butterfat Determinations of Various Dairy Products
35. Dairy Plant Waste Management
36. Dairy Farm Inspection
37. Planning Dairy Stall Barns
38. Preventing Off-Flavors in Milk
39. Grade A Fluid Milk Plant Inspection
40. Controlling Fluid Milk Volume and Fat Losses
41. Milkrooms and Bulk Tank Installations
42. Stray Voltage on Dairy Farms
43. Farm Tank Calibrating and Checking
44. Gravity Flow Gutters for Manure Removal in Milking Barns
45. Dairy Odor Management
46. Cooling Milk on the Farm
47. Pre- & Postmilking Test Disinfectants
48. Farm Bulk Milk Collection Procedures
49. Monitoring Fluid Milk Production
51. Controlling the Accuracy of Electronic Testing Instruments for Milk Components
52. Vitamin Fortification of Fluid Milk Products
53. Selection of Elevated Milking Parlor Hydraulics
54. Hazard Analysis Critical Control Point System - HACCP For The Dairy Industry
55. Dairy Product Safety (Pathogenic Bacteria) for Fluid Milk and Frozen Dessert Plants
56. Dairy Plant Sanitation
57. Sizing Dairy Farm Water Heater Systems
58. Production and Regulation of Quality Dairy Goat Milk
59. Troubleshooting Microbial Defects: Product Line Sampling & Hygiene Monitoring
60. Frozen Dessert Processing
61. Resources For Dairy Equipment Construction Evaluation
62. Controlling The Quality And Use Of Dairy Product Rework
63. Control Points for Good Management Practices on Dairy Farms
64. Installing & Operating Milk Precoolers Properly on Dairy Farms
66. Planning A Dairy Complex - “100+ Questions To Ask”
67. Abnormal Milk - Risk Reduction and HACCP
68. Farmers Guide To Somatic Cell Counts In Sheep
71. Farms’ Guide To Somatic Cell Counts In Goats
72. Layout of Dairy Milk Houses for Small Ruminant Operations
73. Planning Dairy Freestall Barns
74. Farm Tank Calibrating and Checking
78. Preventing Off-Flavors in Milk
79. Butterfat Determinations of Various Dairy Products
80. Food Allergen Awareness In Dairy Plant Operations
83. Bottling Water in Fluid Milk Plants

IAFP has agreed with The Dairy Practices Council to distribute their guidelines. DPC is a non-profit organization of education, industry and regulatory personnel concerned with milk quality and sanitation throughout the United States. In addition, its membership roster lists individuals and organizations throughout the world.

For the past 32 years, DPC’s primary mission has been the development and distribution of educational guidelines directed to proper and improved sanitation practices in the production, processing, and distribution of high quality milk and milk products.

The DPC Guidelines are written by professionals who comprise six permanent task forces. Prior to distribution, every guideline is submitted for approval to the state regulatory agencies in each member state. Should any official have an exception to a section of a proposed guideline, that exception is noted in the final document.

The guidelines are renown for their common sense and useful approach to proper and improved sanitation practices. We think they will be a valuable addition to your professional reference library.
The use of the Audiovisual Library is a benefit for Association Members. Limit your requests to five videos. Material from the Audiovisual Library can be checked out for 2 weeks only so that all Members can benefit from its use.

For Association Members Only

Dairy
- E5210 The New Superfund: What it is & How it Works - (4) Emergency Preparedness & Community Right-to-Know
- E5220 The New Superfund: What it is & How it Works - (3) Underground Storage Tank Trust Fund & Response Program
- E5250 The New Superfund: What it is & How it Works - (1) Research & Development - Closing Remarks
- E5240 Water Testing
- E5245 Wash Your Hands
- E5250 Waste Not, Reducing Hazardous Waste

ENVIRONMENTAL
- E5310 The ABCs of Clean - A Handwashing & Cleanliness Program for Early Childhood Programs
- E5320 Acceptable Rinks
- E5350 Air Pollution - Indoor
- E5340 Asthma Awareness
- E5355 Effective Handwashing - Preventing Cross-Contamination in the Food Service Industry
- E5360 EPA TSP Tests for Foodservice Facilities Toxicity Tests - (Dung Leschen laps)
- E5370 EPA Test Methods for Foodservice Facilities Toxicity Tests - (Using Fecal Jawz)
- E5385 EPA This is Superfund
- E5390 Fest to Drink
- E5395 Garbage: The Movie
- E5396 Global Warming: Hot Times Ahead
- E5397 Kentucky Public Swimming Pool & Bathing Facilities
- E5495 Plastic Recycling Today - A Growing Resource
- E5340 Putting Aside Perceives
- E5350 Radar
- E5360 RCRA - Hazardous Waste
- E5370 The New Superfund: What it is & How it Works - (1) Changes in the Removal Process: Clean-up Standards & Site Involvement Requirements
- E5390 The New Superfund: What it is & How it Works - (3) Enforcement and Federal Facilities

Audiovisual Library
- E2115 Get with a Safe Food Attitude
- E2115* GMP Basics - Avoiding Microbial Cross-Contamination
- E2140 GMP Basics - Employer Hygiene Practices
- E2143 GMP Basics - Guidelines for Maintenance Personnel
- E2148 GMP - AFIP Employees
- E2150 GMP - Personal Hygiene and Practices in Food Manufacturing
- E2157 GMP - Process Control Practices
- E2160 GMP - Sources & Control of Contamination during Processing
- E2180 HACCP Safe Food Handling Techniques
- E2189 HACCP Training for Employees - USDA Inspections
- E2172 HACCP Training for Managers
- E2175 The Heart of HACCP
- E2175* HACCP: The Way to Safe Food
- E2175 Inspecting for Safe Food - Kentucky's Food Code
- E2190 Is What You Order What You Get? Food Safety Integrity
- E2171 Northern Delights - From Canada to the World
- E2120 On the Front Line
- E2125 On the Line
- E2170 Personal Hygiene in Sanitation
- E2154 Diet - Nutrition & Cancer
- E2170 Personal Hygiene in Sanitation
- E2150 Proper Handling of Pesticides
- E2150* Purely Coincidental
- E2145 Safe Food: You Can Make a Difference
- E2150 Safe Handling
- E2125 Safe Practices for Sausage Production
- E2145 Safe Processing of Sprouts
- E2150 Sanitation for Seafood Processing Personnel
- E2150 Sanitizing for Safety
- E2150 SERSAFE® Steps to Food Safety (6 Videos)
- E2140 Smart Sanitation: Principles & Practices for Effectively Cleaning Your Food Plant
- E2150 Supermarket Sanitation Program - "Cleaning & Sanitizing"
- E2190 Supermarket Sanitation Program - "Food Safety"
- E2150 Take Aim at Sanitation
- E2150 Wide World of Foodservice Brushes
- E2150 Your Health in Our Hands - Our Health in Yours

Other
- E1010 Diet, Nutrition & Cancer
- E1010 Eating Defensively: Food Safety Advice for Persons with AIDS
- E1010* Ice: The Forgotten Food
- E1010 Personal Hygiene & Sanitation for Food Processing Employees
- E1010* Pesticides Aspects of Product Tampering
- E1010 Tampering: The Issue Examined

Visit our Web site at www.foodprotection.org for detailed tape descriptions
SHIP TO: (Please print or type. All areas must be completed in order to process.)

Member # ________________________________
First Name __________________ M.I. ______ Last Name __________________
Company _______________________________ Job Title _______________________

Mailing Address ____________________________
(Please specify: □ Home □ Work)

City __________________________ State or Province ______
Postal Code/Zip + 4 ________________ Country __________________________
Telephone # __________________________ Fax # __________________________
E-mail ________________________________

BOOKLETS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Member or Gov't. Price</th>
<th>Non-Member Price</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedures to Investigate Waterborne Illness—2nd Edition</td>
<td>$10.00</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures to Investigate Foodborne Illness—5th Edition</td>
<td>$10.00</td>
<td>$20.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — $3.00 (US) $5.00 (Outside US)
Each additional booklet $1.50

Multiple copies available at reduced prices.

Shipping/Handling Booklets Total

OTHER PUBLICATIONS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Member or Gov't. Price</th>
<th>Non-Member Price</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pocket Guide to Dairy Sanitation (minimum order of 10)</td>
<td>$.60</td>
<td>$ 1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before Disaster Strikes... A Guide to Food Safety in the Home (minimum order of 10)</td>
<td>$.60</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Developing HACCP Plans — A Five-Part Series (as published in DFES)</td>
<td>15.00</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Surveillance of Foodborne Disease — A Four-Part Series (as published in JFP)</td>
<td>18.75</td>
<td>18.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Annual Meeting Abstract Book Supplement (year requested)</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*IAFP History 1911-2000</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — Guide Booklets — per 10 $2.50 (US) $3.50 (Outside US)
*Includes shipping and handling

Payment Must be Enclosed for Order to be Processed
* US Funds on US Bank *

☑ CHECK OR MONEY ORDER ENCLOSED ☐ VISCA ☐ MasterCard ☐ Δ Discover

Exp. Date ________________________________
SIGNATURE ______________________________

4 EASY WAYS TO ORDER:

Phone: 515.276.3344; 800.369.6337
Fax: 515.276.8655
Mail: to the Association address listed above.
Web site: www.foodprotection.org

Prices effective through August 31, 2002
MEMBERSHIP APPLICATION

International Association for Food Protection

MEMBERSHIP DATA:

Prefix (□ Prof. □ Dr. □ Mr. □ Ms.)

First Name ___________________________ M.I. ___________ Last Name ___________________________

Company ___________________________ Job Title ___________________________

Mailing Address ___________________________

(Please specify: □ Home □ Work)

City ___________________________ State or Province ___________________________

Postal Code/Zip + 4 ___________________________ Country ___________________________

Telephone # ___________________________ Fax # ___________________________

E-mail ___________________________

IAFP occasionally provides Members' addresses (excluding phone and E-mail) to vendors supplying products and services for the food safety industry. If you prefer NOT to be included in these lists, please check the box.

MEMBERSHIP CATEGORIES:

☐ Membership with JFP & DFES

12 issues of the Journal of Food Protection and Dairy, Food and Environmental Sanitation

BEST VALUE

$150.00

$175.00

$220.00

US

Canada/

Mexico

International

☐ Membership with DFES

12 issues of Dairy, Food and Environmental Sanitation

$90.00

$100.00

$115.00

☐ Student Membership*

Journal of Food Protection

$75.00

$100.00

$145.00

Dairy, Food and Environmental Sanitation

$45.00

$60.00

$90.00

$45.00

$55.00

$70.00

All Prices Include Shipping & Handling

*Student verification must accompany this form

☐ Sustaining Membership

Includes recognition for your organization and many other benefits. Contact IAFP for details.

Gold

$5,000.00

Silver

$2,500.00

Sustaining

$750.00

TOTAL MEMBERSHIP PAYMENT:

$ __________________

(Prices effective through August 31, 2002)

Payment Options:

☐ Check Enclosed ☐ Visa ☐ American Express ☐ MasterCard

Card # ___________________________

Exp. Date ___________________________

Signature ___________________________

DO NOT USE THIS FORM FOR RENEWALS
Press coverage of the horrors of bacteria has been extensive of late. In reality, though, most bacteria are on our side. Just as the dog, millennia ago, formed a mutually beneficial relationship with Paleolithic man, so bacteria have taken up residence with us. And just like dogs, most bacteria quietly serve us, although occasionally we encounter one that ‘bites’.

When food safety is considered bacteria are generally viewed as part of the problem, not part of the solution. However, it has been known for hundreds of years spoilage-prone food would stay wholesome if allowed to ferment, a testimony to the role of lactic acid bacteria in safely preserving food. Almost one hundred years ago, a Russian scientist, Hlie Metchnikoff, postulated that bacteria present in fermented milks not only improved the safety of milk but contributed to the long, healthy lives of Bulgarians. Today, there is growing appreciation of the positive roles bacteria play in human health.

Probiotics, live microorganisms that impart a healthful effect when consumed by, or applied to, humans or animals (for review, see www.ift.org/publications/sss/probiotics.pdf), offer a novel strategy for helping to protect us from pathogens that, despite our best efforts, still enter our food and water supplies. The emerging international recognition of the importance of probiotics was reflected in a session convened in October 2001 by the FAO/WHO in Cordoba, Argentina to discuss the role of probiotics in enhancing human health (the report can be downloaded from www.fao.org/es/ESN/probio/report.pdf).

One tactic for applying probiotics to food safety is to use them to decrease the likelihood that agricultural animals are carriers of pathogens. For example, a product developed by the USDA, Preempt (www.ars.usda.gov/is/pr/1998/980319.preemptpdf.htm), which is a blend of 29 bacterial strains has been applied to newly hatched chicks. Preempt decreased the incidence of Salmonella-positive chicks by half in field tests and decreased by 99.9% the levels of Salmonella in laboratory-infected chicks. Sources at USDA have indicated that Preempt products effective in pigs and cattle have also been developed, and other probiotic strains that have been evaluated have been found effective for similar use in animal agriculture.

People are the most common target probiotic users. Probiotics are consumed as food ingredients (in the United States, mostly in yogurt or other fermented milk products, although product diversity is much greater worldwide), or as dietary supplements, in the form of capsules or pills. Probiotics have been studied with regard to a plethora of different health effects, but particularly relevant to food safety is the ability of some strains of probiotics to protect against pathogens. This has been documented in animal models, that demonstrate decreased mortality, translocation of the organism across the intestinal wall, or infection in animals challenged with a pathogenic bacterium but given a probiotic (Ogawa et al., 2001). In humans, the protective effects of probiotics (especially Lactobacillus rhamnosus) against rotavirus infection in children have been demonstrated repeatedly. Recurrence of Clostridium difficile colitis has been successfully prevented with different probiotic preparations. The incidence of travelers’ diarrhea and of antibiotic-associated diarrhea has been reduced by probiotic consumption. Some preliminary evidence has been generated on in vivo Helicobacter pylori activity of probiotic preparations. Taken together, these results suggest a protective effect of some probiotics against pathogens encountered by the gastrointestinal tract. The mechanism for this effect is likely multifaceted. Physical blocking of attachment sites, direct interference with virulence mechanisms and enhancement of immune function are all likely contributors.

The future for an increasing role of probiotics in human health looks bright. Probiotics may play a role in decreasing the allergic response to milk, and atopic allergic responses may also be reduced with probiotic feeding. Results of a recent blind, placebo-controlled study have linked probiotic consumption to reduced incidence of atopic eczema (eczema rates were cut in half in the probiotic-consuming group) when probiotics were given to pregnant women and infants age newborn through 6 months (Kalliomaki, et al., 2001). It is hypothesized that exposing newborns to bacteria is an important step in developing
Food safety is forever evolving. Conditions, trends, methodology, rules and regulations are constantly changing. Commitment to food safety is ongoing and so is what you need to know. Where can you go to stay current? The answer is easy — IAFP 2002!

Visit the IAFP Web site for online registration and program details.

www.foodprotection.org
Tired of false positives? Scared of false negatives? Then you’re ready for the BAX® System.

The BAX® system gives you the most powerful technology for pathogen detection—PCR—in a fully automated platform. You’ll get fast, accurate screening for Listeria monocytogenes, Salmonella, E. coli O157:H7 and Listeria in food and environmental samples. Discover for yourself what the world’s leading food companies already know: For easy, reliable results, it’s the BAX® system.

Qualicon, Inc.
1-800-863-6842 (US)
1-302-685-5300 (outside US)

Qualicon Europe
44 (0) 1564 821 129 (UK)

www.qualicon.com

DuPont Qualicon
Microbial Solutions

BAX and Qualicon are US-registered trademarks of Qualicon, Inc., a subsidiary of E.I. du Pont de Nemours and Company. Wilmington, Delaware, USA.

This product is sold under licensing arrangement with F. Hoffmann-La Roche, Ltd., Roche Molecular Systems, Inc. and the Perkin-Elmer Corporation.

Reader Service No. 200