Just a few strands of DNA separate humans from apes. Or a smooth production line from a zoo.

That's the power of DNA. The BAX® detection system from DuPont Qualicon harnesses the power of DNA to keep production running smoothly. The BAX® system is a fast and accurate way to make sure there are no surprises like Salmonella, Listeria monocytogenes, E. coli O157:H7, Enterobacter sakazakii and other pathogens in your product. This innovative technology reduces false positives and minimizes re-testing, and results are available as soon as the next day. But don't take our word for it. Visit qualicon.com for links to third-party research and details on AOAC approvals and USDA/FSIS adoptions. Or call 1-800-863-6842.

DuPont Qualicon
A True Leader Brings Out The Best In People.

3M™ Petrifilm™ Plates increase the productivity of QA personnel by an average of 104 percent. So join the leading food processing companies who are controlling costs and increasing productivity. Show your true leadership colors. For a free sample and more information on Petrifilm Plates, call us at 1-800-860-0022, ext. 1. Or visit our Web site at www.3M.com/microbiology.
ARTICLES

870 Prevalence of Food Safety, Quality, and Other Consumer Statements on Labels of Processed, Packaged Foods
Mary Bender Brandt, Carol J. Spease, Geraldine June, and Anna-Marie Brown

882 Acids, Pathogens, Foods and Us
Robert T. Marshall

ASSOCIATION NEWS
864 Sustaining Members
866 President’s Perspective
868 Commentary from the Executive Director
971 New Members

DEPARTMENTS
972 Updates
973 News
978 Industry Products
993 Coming Events
994 Career Services Section
996 Advertising Index

EXTRAS
IAFP 2003
888 Scenes from IAFP 2003
894 Award Winners
902 Wegmans Food Markets...Black Pearl Award Winner
904 Ivan Parkin Lecture – Donald L. Zink, Ph.D.
907 Plenary Session – Dr. Elsa A. Murano
908 Session Summaries
928 Minutes of the 90th Annual Business Meeting
930 Highlights of the Executive Board Meeting
931 Committee Minutes
951 Executive Board’s Response to Committee Recommendations
956 Annual Meeting Exhibitors
962 Call for Award Nominations
964 IAFP 2004 — Call for Abstracts
968 IAFP Policy on Commercialism for Annual Meeting Presentations
982 3-A Sanitary Standards No. 12-07
984 3-A Sanitary Standards No. 13-10
988 3-A Sanitary Standards No. 39-01
997 Journal of Food Protection Table of Contents
998 Audiovisual Library Form
999 Booklet Order Form
1000 Membership Application

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views offered by the authors of said articles and descriptions.
Help maximize the safety and quality of your products with a fully integrated food safety program from Ecolab/IBA.

Introducing Palletron™ - Providing Maximum Operational Efficiency
IBA's innovative Palletron system offers greater operational ease by providing assured dose uniformity for an entire pallet of product in its original packaging. This system greatly reduces the time and labor required to process a pallet of product, and requires less capital investment with a smaller footprint than conventional x-ray systems.

Multiple Interventions Provide A High Quality Final Product
Ecolab's advanced environmental sanitation technologies, patented food surface treatments, and comprehensive personnel hygiene programs provide an integrated, multiple interventions approach to help minimize microbial contamination and increase product safety. Reduced microbial contamination means that processors can use IBA's advanced irradiation technologies to provide maximum effectiveness with the minimum dose. The end result is a high-quality product with no significant change in taste, color, texture or nutritional value.

A complete food safety program is essential to the vitality of every processing operation. With Ecolab/IBA, you can offer your customers greater protection against foodborne illness without sacrificing product quality. Take your plant in the right direction. Choose the advanced technology and innovation of a total Ecolab/IBA food safety program. For more information call 800-777-9012 or visit: www.ecolab.com/foodsafety.
Clear-Cut Test Results for Our Most Valuable Resource

BD introduces three NEW Chromogenic Water Testing Media:

- MI Agar
- Modified mTEC Agar
- mEI Agar

- Low false-positive and false-negative rates
- Final results in 24 hours or less
- Single membrane technique—no membrane filter transfers required
- All formulations conform to USEPA approved methods
THE mission of the Association is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply.
Sustaining Membership provides organizations and corporations the opportunity to ally themselves with the International Association for Food Protection in pursuit of Advancing Food Safety Worldwide. This partnership entitles companies to become Members of the leading food safety organization in the world while supporting various educational programs that might not otherwise be possible. Organizations who lead the way in new technology and development join IAFP as Sustaining Members.

GOLD

- **DuPont Qualicon**
 - Wilmington, DE
 - 302.695.5300

- **Kraft Foods North America**
 - Glenview, IL
 - 847.646.3678

SILVER

- **bioMérieux, Inc.**
 - Hazelwood, MO
 - 800.638.4835

- **F & H Food Equipment Co.**
 - Springfield, MO
 - 417.881.6114

- **MATRIX MicroScience, Inc.**
 - Golden, CO
 - 303.277.9613

- **Orkin Commercial Services**
 - Atlanta, GA
 - 404.888.2241

- **Quality Flow Inc.**
 - Northbrook, IL
 - 847.291.7674

- **Silliker Inc.**
 - Homewood, IL
 - 708.957.7878

- **Weber Scientific**
 - Hamilton, NJ
 - 609.584.7677
SUSTAINING MEMBERS

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-A Symbol Council</td>
<td>Lawrenceville, GA</td>
<td>770.554.8923</td>
</tr>
<tr>
<td>3M Microbiology Products</td>
<td>St. Paul, MN</td>
<td>612.733.9558</td>
</tr>
<tr>
<td>ABC Research Corporation</td>
<td>Gainesville, FL</td>
<td>352.372.0436</td>
</tr>
<tr>
<td>ASI Food Safety Consultants, Inc.</td>
<td>St. Louis, MO</td>
<td>800.477.0778</td>
</tr>
<tr>
<td>BD Diagnostic Systems</td>
<td>Sparks, MD</td>
<td>410.316.4467</td>
</tr>
<tr>
<td>Bentley Instruments, Inc.</td>
<td>Chaska, MN</td>
<td>952.448.7600</td>
</tr>
<tr>
<td>BioControl Systems, Inc.</td>
<td>Bellevue, WA</td>
<td>425.603.1123</td>
</tr>
<tr>
<td>Biolog, Inc.</td>
<td>Hayward, CA</td>
<td>510.785.2564</td>
</tr>
<tr>
<td>Bio-Rad Laboratories</td>
<td>Hercules, CA</td>
<td>510.741.5653</td>
</tr>
<tr>
<td>Birds Eye Foods, Inc.</td>
<td>Green Bay, WI</td>
<td>920.435.5301</td>
</tr>
<tr>
<td>Capitol Vial, Inc.</td>
<td>Tucson, AZ</td>
<td>800.688.9515</td>
</tr>
<tr>
<td>Capitol Wholesale Meats</td>
<td>Chicago, IL</td>
<td>773.890.0600</td>
</tr>
<tr>
<td>DARDEN Restaurants, Inc.</td>
<td>Orlando, FL</td>
<td>407.245.5330</td>
</tr>
<tr>
<td>Decagon Devices, Inc.</td>
<td>Pullman, WA</td>
<td>509.332.2756</td>
</tr>
<tr>
<td>Deibel Laboratories, Inc.</td>
<td>Lincolnwood, IL</td>
<td>847.329.9900</td>
</tr>
<tr>
<td>DonLevy Laboratories</td>
<td>Merrillville, IN</td>
<td>219.736.0472</td>
</tr>
<tr>
<td>DQCI Services, Inc.</td>
<td>Mounds View, MN</td>
<td>763.785.0484</td>
</tr>
<tr>
<td>DSM Food Specialties</td>
<td>Menomonee Falls, WI</td>
<td>262.255.7955</td>
</tr>
<tr>
<td>Dynal Biotech, Inc.</td>
<td>Lafayette Hill, PA</td>
<td>866.DYNALTT</td>
</tr>
<tr>
<td>Ecolab, Inc.</td>
<td>St. Paul, MN</td>
<td>612.293.2364</td>
</tr>
<tr>
<td>Electrol Specialties Co., Inc.</td>
<td>South Beloit, IL</td>
<td>815.389.2359</td>
</tr>
<tr>
<td>EMD Chemicals Inc.</td>
<td>Gibbstown, NJ</td>
<td>856.423.6300</td>
</tr>
<tr>
<td>Evergreen Packaging, Division of International Paper</td>
<td>Cedar Rapids, IA</td>
<td>319.399.3236</td>
</tr>
<tr>
<td>FoodHandler, Inc.</td>
<td>Westbury, NY</td>
<td>800.338.4433</td>
</tr>
<tr>
<td>Food Processors Institute</td>
<td>Washington, D.C.</td>
<td>800.355.0983</td>
</tr>
<tr>
<td>Food Safety Net Services, Ltd.</td>
<td>San Antonio, TX</td>
<td>210.384.3424</td>
</tr>
<tr>
<td>Foss North America, Inc.</td>
<td>Eden Prairie, MN</td>
<td>952.974.9892</td>
</tr>
<tr>
<td>Georgia-Pacific Technology Center</td>
<td>Palatka, FL</td>
<td>386.312.1184</td>
</tr>
<tr>
<td>IBA, Inc.</td>
<td>Millbury, MA</td>
<td>508.865.6911</td>
</tr>
<tr>
<td>International BioProducts, Inc.</td>
<td>Bothell, WA</td>
<td>425.398.7993</td>
</tr>
<tr>
<td>International Fresh-cut Produce Assoc.</td>
<td>Alexandria, VA</td>
<td>703.299.6282</td>
</tr>
<tr>
<td>Iowa State University Food Microbiology Group, Ames, IA</td>
<td>515.294.4733</td>
<td></td>
</tr>
<tr>
<td>JohnsonDiversey, Inc.</td>
<td>Sharonville, OH</td>
<td>513.956.4889</td>
</tr>
<tr>
<td>Medical Wire & Equipment Co.</td>
<td>44.1225.81036</td>
<td>302.737.4332</td>
</tr>
<tr>
<td>Michelson Laboratories, Inc.</td>
<td>Commerce, CA</td>
<td>562.928.0553</td>
</tr>
<tr>
<td>Nasco International, Inc.</td>
<td>Fort Atkinson, WI</td>
<td>920.568.5536</td>
</tr>
<tr>
<td>The National Food Laboratory, Inc.</td>
<td>Dublin, CA</td>
<td>925.828.1440</td>
</tr>
<tr>
<td>National Food Processors Association</td>
<td>Washington, D.C.</td>
<td>202.639.5985</td>
</tr>
<tr>
<td>Nelson-Jameson, Inc.</td>
<td>Marshfield, WI</td>
<td>715.387.1151</td>
</tr>
<tr>
<td>Neogen Corporation</td>
<td>Lansing, MI</td>
<td>517.372.9200</td>
</tr>
<tr>
<td>Nestlé USA, Inc.</td>
<td>Glendale, CA</td>
<td>818.549.5799</td>
</tr>
<tr>
<td>NSF International</td>
<td>Ann Arbor, MI</td>
<td>734.769.8010</td>
</tr>
<tr>
<td>Oxoid, Inc.</td>
<td>Nepean, Ontario, Canada</td>
<td>800.267.6391</td>
</tr>
<tr>
<td>Penn State University</td>
<td>University Park, PA</td>
<td>814.865.7535</td>
</tr>
<tr>
<td>The Procter & Gamble Co.</td>
<td>Cincinnati, OH</td>
<td>519.766.4169</td>
</tr>
<tr>
<td>Purification Research Technologies Inc.</td>
<td>Guelph, Ontario, Canada</td>
<td>513.983.8349</td>
</tr>
<tr>
<td>REMEL, Inc.</td>
<td>Lenexa, KS</td>
<td>800.255.6730</td>
</tr>
<tr>
<td>Rhodia Inc.</td>
<td>Madison, WI</td>
<td>800.356.9393</td>
</tr>
<tr>
<td>Ross Products</td>
<td>Columbus, OH</td>
<td>614.624.7040</td>
</tr>
<tr>
<td>rtech™ laboratories</td>
<td>St. Paul, MN</td>
<td>800.328.9687</td>
</tr>
<tr>
<td>Seiberling Associates, Inc.</td>
<td>Dublin, OH</td>
<td>614.764.2817</td>
</tr>
<tr>
<td>Strategic Diagnostics Inc.</td>
<td>Newark, DE</td>
<td>302.456.6789</td>
</tr>
<tr>
<td>United Fresh Fruit & Vegetable Assoc.</td>
<td>Alexandria, VA</td>
<td>703.836.3410</td>
</tr>
<tr>
<td>Warren Analytical Laboratory</td>
<td>Greeley, CO</td>
<td>800.945.6669</td>
</tr>
<tr>
<td>West Agro, Inc.</td>
<td>Kansas City, MO</td>
<td>816.891.1558</td>
</tr>
<tr>
<td>WestFarm Foods</td>
<td>Seattle, WA</td>
<td>206.286.6772</td>
</tr>
<tr>
<td>Zep Manufacturing Company</td>
<td>Atlanta, GA</td>
<td>404.352.1680</td>
</tr>
</tbody>
</table>
As President of IAFP I get to interact with a number of our Affiliates throughout the year. I recently had the pleasure of participating in the 2003 Joint Educational Conference of the Wisconsin Association for Food Protection, the Wisconsin Environmental Health Association and the Wisconsin Association of Dairy Plant Field Representatives in Fond du Lac, Wisconsin. It was great to see a number of long-time friends like Kathy Glass, P. C. Vasavada, and Sir Randy Daggs to name a few. It was also great to make new friends and acquaintances as well. I also had the pleasure of presenting long-time IAFP supporter Fritz Buss with an IAFP Certificate of Merit for his dedication and service to the Association. The astonished look of surprise on Fritz’s face alone was worth the price of admission. Once again, I want to congratulate Fritz on this well-deserved honor. Overall, the WAFP Joint Educational Conference had a strong technical program and was well-attended with approximately 180 food safety professionals from across the state of Wisconsin.

I truly believe that our IAFP Affiliates are the lifeblood of the organization. Therefore, I believe it is incumbent upon IAFP to help ensure the vitality and success of all of our Affiliates. We endeavor to do that in a number of ways. One great example is our Executive Board Speaker Program where IAFP helps to cover the cost of a Board Member Speaker at Affiliate technical meetings. Other examples include publication of the Affiliate Newsletter which publicizes Affiliate activities and other items of interest to the Affiliates, sponsorship of a number of Affiliate Awards at the IAFP Annual Meeting, and sponsorship of the Affiliate Council meeting and related activities at the IAFP Annual Meeting, to name a few. The IAFP Affiliate Council is chaired by Steve Murphy, an active member of the New York Affiliate, New York State Association for Food Protection. As Chairperson of the Affiliate Council, Steve serves on the IAFP Executive Board and acts as the voice of the Affiliates at Board meetings. Lucia Collison McPhedran does a superb job as the IAFP staff member responsible for IAFP Affiliate activities. When you get a chance, please thank Lucia for all of the tireless work she does on behalf of your Affiliate and IAFP.

What’s so special about our Affiliates, in my mind, is that they have the flexibility to tailor their programs to meet the needs of their specific membership. They are also able to reach food safety professionals who, for various reasons, are not currently members of IAFP. Our Affiliates provide a mechanism for educating their members about the benefits of belonging to IAFP.

The number of IAFP Affiliates continues to grow. We currently have 39 active Affiliates around the world. The United Kingdom and Portugal are the two newest Affiliates and we congratulate them as they develop their programs and membership participation. Admittedly, I am biased, but I believe that IAFP is the premier food protection organization in the world. One big reason for this preeminence is the success of our Affiliates. If you’re already involved in your Affiliate, I urge you to remain active. If you’re new to your Affiliate I urge you get actively involved. I also urge all Affiliate members who are also members of IAFP to encourage your Affiliate colleagues who are not
members of IAFP to consider joining our organization. The networking experience at the IAFP Annual Meeting is worth the membership price alone. Even if a prospective IAFP member cannot afford to travel to the IAFP Annual Meeting, the many other professional benefits of our Association still makes membership a great bargain. The IAFP Executive Board and Program Committee are already working to host another successful meeting in Phoenix, Arizona, August 8–11, 2004. Please join us — I know it will be a great experience! As always, I welcome your thoughts and comments at phall@kraft.com. Until next month...

WELCOME

The United Kingdom Association for Food Protection

and

The Portugal Association for Food Protection

IAFP’S NEWEST AFFILIATES
This year’s Annual Meeting was a colossal success and in this issue of Food Protection Trends, we feature the summary report on IAFP 2003. The meeting was held in New Orleans, Louisiana over the dates August 10 – 13 at the Hilton New Orleans Riverside. Our report includes pictures, session summaries, event summaries, minutes of the committee meetings and the Annual Business Meeting, and pictures and bios of the Award recipients.

We hope you were able to be with us in New Orleans and that this report will bring back memories of IAFP 2003, but if you were not able to attend, we know you will enjoy reviewing the Annual Meeting highlights. The report begins on page 888.

Beginning on page 908, session summaries that were written by Members of the IAFP Student PDG are presented. This is the second year for these summaries and we believe this endeavor adds a valuable Member service. A gigantic “Thank You” to all of the students who helped make this possible and a special thanks to Michelle Danyluk and Renee Raiden who helped coordinate this effort.

Please take a good look at the list of special contributors on page 901. These companies, along with those shown on page 906, were instrumental in providing support monies for IAFP 2003. We were fortunate to see magnificent growth in our total sponsorship this year and this enabled us to provide the settings for quality networking to occur. Thank you to each of our supporters!

Each year the Annual Meeting grows but not to the point that makes it too big! This year we again set many records. We had 1,481 attendees, a five percent increase over last year; we had 108 exhibit spaces, a fifteen percent increase and we had a full 50% increase in sponsorship monies! The number of presentations increased by close to 100 over the prior year and our number of abstract submissions had increased by 33% for the second year in a row. This growth is above average and is a direct reflection on the quality of IAFP attendees and the scientific information being presented.

We continue to be thankful for the extraordinary number of Members willing to assist us in conducting the Annual Meeting. From all of the session organizers and convenors to the presenters, to the Program Committee (led this year by Lynn McMullen, Chairperson), to those serving on our committees and PDGs, everyone comes together to make sure that IAFP’s Annual Meeting is a success! We also want to thank Marlene Janes and her students at Louisiana State University and Doug Marshall and his students at Mississippi State University for their help at the registration desk and their help with the social events. It was great to work with this enthusiastic group!

Once again we close a chapter in the Association’s history. The 90th Annual Meeting is over and becomes a part of our history. Can you believe that there have been ninety Annual Meetings? This reminds me of another 90th
celebration. Wilbur Feagan, a long-time Association supporter and sponsor of the Black Pearl Award, recently celebrated his ninetieth birthday. I was honored to be able to attend a reception that was held for Wilbur in Springfield, Missouri and we have a couple of pictures to share with you (see below).

Thanks to Wilbur for his unwavering support over all these years and thanks to all IAFP Members for your support. It is the Members of this Association that make it great. Without active, supportive Members we would not be successful!

Happy 90th Birthday Wilbur!
Prevalence of Food Safety, Quality, and Other Consumer Statements on Labels of Processed, Packaged Foods

MARY BENDER BRANDT,* CAROL J. SPEASE, GERALDINE JUNE, and ANNA-MARIE BROWN
Food and Drug Administration, Center for Food Safety and Applied Nutrition,
5100 Paint Branch Parkway, College Park, MD 20740

SUMMARY

The mission of the Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration focuses on promoting and protecting the public's health by ensuring that the nation's food supply is safe, wholesome, sanitary, and honestly labeled. CFSAN monitors the food industry's response to food labeling regulations through the Food Label and Package Survey (FLAPS). FLAPS data characterize the presence of food safety and other information for the consumer. The labels of close to one-third of the food products sold in the United States include statements about refrigeration, but the words “to maintain safety” are not present, even though FDA guidance indicates the importance of including them. Consumers are concerned that labels contain information to alert allergic individuals to the presence of food allergens, but very few food labels voluntarily bear such information. Regulations do not require food manufacturers to provide information on bioengineered ingredients, and very few manufacturers voluntarily do so. Pasteurization is used to kill pathogens that could cause illness or death, and regulations require a warning statement on the label of juice products that have not been pasteurized or otherwise processed to prevent, reduce or eliminate pathogenic microorganisms. Over half of juices have a statement that they are pasteurized. Few foods contain information to cook foods thoroughly or to use a thermometer. The food label can be used as an educational tool and will be one of the primary vehicles to provide critical information to the consumer.

*A peer-reviewed article

*Author for correspondence: Phone: 301.436.1788; Fax: 301.436.2635;
E-mail: mbender@cfsan.fda.gov
INTRODUCTION

The Food and Drug Administration (FDA) is responsible for protecting public health by ensuring that, among other things, foods are safe, wholesome, sanitary, and properly labeled. FDA oversees all domestic and imported food sold in interstate commerce (including shell eggs, but not meat and poultry); bottled water; and wine beverages with less than 7 percent alcohol. The agency conducts many activities through its food safety programs, including educating industry and consumers on safe food handling practices.

In 1990, the Nutrition Labeling and Education Act (NLEA) became law and mandated nutrition labeling for almost all processed foods regulated by FDA. It also called for activities to educate consumers about nutrition information on the label and about the importance of using that information in maintaining healthful dietary practices. The food label itself has been referred to as an educational tool (1, 27). It contains a listing of all food ingredients, tells how many servings are in a package, and provides nutrition information, on a per-serving basis, in the Nutrition Facts label. Information such as the number of calories and the amounts of nutrients, such as fat and dietary fiber, present in a serving of the product is on the label to assist the consumer in selecting, preparing, and storing foods. While FDA has not previously reported on label information related to food safety and other types of consumer information.

Background information describing FDA guidance, regulations, and voluntary label statements related to food storage, product dating, allergens, processes to control pathogens, bioengineering, and food safety follows. The frequency with which related food safety, quality, and other consumer information on food labels is used is subsequently reported.

Food storage

Refrigeration has long been used to retard the deterioration of flavor, color, and texture of foods. More importantly, refrigeration can also help maintain the microbiological safety of potentially hazardous foods. Temperature abuse may result in the outgrowth of microorganisms that contaminate foods at various times in the continuum between the farm and the table: before or at the time of harvest, or during processing, handling, storage, or meal preparation. Proper refrigeration prevents or slows the growth of human pathogens and spoilage microorganisms and reduces the likelihood of foodborne illness. Consumers should note that, unlike other foodborne bacteria, Yersinia enterocolitica and Listeria monocytogenes can grow at refrigerator temperatures, so adequate cooling may be even more critical for these pathogens, which can be killed by cooking foods to safe internal temperatures. In 1997, FDA issued guidance on labeling of foods that consumers need to refrigerate to maintain safety or quality (18). This guidance, which represents FDA’s policy on adequate safe handling instructions for food, includes recommendations that should reduce the likelihood of temperature abuse of certain foods by consumers, as well as reduce the potential for foodborne illness and death. Unlike regulation, however, guidance is not required to be followed by industry.

The guidance recommends label statements for three groups of foods (Table 1). The first group contains potentially hazardous foods that, if subjected to temperature abuse, will support the growth of infectious or toxigenic microorganisms that may be present. Outgrowth of these microorganisms would render the food unsafe. The recommended label statement for this group of foods is: “IMPORTANT Must Be Kept Refrigerated to Maintain Safety.” The second group includes those foods that are shelf-stable as a result of processing but that, once opened, are potentially hazardous unless the unused portion is refrigerated. The appropriate label statement is: “IMPORTANT Must Be Refrigerated After Opening to Maintain Safety.” The third group includes those foods that do not pose a safety hazard even if temperature abused after opening but that may experience a more rapid deterioration in quality over time if not refrigerated. The suggested label statement is “Refrigerate for Quality.”

Some foods bear labels with statements instructing the consumer to “refrigerate or freeze” and others include recommendations for freezing. Freezing is a critical food preservation method, because it stops mi-
TABLE 1. FDA recommended label statements for foods that need refrigeration by consumers to maintain safety or quality

<table>
<thead>
<tr>
<th>Recommended Statement</th>
<th>Type of Food</th>
<th>Possible Effect of No Refrigeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTANT Must be Kept Refrigerated to Maintain Safety</td>
<td>Potentially hazardous foods that, if subjected to temperature abuse, will support the growth of infectious or toxigenic microorganisms that may be present</td>
<td>Outgrowth of microorganisms present would render the food unsafe</td>
</tr>
<tr>
<td>IMPORTANT Must be Refrigerated After Opening to Maintain Safety</td>
<td>Foods that are shelf-stable as a result of processing</td>
<td>Once opened, the unused portion is potentially hazardous unless refrigerated</td>
</tr>
<tr>
<td>Refrige for Quality</td>
<td>Foods that do not pose a safety hazard after opening, even if temperature abused</td>
<td>May experience a more rapid deterioration in quality over time if not refrigerated</td>
</tr>
</tbody>
</table>

 capítulo growth, but it does not kill microorganisms. Freezing keeps food safe by causing foodborne illness microbes to enter a dormant stage.

Product dating

There is no uniform or universally accepted food product dating system in the United States (28). When storage conditions have been optimal, many foods are safe to eat (25) and are acceptable in terms of taste, aroma and other quality characteristics for periods of time beyond the expiration date printed on a label. FDA does not require expiration dates on food products; the dates required on infant formula products are “use by” dates, and other products include a date only without indication of its purpose.

Allergen information

Each year the FDA receives reports of consumers who experience adverse reactions following exposure to allergenic substances in foods. Experts estimate that about 1.5 percent of adults and 6 percent of children in the United States are affected by food allergies (29). The most common offending foods include milk, eggs, wheat, peanuts, tree nuts, soybeans, fish, and crustaceans, which together account for about 90% of all food allergic reactions (14, 26, 29).

Most consumers are aware of their specific sensitivities and rely on the ingredient statement on the food label to avoid foods to which they are allergic. However, adverse reactions can occur when an allergen-sensitive consumer consumes an allergenic substance that has not been declared on the food label or has been declared with the use of words not familiar or known to the consumer.

The Federal Food, Drug, and Cosmetic Act (the Act) and its implementing regulations require, in most cases, that the ingredient statement of labels of food fabricated from two or more ingredients declare all ingredients, by their common or usual names, in descending order of predominance by weight (3, 13). Thus, consumers may obtain information about the foods they consume by reading the ingredient lists of foods. However, there are two limited exemptions from these ingredient labeling requirements. First, spices, flavorings, and colorings may be declared collectively without naming each one. Second, FDA regulations exempt, from ingredient declaration, incidental additives such as processing aids that are present in a food at insignificant levels and that do not have a technical or functional effect in the finished food. Thus, in some cases, food labels may not provide allergic consumers with total information about all the ingredients in the foods they eat, and consumers may therefore inadvertently consume foods with substances allergenic to them.

In addition to exemptions for ingredient labeling, there are other ways in which consumers may inadvertently come in contact with aller-
Pasteurization is a process used to eliminate or reduce the number of target pathogens in a food (e.g., *Salmonella Enteritidis, Listeria monocytogenes*, *E. coli O157:H7*, *Clostridium botulinum*). Methods of pasteurization include flash pasteurization, in which foods are subjected to high temperatures for short periods of time to destroy harmful bacteria, and ultra-pasteurization, in which products are processed at higher temperatures to extend the shelf life. Consumers should note that foods could become contaminated even if they have been pasteurized and, in general, must be refrigerated following use.

FDA requires the pasteurization of all Grade A fluid milk and milk products distributed in interstate commerce in final package form (5). FDA also requires pasteurization of dairy ingredients used in all fresh and soft ripened cheese, but allows for the use of unpasteurized dairy ingredients in hard cheeses, such as cheddar cheese, that have been ripened for at least 60 days (6). The Agency’s regulations for liquid, dried, or frozen egg products require they be pasteurized or otherwise processed to destroy live *Salmonella Enteritidis* (7). Other foods that may be pasteurized include whole shell eggs, juices and juice beverages, fruits, vegetables, spices, fish and fishery products, shrimp, lobster, crabmeat, mollusks, and surimi. Except for pasteurized orange juice, it is not an FDA requirement that the above products bear a statement that they are “pasteurized.” The standards of identity for milk, heavy cream, light cream, light whipping cream, eggnog, and half and half indicate that the name may be immediately preceded by the term “pasteurized” (8). However, if the food is “ultra-pasteurized,” the term is required on the label.

In 1998, FDA revised its food labeling regulations to require that a warning statement be declared on the label of fruit and vegetable juice products that have not been pasteurized or otherwise processed to prevent the introduction of, reduce or eliminate pathogenic microorganisms that may be present (9). This action was initiated in response to an increase in the number of foodborne illnesses associated with juice products over the previous years, including a 1996 *E. coli O157:H7* outbreak associated with consumption of unpasteurized apple cider and apple juice products. The regulation states that any juice or juice beverage that is not processed to reduce harmful bacteria by 100,000-fold (i.e., attain a 5-log reduction) must bear the following warning statement on the label: “WARNING: This product has not been pasteurized and, therefore, may contain bacteria that can cause serious illness in children, the elderly, and persons with weakened immune systems.” The warning label must be clearly visible on either the information panel or the principal display panel of the package label. This information is intended to allow consumers to make informed decisions on whether to purchase and consume unpasteurized juice products, thereby reducing the potential for foodborne illnesses and deaths that may result from the consumption of these products.

Irradiation of food has potential as a means of controlling pathogenic microorganisms in or on food. Current FDA regulations require the label of an irradiated food to contain the words “Treated with radiation” or “Treated by irradiation,” along with the radura (@), a symbol used throughout the world to represent food irradiation (70). FDA concluded in 1986 that this information is necessary to prevent the misbranding of foods treated with radiation, because irradiation can produce significant changes in certain organoleptic characteristics (e.g., taste, smell) in foods, and these changes are not readily apparent to the consumer at the point of sale/purchase, in the absence of appropriate labeling.

FDA requires the addition of antimicrobial growth inhibitors or
acidifying agents to products, such as foods covered in oil, that may provide the anaerobic conditions required for production of botulism toxin (15). Any food that is susceptible to outgrowth and toxin production, in which spores may survive processing, and which is not subsequently heated before consumption, can be associated with risk of botulism. Botulinum toxin has been demonstrated in a considerable variety of canned foods, such as corn, peppers, green beans, soups, beets, asparagus, mushrooms, ripe olives, spinach, tuna fish, chicken and chicken livers and liver pate, luncheon meats, ham, sausage, stuffed eggplant, lobster, and smoked and salted fish. Outbreaks of botulism in the United States and Canada were caused during the 1980s by consumption of vegetables that had been covered with oil or grease. For example, commercially processed garlic in oil caused two outbreaks, and onions covered in grease and left overnight on a grill caused a large outbreak of botulism in Illinois. The bottled chopped garlic relied solely on refrigeration to ensure safety and did not contain any additional antibotulinum additives or barriers. As a result of these incidents, FDA ordered manufacturers to stop making garlic-in-oil mixes that rely solely upon refrigeration for safety. FDA now requires that commercial mixes contain specific levels of microbial inhibitors, usually acidifying agents such as phosphoric or citric acid. The presence of these additives must be disclosed in the ingredient statement of the product label.

Bioengineering

FDA has concluded that there is no significant difference between foods produced using bioengineering, as a class, and their conventional counterparts. FDA considers bioengineered food on a case-by-case basis. In January of 2001, FDA proposed regulations that would require the mandatory submission of data and safety information for bioengineered foods and food ingredients to the Agency at least 120 days prior to the commercial distribution of these products (22). Within a year after publication of the proposal, FDA had reviewed data voluntarily submitted by manufacturers for 53 different varieties of foods.

Traditional and bioengineered foods are subject to the same labeling requirements. All labeling must be truthful and not misleading. If a bioengineered food is significantly different from its conventional counterpart (e.g., if its nutritional profile changes, or if it causes allergic reactions), it must be labeled to reflect that difference. For example, genetic modifications in various varieties of soybeans and canola changed the fatty acid composition of oils extracted from those plants. Thus, oil from bioengineered canola and soybeans must bear an identity statement that reflects the differences between the conventional and modified oils. Foods containing the modified oils must list them by the new name in the ingredient statement. If a bioengineered food contains an allergen that consumers would not expect to be present based on the name of the food, the label must indicate that the allergen has been introduced into it.

Presently, FDA is not aware of any scientific data that indicate that foods developed through genetic engineering differ significantly in quality or safety from foods developed through conventional means. Therefore, FDA does not require these products to bear labels indicating that they are bioengineered. However, although the term “bioengineered” or the statement “contains bioengineered food” is not required on the label, manufacturers are free to include such statements on the label of bioengineered foods as long as they are truthful. To assist manufacturers who wish to include information on their labels regarding bioengineering, FDA issued draft guidance on the voluntary labeling of foods to indicate that they have or have not been bioengineered (23). FDA said in its draft guidance that statements that indicate or imply that a food is better than another because it is not bioengineered are considered to be false and misleading and should not be used. However, FDA stated it would not object to truthful and nonmisleading label statements that indicate that a food or its ingredients was not developed using bioengineering. An example of such a statement is “This oil is made from soybeans that were not genetically engineered.” FDA does not sanction terms such as “genetically modified organisms” or “GMO.”

Other food safety and consumer information

Product labels often contain food safety information for the consumer to consider in the purchase and preparation of food. Some labels bear statements alerting the consumer not to purchase a product that has a broken seal or is damaged. Some labels contain safe handling statements to cook a product thoroughly or to follow cooking instructions for food safety and quality. Labels sometimes warn that the product may contain shell pieces, pits, seeds, or stems, or that the consumer should be careful eating small objects that may become lodged in the throat.

Over the years, people have reported to FDA adverse reactions to certain food additives, such as aspartame (a sweetener) or sulfur-based preservatives (sulfites). The Act requires that FDA ensure the safety of all substances added to foods. However, some individuals may experience adverse reactions to certain additives (16). FDA requires that all products containing aspartame be labeled for phenylalanine so that individuals with the rare disease phe-
MATERIALS AND METHODS

Survey and sampling

The Information Resources Inc. (IRI) InfoScan 1999 database served as the sampling frame from which we drew a multistage, representative sample of food brands for the FLAPS survey. The IRI database includes annual sales dollars collected from over 11,000 food stores that represent 88% of food sales. Using scanner and promotional data, IRI applies projection factors to arrive at chain, market, region, and total US level information. IRI projection factors yield an accurate extrapolation of sales from their sample stores to the total United States. The IRI database contains proprietary information and is available for purchase.

We used a multi-stage sampling plan to draw the “shopping list” for the FLAPS sample. The first stage was to define 57 product groups (e.g., milk) and assign IRI’s 488 product types (e.g., refrigerated skim/low fat milk, refrigerated whole milk) into those groups. IRI grouped sales information for store brand products into one general store brand category, so we could not identify specific store brands and did not include those products in the survey. Additionally, we considered only brands sold in at least 10% of the stores in order to minimize locating products that are difficult to find across the country. Product types accounting for at least 80% of the sales in each group were retained (e.g., around 190 product types). Based upon the number of product types retained and the number of food brands identified within those types, we randomly selected additional product types from those not selected during the first stage of sampling (e.g., 40 additional product types selected) (See Appendix A). We then selected the top three selling brands (“leaders”) in each product type and randomly selected three “follower” brands from those remaining. Three “alternate” (follower) products were then randomly selected in case the three leaders and three followers were no longer sold or could not be found in the market place. Subsequently, we selected the top selling item under each brand to represent the brand.

Procedures

Using the shopping list of food items, FDA staff purchased close to 25% of the products in the Washington, D.C. metropolitan area. Contract field agents then located and purchased the majority of the products from stores across the country. Other contractors coded product information into survey forms, entered the data onto the National Institutes of Health (NIH) mainframe computer, and created several computerized scans of each product label. The final FLAPS 2000–2001 database contains label information for 1,281 processed packaged food products.

Variables

FLAPS included a number of variables describing presence or absence of label terms and write-in of specific statements for a number of subject areas of interest to consumers. Food storage variables include recommendations such as “keep refrigerated,” “refrigerate after opening,” or “keep frozen.” Date information includes “expiration,” “sell by,” “use by,” or date stamps. Allergen information on labels may indicate presence or absence of ingredients such as milk, eggs, wheat, soy or soybeans, and nuts. Food labels may include terms implying pathogen control such as “pasteurized” or “irradiated.” Statements such as “bioengineered,” “genetically engineered,” and “GMO Free” may appear on food labels to indicate bioengineering or genetically engineered foods. Food safety information includes statements such as “do not purchase if seal is broken” or “cook well” and warnings include statements such as “oil will catch fire if overheated” or “there may be a risk associated with consuming raw shellfish.” Other information alerts the consumer to the presence of ingredients such as aspartame or sulfites.

RESULTS

Food storage

A review of the FLAPS data indicates that, while it is apparent that foods purchased in 2000 and 2001 did
not closely follow the guidance on labeling of foods that need refrigeration that FDA published in 1997, many products in FLAPS bore refrigeration statements using different terminology.

Data show that 17.1% of products sold had a statement that consumers should keep the food refrigerated after purchase. While none of the statements matched those recommended in the guidance for the first group of foods described above, three products (cheese tortellini, cheese ravioli, and pesto sauce) bore a partial statement: IMPORTANT Must Be Kept Refrigerated. Although this type of statement on a product conveys to consumers that they should keep the product refrigerated, it does not make clear whether the refrigeration is for safety or quality purposes.

FLAPS product types most frequently bearing statements in this category included sauces and gravies (100%); soups (88.8%); condiments (69.1%); pickles, relishes and olives (68.2%); and shelf-stable juices and drinks (67.9%).

FLAPS data showed that a small percentage of products sold (1.3%) had refrigeration statements that included a reference to freshness or quality, thus falling into the third group of foods, which do not pose a safety hazard even after opening. Some of the label statements included “for best quality keep refrigerated after opening” or “refrigerate for freshness.”

Product dating

FLAPS data show that over half (54.6%) of products sold had a “sell by” date, “use by” date, expiration date, or date stamp. Dates on some dairy products or types of produce may be related to spoilage, which may result in undesirable but not potentially unsafe food. Furthermore, foods within food types vary as to the type of date information that they have on their labels. Figure 1 provides an overview of the prevalence of various types of date information.

Almost one out of every seven products sold (14.1%), from a number of product types, had a “sell by” date. The most frequently indicated product types with this type of product information included milk (87.6%); fresh and shelf-stable bread and baked goods (81.4%); butters, margarines and spreads (64.3%); other dairy drinks and substitutes (58.5%); and refrigerated juices and drinks (51.4%).

Just under one-third (31.2%) of products sold, spanning many product types, had “use by” dates. The product types with at least 90% of products sold having “use by” dates included hot cereals (100%), cold cereals (99.7%), baby foods (99.0%), refrigerated breads and baked goods (98.4%), and refrigerated meals and side dishes (91.9%).

Less than one out of every ten products sold (8.5%) had a date stamped on the product. We checked product web sites or contacted manufacturers directly and asked why the dates had no descriptive terms. The majority indicated that the dates were “use by” dates (83% of the 8.5%, or 7% of products sold). The two product types with at least 40% of products sold within the type bearing a date stamp included miscellaneous dairy, with 51.5% having a date to “sell by,” and bottled water, with 48.4% having a date to “use by.” Less than one percent of products sold (0.8%) had an expiration date, with 44.2% of bottled water sold having an expiration date on the label.

Allergen information

We reviewed statements that indicated the presence or absence of allergenic ingredients on sections of
Fig. 2. Percent of products sold with an allergen statement on the food label

<table>
<thead>
<tr>
<th>Allergen</th>
<th>Percent Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuts</td>
<td>2.7%</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.9%</td>
</tr>
<tr>
<td>Soy</td>
<td>2.6%</td>
</tr>
<tr>
<td>Wheats</td>
<td>6.3%</td>
</tr>
<tr>
<td>Milk</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

product labels other than in the ingredient listing (Fig. 2). In some cases, these statements were preceded by the terms “Allergy information” or “Allergy note.” For some products, the ingredient listing includes allergenic ingredients in bold type.

Statements about presence of allergens derived from milk ingredients accounted for 5.3% of products sold. They included terms such as “milk based,” “contains milk ingredients,” “contains potassium caseinate, a milk derivative,” and “with whey.” The product types most likely to bear these types of statements included baby food products (50.5%), baking mixes (46.1%), cold cereals (35.3%), and breakfast foods (28.4%). On the other hand, only 0.6% of products sold had statements that the product was “milk free.” Breakfast foods were the most frequently indicated product type with these statements (23.7%). A closer look at food ingredient lists indicated that 16.2% of products sold had casein or whey in their ingredient list but did not include allergen information other than in the ingredient listing on their food label.

Labels bearing statements that the product “contains wheat” accounted for 6.3% of products sold. The most prevalent product types included cold cereals (90.3%), baking mixes (46.1%), and breakfast foods (30.8%).

Statements indicating presence of soy/soybeans were found on labels of 2.6% of products sold, primarily on labels of cold cereals (34.4%). Only one product in the FLAPS database, a non-dairy rice beverage, indicated that it was “soy free.”

Very few products bore statements related to presence or absence of eggs. Only 0.9% of products sold had statements indicating they contain eggs or egg ingredients, with breakfast foods (29.4%) and baking mixes (21.7%) the most prevalent product types. Conversely, only four products, accounting for 0.1% of products sold, had a statement that they were “egg free” or that the product “contains no eggs.”

Products with allergen statements related to presence of nuts accounted for 2.7% of products sold. Over half of the nuts and seeds (55.5%), specifically cashew and pecan products, contained a statement that the product “may contain traces of peanuts” or that the product was “produced in a facility that also produces peanut products” and “may contain peanuts” or “traces of nuts.” In addition, two out of every five (41.4%) chocolate candy labels bore a statement indicating that the product “contains nuts,” “may contain nuts,” or was “manufactured in a facility that uses or processes peanuts.”

Processes to control pathogens

A number of milk, dairy, fruit, juice/drink, and egg substitute products, accounting for 9.7% of products sold, bore the term “pasteurized” on their labels, and 9.9% had a pasteurized ingredient in the ingredient list. Over three-fifths (61.1%) of all refrigerated, frozen, and shelf-stable juice products had a statement that the product was pasteurized. No juice products included a warning that the juice had not been pasteurized or otherwise processed to prevent, reduce or eliminate pathogenic microorganisms that may be present. One orange juice product labeled “100% freshly squeezed” included a statement that their company “has a fully implemented HACCP safety system” and explained that “A HACCP safety system is a science-based system that identifies and includes preventative controls in food production steps where unsafe conditions could occur” and that “HACCP is the Food and Drug Administration’s standard food safety system.” The juice did not state that it was pasteurized or unpasteurized. No food labels contained a statement or symbol that the food had been irradiated.

Over one-fourth (27.2%) of products sold included the acidifying agents phosphoric or citric acid in the ingredient list. The most prevalent product types with one of those ingredients included carbonated soft drinks (100%), non-dairy beverage mixes (96.1%), granola bars and trail mixes (63.8%), frozen meals and side dishes (63.7%), dips and spreads (50.7%), and shelf-stable juices and drinks (50.5%).

Bioengineering

FDA purchased a number of the FLAPS products prior to publication of the proposed regulation and draft guidance for bioengineered foods cited above. As a result, the current FLAPS may not adequately character-
ize the use of bioengineered statements on the food label. However, five products, representing only 0.1% of products sold, had statements that the products were made with "non-genetically modified organism (GMO)" ingredients, terms not sanctioned by FDA. The products included two soy beverages, tofu, a veggie burger, and veggie breakfast links.

Other food safety and consumer information

Data indicate that 6.8% of products sold contained a warning not to purchase a product with a broken or missing seal or a statement to the effect that a safety button pops up when the original seal is broken. Example statements include "sealed for your safety," "do not purchase unless cap and neck band are intact," "do not use if seal under cap is broken," "do not purchase if the safety button is up." Product labels most frequently bearing these types of statements included sauces and gravies (89.6%), refrigerated juices and drinks (89.2%), pickles, relishes and olives (49.2%), fruit and nut butters and spreads (38.3%), and syrups and molasses (37.2%). Several product labels (1.1% of products sold) had statements not to purchase a product if the "bag/carton/cup is open or torn."

Some labels (2.4% of products sold) provided recommendations that the consumer use a thermometer to make sure that a food is fully cooked, or a warning that microwaving may cook a food unevenly or that consumers should not microwave infant formula. Other safe cooking instructions included "bake cookie dough before consuming," "for food safety and quality, follow these cooking instructions," and "cook thoroughly."

Baby foods (30.2%) and frozen meals and side dishes (28.5%) were the product types that were most likely to include safe cooking instructions. Other product labels (0.8% of products sold), including shortenings and oils (45.3%) and frozen vegetables (28.6%), bore statements about cooking with oil.

Several labels (0.5% of products sold) included warning statements that the product "may contain occasional fragments of seeds or stems," that "an occasional cherry may contain a pit," or that the product "may contain shell pieces." Dried, fresh and frozen fruit (37.5%) and nuts and seeds (23.0%) were the product types most likely to bear these statements. Other products bore statements to be "careful: small objects, like hard candies, may inadvertently become lodged in the throat."

A few food labels conveyed additional food safety information. One product included the statement "There may be a risk associated with consuming raw shellfish as is the case with other raw protein products. If you suffer from chronic illness of the liver, stomach or blood or have other immune disorders, you should eat these products fully cooked."

Data showed that 14.2% of products sold included statements indicating that the food had "no artificial flavors, colors, or preservatives." While these are not food safety statements, they provide information to consumers who wish to minimize their intake of the substances. The most frequently indicated product types with these statements included refrigerated juice and drinks (80.4%), popcorn, pretzels, and chips (78.6%), refrigerated meals and side dishes, including pre-cut salads (69.8%), and frozen juices and drinks (49.3%). Only one product contained a statement on the presence of sulfites ("hazelnut shells bleached with a sulfiting agent").

However, we searched for sulfites in the ingredient list and found that 1.9% of products sold have sulfites (sodium sulfite, sulfur dioxide, sodium bisulfite, sodium metabisulfite, potassium metabisulfite, and potassium bisulfite). The most frequently indicated product types with sulfite ingredients included hot cereals (26.4%), granola bars and trail mixes (23.8%), dried vegetables and grains (22.6%), breading products, flours and meals (19.5%), and chocolate candies (16.1%) (Fig. 3). Other consumer interest statements appearing on product labels included "no caffeine" or "caffeine free" (4.4%), "lactose free" (3.6%), and "no msg" or "no flavor enhancers" (1.3%).

DISCUSSION

The food label can provide important information to the consumer. FLAPS data illustrate that although some types of food safety statements have been used frequently on food labels, others are not so prevalent. Data show that, while manufacturers have been using statements regarding refrigeration and freezing on food labels, the words "important" and "safety" are not included. Although there are no data to explain this, it may be because a negative tone is associated with use the terms, and manufacturers do not want to reveal the possibility that their products may be associated with safety risks.

The quality characteristics of foods (taste, aroma and appearance, as distinct from safety characteristics) depend on good storage conditions, such as temperature and humidity control in the retail store and warehouse. When storage conditions have been optimal, many foods are acceptable in terms of taste and other quality characteristics for periods of time beyond the expiration date printed on the label, and also are safe to eat. If the food is stored at elevated temperatures and high humidity conditions, taste and other quality characteristics deteriorate more rapidly, whereas deterioration occurs more slowly if foods are stored under optimal conditions (correct storage temperatures and low humidity). The expiration date is not necessarily indicative of product quality if storage conditions have been less than optimal. Currently, there are no federal labeling regulations requiring dating on food labels except for infant formula. From a food safety perspective, however, FDA is now considering
Figure 3. Percent of products sold with sulfites in the food label ingredient list

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Percent Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate Candies</td>
<td>16.1%</td>
</tr>
<tr>
<td>Breading & Flours</td>
<td>19.5%</td>
</tr>
<tr>
<td>Dried Vegetables</td>
<td>22.6%</td>
</tr>
<tr>
<td>Granola Bars</td>
<td>23.8%</td>
</tr>
<tr>
<td>Hot Cereals</td>
<td>26.4%</td>
</tr>
</tbody>
</table>

product shelf life as it may relate to reduction of risk to consumers of microbiological contamination of some ready-to-eat foods. In time, dates on food labels of foods in which pathogens may grow if the food is not used within a certain time period may become a food safety indicator that consumers can use to determine whether to eat or toss an uneaten food.

Food safety continues to be a focal point and priority at FDA. The agency will continue to address microbiological safety as related to foods and consider the need for warning or other types of statements on food labels. In 2000, FDA published a final rule requiring all cartons of shell eggs that have not been treated to destroy Salmonella to carry the following safe handling statement: "Safe Handling Instructions: To prevent illness from bacteria: keep eggs refrigerated, cook eggs until yolks are firm, and cook foods containing eggs thoroughly." The Safe Handling Statement had to appear on all cartons of untreated shell eggs by September 2001. While the current FLAPS was conducted before the effective date, future surveys may be structured to monitor egg carton labeling. Furthermore, in line with the final rule on the labeling of unpasteurized juice products, FDA will continue to monitor labels of juice products to determine if they are pasteurized or if the required warning statement is borne by those that are unpasteurized or have not received a 5-log kill step to reduce possible pathogens.

FDA recognizes that the labeling of food allergens is a concern for allergic consumers, and additional measures may be needed to ensure that consumers obtain adequate information about the foods they eat. While many consumers may not realize that ingredients such as casein and whey are derived from milk, regulations do not currently require manufacturers using those ingredients to state on food labels that the product contains milk ingredients. To obtain input from consumers and industry, FDA held a public meeting and a public workshop to discuss the labeling of foods containing allergens and the unintended addition of allergens to foods because of processing practices. Addressing food allergen issues has been identified as a priority activity for CFSAN, and the Center plans to continue to develop a strategy for clearer labeling of food allergens.

Bioengineering continues to be another focal point for FDA. Although the agency does not mandate the labeling of foods to indicate that they are bioengineered, it realizes that manufacturers may want to label their products to indicate whether they have or have not been bioengineered. As stated previously, FDA issued draft guidance to industry to assist those who wish to voluntarily label foods with information on bioengineering. FDA will work to issue final guidance in the future.

The Food and Drug Administration Modernization Act of 1997 (FDAMA) joint conference report (11) directed FDA to solicit public comment to determine whether the labeling requirement for irradiation should be changed to ensure that consumers would not perceive the label statement to be a warning. In 1999, FDA published a notice requesting that the public comment on whether FDA should revise its current labeling requirements for irradiated foods, and if so, what might those changes be (19). On May 13, 2002, President Bush signed into law the Farm Security and Rural Investment Act of 2002 (Farm Bill), which includes a provision related to irradiation labeling (12). It directs FDA to publish a proposed rule and, with due consideration to public comment, a final rule to revise, as appropriate, the current regulation governing the labeling of foods that have been treated by irradiation. FDA is now beginning the process of implementing these provisions.

ACKNOWLEDGMENTS

We wish to acknowledge the thoughtful review of this manuscript by Dr. Jeanne Rader, Felicia Satchell, Eric Hanson, and Nancie McCabe.

REFERENCES

FLAPS 57 Product Groups

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baby Foods</td>
<td>Dips & Spreads</td>
</tr>
<tr>
<td>Baking Mixes</td>
<td>Eggs & Egg Substitutes</td>
</tr>
<tr>
<td>Baking Needs</td>
<td>Fruit – Dried, Fresh & Frozen</td>
</tr>
<tr>
<td>Beverage Mixes, Dairy</td>
<td>Fruit – Shelf-stable</td>
</tr>
<tr>
<td>Beverage Mixes, Non-dairy</td>
<td>Fruit & Nut Butters & Spreads</td>
</tr>
<tr>
<td>Beverages – Carbonated Soft Drinks</td>
<td>Ice Creams, Sherbets & Ices</td>
</tr>
<tr>
<td>Beverages – Coffee & Tea</td>
<td>Meals and Side Dishes – Frozen</td>
</tr>
<tr>
<td>Beverages – Juices/drinks – Frozen</td>
<td>Meals and Side Dishes – Refrigerated</td>
</tr>
<tr>
<td>Beverages – Juices/drinks – Refrigerated</td>
<td>Meals and Side Dishes – Shelf-stable</td>
</tr>
<tr>
<td>Beverages – Juices/drinks – Shelf-stable</td>
<td>Meat/poultry Substitutes</td>
</tr>
<tr>
<td>Beverages – Meal-type Products</td>
<td>Nuts & Seeds</td>
</tr>
<tr>
<td>Beverages – Milk</td>
<td>Pasta</td>
</tr>
<tr>
<td>Beverages – Other Dairy Drinks & Substitutes</td>
<td>Pickles, Relishes & Olives</td>
</tr>
<tr>
<td>Beverages – Water</td>
<td>Puddings, Gelatins, Toppings & Fillings</td>
</tr>
<tr>
<td>Breading Products, Flours & Meals</td>
<td>Salad Dressings & Toppings</td>
</tr>
<tr>
<td>Breads & Baked Goods – Fresh & Shelf-stable</td>
<td>Salt, Seasonings & Spices</td>
</tr>
<tr>
<td>Breads & Baked Goods – Frozen</td>
<td>Sauce, Gravy & Seasoning Mixes</td>
</tr>
<tr>
<td>Breads & Baked Goods – Refrigerated</td>
<td>Sauces & Gravies</td>
</tr>
<tr>
<td>Breakfast Foods</td>
<td>Seafood</td>
</tr>
<tr>
<td>Butters, Margarines & Spreads</td>
<td>Shortenings & Oils</td>
</tr>
<tr>
<td>Candies – Chocolate</td>
<td>Snacks – Granola Bars & Trail Mixes</td>
</tr>
<tr>
<td>Candies & Gums – Assorted</td>
<td>Snacks – Popcorn, Pretzels & Chips</td>
</tr>
<tr>
<td>Cereals – Cold</td>
<td>Soups</td>
</tr>
<tr>
<td>Cereals – Hot</td>
<td>Sugars & Sugar Substitutes</td>
</tr>
<tr>
<td>Cheese</td>
<td>Syrups & Molasses</td>
</tr>
<tr>
<td>Condiments</td>
<td>Vegetables – Frozen</td>
</tr>
<tr>
<td>Cookies</td>
<td>Vegetables – Shelf-stable</td>
</tr>
<tr>
<td>Crackers</td>
<td>Vegetables & Grains – Dried</td>
</tr>
<tr>
<td>Dairy, Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>
Pasteurization for all milk and milk products in final package form intended for direct human consumption.

Acids, Pathogens, Foods and Us

ROBERT T. MARSHALL
Department of Food Science, University of Missouri, Columbia, MO 65211-0001

SUMMARY

Acids have a lethal or inhibitory effect on microorganisms when they are in high enough concentrations to denature proteins, when they are transported into cells, or when they cause protons to leak into cells increasing the amount of energy needed to maintain the internal pH. Acids have been used to preserve foods for centuries. In recent years they have been applied to surfaces of fresh meats, ready-to-eat foods, vegetables and fruits to destroy pathogens. The major acids used have been acetic, propionic, and lactic. Combinations of acids and other chemicals can be highly toxic to bacteria. Examples include acidified calcium sulfate and acidified sodium chlorite. Bacterial tolerance to acids often increases on exposure of them to moderate concentrations of acids.

SOME IMPORTANT PRINCIPLES

Most people realize that foods that taste sour generally keep much better than bland-tasting foods. Those who understand pH and acidity realize that biological systems respond in various ways to differences in environmental pH and that microorganisms grow at varying rates depending on the pH of the menstruum in which they reside. Yeasts and molds grow much better than most bacteria do in an acid environment, and if we want to selectively grow yeasts and molds while inhibiting bacterial growth, we can do so by adjusting the pH of the medium to 3.5. Even so, some bacteria adapt well to acidic conditions. Fortunately, the lactic acid-producng bacteria are moderately acid tolerant and can reduce the pH of foods such as sauerkraut (pH 3.5), pickles (pH 3.8), cultured buttermilk (pH 4.8-5), yogurt (pH 4.5) and cheeses (pH 4.5-5.2) to values low enough to inhibit growth of spoilage bacteria.

"Acid foods," having a pH below 4.6, may be canned by boiling at atmospheric pressure, whereas those foods with a higher pH must be canned under pressure so that a temperature of 121°C (250°F) is reached. This is because spores of Clostridium botulinum can survive treatment for 30 min at 100°C (212°F) in low-acid foods but are more susceptible to heat and will not germinate in high-acid foods. These spores must be destroyed in low-acid foods because they can germinate at pH levels above 4.5. Furthermore, although we have generally considered properly processed acid foods to be safe foods, this assumption has been questioned since outbreaks of hemorrhagic colitis have been caused by E. coli O157:H7 in apple cider. Other acid foods associated with infections by this organism include mayonnaise, mayonnaise-based salad dressings,
yogurt and salami. The organism survives in acid foods for weeks and for longer times at refrigeration than at room temperatures. In retail mustards, this organism died within hours of being inoculated into them (22).

Proteins in solutions are destabilized and denatured when the pH is adjusted to the isoelectric point, in which the numbers of positive and negative charges on their surfaces are equal, and biological systems cannot survive when their proteins are denatured. Furthermore, some acids, including acetic acid (the acid of vinegar), are themselves toxic to some microorganisms. The toxic form of the acid is the undissociated form. This is why environmental pH must be low enough for the salts of benzoate, sorbate, propionate and acetate to form their respective acids if they are to have a preservative effect in foods. Undissociated small acid molecules can enter the microbial cell and lower the pH therein, whereas the dissociated form cannot enter the cell.

In research with enteric pathogens, the order of effectiveness of acids, from most to least effective, is usually propionic, acetic and lactic acid. Lactic acid has a direct pH-related effect on bacterial viability, whereas propionic and acetic acids exert their effect only when in the undissociated form. Propionic acid acts as a proton ionophore; it facilitates leakage of protons into the cell, thus increasing the amount of energy needed to maintain the internal pH. At pH 3.5, propionic acid is 96% non-dissociated whereas lactic acid is only 15% non-dissociated. However, lactic acid, which is odorless, is often the treatment of choice. In a study with Shigella, lactic acid was more effective than acetic acid at pH 4 (29).

ACIDS APPLIED TO FRESH MEATS

For many years, food scientists have experimented with various acids in attempts to destroy pathogens and spoilage microorganisms on surfaces of foods that have the potential to cause foodborne illnesses. In particular, there has been much experimentation with fresh meats, in which the organism of greatest concern is pathogenic Escherichia coli, particularly E. coli O157:H7. In the 1980s and 1990s, Anderson et al. (1, 2, 3, 4) observed that total aerobic bacterial counts on surfaces of fresh meat could be reduced by up to 99% by immersing meat for 15 s in 3% lactic acid (LA) at 70°C. Lower concentrations and temperatures resulted in less destruction, with reductions of about 90% at temperatures of 25 and 40°C and concentrations of 2 and 3% lactic acid. Lactic acid was shown to be a more effective disinfectant than acetic acid. More recently Ariyapitipan et al. (5) showed that polymerized forms of lactic acid are superior to non-polymerized forms. Additionally, they and others (6) showed that nisin, a bacteriocin, has an additive killing effect when combined with lactic acid on red meat carcasses (99% reduction: 1.5% LA, 500 IU/ml nisin and 25°C).

Recent experiments with hogs artificially contaminated with fecal materials showed that application of water at 80°C for 5 s followed by spraying with 1.8% acetic acid resulted in approximately 99% reductions of both mesophilic bacteria and total coliforms and that 60% of the scalded carcasses and 40% of the skinned carcasses were negative for E. coli (10).

It is common knowledge that poultry can be an important source of salmonellae and campylobacteria. Reductions of 20 to 50% in numbers of these organisms on poultry carcasses result from the normal hydrocooling process, in which carcasses are chilled in cold water containing 20 to 50 ppm hypochlorite.

There are two recent reports on applications on broilers of sodium chloride activated with citric acid (GRAS, 21 CFR 173, 325 Fed. Regis. 1998). In the first of these (25), when eviscerated broiler carcasses were dipped in or sprayed with 1200 ppm acidified sodium chloride, post-air-chill counts dropped as follows compared with counts on untreated controls: APC 0.65 log; total coliforms 0.96 log; E. coli 1.05 log. Dipping was superior to spraying in reducing counts. There was no detectable residue of either chlorite or chlorate, and chloride concentrations did not differ between treated and untreated carcasses. Slight color fading resulted on the chilled carcasses, but not in the cooked chicken. Proponents claim this treatment to be environmentally friendly compared to treatment with trisodium phosphate (TSP) or acids that may cause problems in the effluent of plants.

Researchers in the second study (13) tested the effectiveness of acidified sodium chlorite against Campylobacter. Because the incidence of Campylobacter is quite high on birds showing evidence of contamination with fecal matter or in the normal procedure is to remove those carcasses from processing lines to be “off-line reprocesesed” (OLR). Spraying such carcasses with 1100 ppm acidified sodium chlorite produced count reductions of 99.29% vs 84.5% for the OLR. Regardless of the method of decontamination, all experimental carcasses were positive for Campylobacter post-processing, with numbers of about 14,000/carcass of eviscerated untreated carcasses.

ACID TOLERANCE AND ACID STRESS

Bacteria often become “acid-adapted” in that exposure to moderate acid concentrations increases their acid tolerance. Prolonged survival has been demonstrated in acid-adapted organisms in apple cider and sausage (18), cheese (19), yogurt, orange juice and salad dressing (11) and tomato ketchup (27).
However, whereas this is true for *Listeria monocytogenes*, it is not always true for *Salmonella*. In experiments with several methods of treating beef jerky, researchers at Colorado State University found that “acid adapted” bacteria of a 5-strain composite of *Salmonella* were at least as susceptible to lethal effects of the marinades and low water activity of the jerky as were the non-adapted bacteria. In addition to the killing effect of the traditional marinade, lethal effects were additive for Tween 20 and 5% acetic acid (vinegar) treatments before drying. The 20-min dip in vinegar lowered the initial pH about one unit, from 5.5 to 4.5 (8).

The acid tolerance of *Listeria monocytogenes* has been linked to its ability to use a proton inside the cell to convert free glutamate to gamma-aminobutyrate and to exchange this molecule for another glutamate outside the cell. The same system has been noted in *Shigella flexneri* and *E. coli* O157:H7. Using the proton lowers the acidity inside the cell.

Samelis et al. (24) found that both acid-resistant and non-resistant *E. coli* O157:H7 survived in meat washing fluids containing 1% but not 2% lactic or acetic acids. They suggested that modifications of the microbial environments of plants may occur where organic acids are used routinely, thus changing the potential for contamination by pathogens.

E. coli O157:H7 has been shown to tolerate pH 2.5 to 3.26 in cider and fruit pulps stored at 4°C and to die much faster when storage temperature is high (21). Once activated, the acid-resistance factor is stable at low temperatures for a long time, and acid-resistant cells are more likely to survive passage through the stomach than are non-resistant cells.

Acid adaptation of *E. coli* O157:H7 at pH 5 for 4 h resulted in various changes among strains tested for tolerance to other stresses: high temperature, salt, alcohol and bile. There was a general increase in tolerance of high temperature and of salt but decreased tolerance to alcohol (9).

COOKED READY-TO-EAT FOODS

The International Commission on Microbiological Specifications for Foods has introduced the concept of Food Safety Objective (FSO) as a preventive scheme for managing microbial risks in foods. The FSO for *Listeria monocytogenes* is 100/g of ready-to-eat food (26). The following report illustrates how an FSO was obtained with frankfurters.

Acidified calcium sulfate, an organic acid-calcium sulfate combination, showed potential not only to kill the *Listeria* on the surface of products, but also to keep it from coming back (12). Researchers inoculated commercially made frankfurters with a four-strain *Listeria monocytogenes* “cocktail” containing 10⁷/g. Four groups were then treated with (1) a saline solution (the control group), (2) acidified calcium sulfate, (3) potassium lactate or (4) lactic acid. The frankfurters were then vacuum-packaged in the usual manner, stored at 4°C for 12 weeks, and evaluated at two-week intervals. The acidified calcium sulfate killed the *Listeria* on the surfaces and also prevented outgrowth during storage. Lactic acid failed to kill all of the bacteria or to prevent their growth during storage. Potassium lactate was ineffective.

The synergy of acetic and lactic acids toward molds on cheese is illustrated in the report of Cabo et al. (7), who showed that heterofermentative bacteria — producers of both lactic and acetic acids — produced conditions in the cheese that inhibited mold growth on the cheese. Low pH caused by the lactic acid forced more acetic acid into the undissociated form and made it lethal to the molds.

DECONTAMINATION OF FRUITS AND VEGETABLES

Luasik et al. (20) reported using a wide variety of disinfectants on strawberries. After stems were removed, berries were contaminated with suspensions of 10⁷/ml of bacteria and viruses. Disinfectants were applied at 100 and 200 ppm at 45°C (110°F). Alicide, sodium chlorite acidified with citric acid, was the most effective of the 13 products tested. Most products at either concentration reduced numbers recovered by 95% or more, as did 200 ppm of hypochlorite. However, none reduced the numbers by 5 log₁₀ and seldom was a 2-log₆ reduction seen.

Recently, Japanese researchers (17) showed that acidic electrolyzed water is more effective than 150 ppm hypochlorite or 5 ppm ozone in reducing microbial counts on lettuce. This water was produced by inducing a current of 14 A and 18 V in a dilute salt solution in an apparatus in which the anode and cathode are separated by a membrane. At the anode side of the cell, the current generated produced a solution containing 30 ppm available chlorine, pH 2.6, and a high Oxidation Reduction Potential (ORP) of 1,250, whereas at the cathode the current produced pH 11.4, an ORP of -870 mV and no available chlorine. Kim et al. (14) concluded that the primary lethal effect of this water is its high ORP. They suggested that the same effect can be produced with a combination of vinegar and hypochlorite. Treatment of fresh-cut lettuce and cabbage with alkaline electrolyzed water (AIEW) for one minute followed by treatment with acidic electrolyzed water (AcEW) reduced counts of viable bacteria more than did treatment of the vegetables for 10 min in AcEW. At 10°C residual viable bacteria grew faster on the treated vegetables than on those washed in tap water, presumably because of less competition, and initial numbers were seen on day 3 of storage. The lesson: To maximize shelf life, keep temperatures low.

Packing lettuce in frozen AcEW kept the temperature at 2–3°C and lowered populations of aerobic bacteria by 1.5 log₁₀ and of coliforms by...
1 log₁₀ in 24 h. The authors suggested it was the release of about 4 ppm of chlorine gas from the AcEW that caused the lethality (15).

Fresh-cut vegetables decontaminated with AcEW, packaged with 100% N₂ and distributed at 1°C will have a very long shelf life (16). Storage at 5°C negates the effects of the disinfecting treatment.

On lettuce inoculated with > 10⁷ Salmonella, E. coli O157:H7 or Listeria monocytogenes, the combination of H₂O₂ and lactic acid was slightly more effective than H₂O₂ alone, but lettuce quality was seriously impaired 3 days after lactic acid was used (23). Application of 2% H₂O₂ for 1 min at 50°C produced 4 log₁₀ decreases in numbers of Salmonella and E. coli and 3 log₁₀ decreases in numbers of listeriae, without impairing lettuce quality.

A mixture of 1.5% lactic acid and 1.9% H₂O₂ on apples, oranges and tomatoes reduced counts of Salmonella, E. coli and by > 5 log₁₀ per fruit without damage to the sensory qualities (28).

CONCLUSIONS

Bacterial growth and viability can be controlled with acids in many foods. However, foods respond differently to treatments with acids, varying in their changes in color, flavor, and texture. Combining acids with other chemicals provides more hurdles to bacteria to clear, thus increasing the chances of a lethal effect or at least an inhibition of growth. However, although most ready-to-eat acid foods are free of pathogens, treatment of non-acid foods with food grade acids seldom results in achievement of the food safety objective of a 5 log₁₀ reduction in bacterial numbers.

REFERENCES

ENHANCE™ your cleaning cycle, reduce your cleaning time, and improve your cleaning program!

CLEANING TIME REDUCTION TECHNIQUES

Industrial Sales Group

11100 N. Congress Ave. Kansas City, MO 64153
816-891-1600

Michelson Laboratories, Inc.

6280 Chalet Drive, Commerce, CA 90040
(562) 928-0553 • (888) 941-5050
FAX (562) 927-6625

COMPLETE LABORATORY TESTING

SPECIALIZING IN

- ISO 25 Accredited Through A2LA
- Nutritional Labeling Programs
- Recognized Lab For FDA Blocklisted Items
- Extraneous Material Identification
- Decomposition
- Chemical Analysis
- Microbiological Analyses
- Water/Wastewater Analyses
- Quality Assurance Programs
- Consulting
- FDA Recognized
- USDA Certified
- Approved By The Japanese Ministry

Our Experience Is Your Protection

Let Us Come to You!

FPI, the Food Processors Institute, is uniquely qualified to conduct company-specific workshops in:

- Better Process Control
- HACCP
 - Basic HACCP
 - Verification and Validation
 - Juice HACCP
- Thermal Processing
- Sanitation and GMPs
- Juice Pasteurization

These workshops are custom tailored to a company's needs and can be held on-site. To find out more about providing training for your entire HACCP team, supervisors, QA/QC, and line workers, contact FPI at 1-800/355-0983, 202/393-0890, or e-mail us at fpi@nfsa-food.org.

www.fpi-food.org

- Simply the Best in Training for the Food Industry!

- Calendar of training opportunities
- Online registration
- Self-study courses
- Information about education materials
- Online purchasing

Reader Service No. 106 Reader Service No. 148 Reader Service No. 131

NOVEMBER 2003 | FOOD PROTECTION TRENDS 887
Scenes from IAFP 2003

AFP 2003 — the Association’s 90th Annual Meeting once again showed the growth of the Association with a successful meeting and record attendance. More than 1,480 food safety professionals from 32 countries, 48 states, and nine Canadian provinces gathered at the Hilton New Orleans Riverside in New Orleans, Louisiana, August 10–13 for the three-day meeting.

Representatives from more than 90 companies exhibited equipment and services supporting food science and safety. It was a fabulous meeting packed with the sharing of knowledge, networking and fun!
Two workshops were held prior to IAFP 2003. The first workshop focused on laboratory data and implementing microbial control. The second workshop was a hands-on course creating and using predictive models in risk assessment. Participants were complimentary of these interactive workshops.

Two receptions were held Saturday evening – the New Member Reception and the Affiliate Educational Reception. Both were well attended and provided excellent interaction among attendees.

Committees and Professional Development Groups (PDGs) met throughout the day on Sunday. Minutes from these meetings are published starting on page 931.
President Anna Lammerding welcomed attendees to IAFP 2003 at the Opening Session on Sunday evening and presented Robert Gravani with the Fellow Award. Dr. Donald L. Zink, Lead Scientist, Food Processing, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Plant, Dairy Foods, and Beverages delivered the prestigious Ivan Parkin Lecture. His presentation was titled "On the Trail of Food Safety - From the Early Days to the Future".

Monday through Wednesday was filled with more than 500 scientific presentations including 25 symposia, 6 technical sessions and 288 poster presentations. Abstracts from IAFP 2003 can be found on our Web site. A special thank you to Chairperson Lynn McMullen and the 2003 Program Committee for an excellent program!
A Plenary Session featuring Dr. Elsa A. Murano, Under Secretary for Food Safety, USDA was held Tuesday afternoon. Dr. Murano’s presentation, “Breaking the Cycle of Foodborne Illness: The War on Pathogens”, can be found on our Web site.

Charters were presented to two new affiliates, the United Kingdom Association for Food Protection and Portugal Association for Food Protection. Welcome new Affiliates!

The Annual Business Meeting was held Tuesday after the Plenary Session. President Anna Lammerding reported on the activities and accomplishments of the Association over the past year.

Congratulations to the IAFP Staff, Dave Larson, Wilbur Feagan, Susan McKnight, Fred Weber, and Frank Yiannas receiving the President’s Recognition Award. See page 928 for the Business Meeting Minutes.
The Awards Banquet on Wednesday evening with a record attendance of 450 concluded IAFP 2003. Several deserving individuals were recognized for their dedication to "Advancing Food Safety". See a complete listing of the Award Recipients on page 894.

After attending the daily sessions, it was time to relax and enjoy New Orleans and its many attractions. The Monday Night Social at Mardi Gras World sponsored by IGEN International was definitely memorable. Over 400 attendees participated in this fabulous event. On Tuesday, approximately 200 attendees enjoyed a dinner and jazz cruise on the Creole Queen.

Marlene Janes of Louisiana State University and Doug Marshall of Mississippi State University deserve a round of applause. Marlene and Doug arranged for their students to assist at various functions throughout the meeting. Their help was greatly appreciated!
A special thanks this year to the Student Professional Development Group and their chairperson Michelle Danyluk. This was the second year that the students participated in the meeting by monitoring sessions. Session summaries prepared by the student monitors can be found starting on page 908.

Thanks to all who participated in IAFP 2003! Your participation is what makes this meeting the world’s leading food safety conference. Mark your calendars now to attend IAFP 2004 in Phoenix, Arizona, August 8–11.
2003 Award Winners

BLACK PEARL AWARD
Wegmans Food Markets, Inc.
Rochester, New York

Each year, the International Association for Food Protection honors a single company with its most prestigious award, "The Black Pearl," in recognition of that company's efforts in advancing food safety and quality through consumer programs, employee relations, educational activities, adherence to standards and support of the goals and objectives of IAFP. The recipient of the 2003 Black Pearl Award is Wegmans Food Markets, Inc.

Wegmans Food Markets, Inc. headquartered in Rochester, New York, is a family-owned business. It began as the Rochester Fruit & Vegetable Company in 1916 with two brothers, Walter and John Wegman (Chairman Robert Wegman's father and uncle). As the years progressed, more family members joined the company: Robert's son Danny, president, and Danny's two daughters, Colleen and Nicole.

It is among the 100 largest privately owned companies in America, with over $3 billion in annual sales, 65 stores (in New York, New Jersey and Pennsylvania), and more than 30,000 employees. For six consecutive years, the company has been on Fortune magazine's list of the 100 Best Companies to Work for in America, ranking 10th in 2003.

Wegmans' customers talk about incredible service from knowledgeable, well-trained, friendly employees, outstanding quality of fresh foods and private label products, support for local communities, and consistent low prices. You would most certainly hear about Wegmans' clean stores and innovative customer information such as "Cook to 160°" for ground beef and introduction of the country's first private label irradiated ground beef. The computer-based food safety training program has been completed by over 29,000 employees.

Wegmans' business philosophy is that good people, working toward a common goal, can accomplish anything they set out to do. The company's goal of being the very best at serving the needs of customers, can only be achieved if the needs of its own people are fulfilled.
Throughout his professional career, Mr. Daggs was, and continues to be, an active member of IAFP. He has been an invited speaker at past annual meetings and served as convenor for numerous sessions, including a notable full-day symposium on dairy sanitation in 1990 co-sponsored by IAFP and the National Mastitis Council. Mr. Daggs has served on various IAFP Committees, including the Program, Nominating, and Awards Committees. He is a past member of the Applied Laboratory Methods PDG and a current member of the Dairy Quality and Safety PDG.

Mr. Daggs was president of the Wisconsin affiliate in 1987 and 1988. During his tenure, their newsletter was revised, membership was expanded, and scholarships were enhanced. In 1988 the Wisconsin affiliate received the Shogren Award at the IAFP Annual Meeting in Tampa. Mr. Daggs continues to serve as executive secretary for the Wisconsin affiliate and as its delegate to the IAFP Affiliate Council.

Lloyd O. Luedecke
Pullman, Washington

Dr. Lloyd Luedecke has been an active member of IAFP since 1962. He is a past president of the Washington Affiliate and served as its secretary-treasurer for 26 years. As affiliate secretary he was also the delegate to IAFP’s Affiliate Council and served several years as Affiliate Council secretary. He served on numerous IAFP committees and was involved in hosting the annual meetings held in Spokane and Seattle.

In 2000, Dr. Luedecke was recognized as a “Fellow” of IAFP for his many years of dedication to the organization and the industry. Dr. Luedecke utilized much of the information obtained at the annual meetings in his class lectures to provide students with a practical working knowledge of sanitation and the latest developments in processing and regulations pertaining to food quality and safety. Students recognized his excellence in teaching and he received several college teaching awards. Many of his former students are current members of IAFP. Dr. Luedecke’s research always focused on improving the quality and safety of dairy products. Results of his research were published in *Milk and Food Technology, Food Protection, Dairy Science, Food Science, Applied Microbiology,* and *Food Chemistry.*

Dr. Luedecke retired from full-time teaching and research in 2000 and is currently on a reduced appointment and remains as faculty advisor to the Washington State University Creamery. He continues to participate in the annual WSU Cheese Short Course.

HARRY HAVERLAND CITATION AWARD

Larry R. Beuchat
Griffin, Georgia

Dr. Larry R. Beuchat is this year’s recipient of the Harry Haverland Citation Award for his years of devotion to the ideals and objectives of IAFP.

Dr. Beuchat earned a B.S. degree in horticulture at Penn State University. His M.S. and Ph.D. degrees in food science, with a minor in microbiology and public health, are from Michigan State University. After working in research and development at Quaker Oats Company, he joined the University of Georgia in 1972, where he is now a distinguished research professor in the Center for Food Safety and Department of Food Science and Technology. Dr. Beuchat’s current research interests include the microbiology of fruits, vegetables, and nuts; methodologies for detecting and enumerating pathogenic bacteria, yeasts, and molds in foods; metabolic stress and injury of foodborne microorganisms; relationships of water activity to microbial growth; and efficacy of disinfection and preservation technologies.

Dr. Beuchat has written, edited, or co-edited five books; authored or co-authored 66 chapters or monographs; and published 405 refereed scientific journal articles, 182 miscellaneous scientific publications, and 398 abstracts in the area of microbiological spoilage and safety of foods. Dr. Beuchat served as a scientific co-editor of the *Journal of Food Protection* from 1994 to 2001 and is a member of the editorial boards of *International Journal of Food Microbiology* and *Food Microbiology*. He is a fellow of the International Association for Food Protection, American Academy of Microbiology, and the Institute of Food Technologists. He is currently a member of the National Advisory Committee on Microbiological Criteria for Foods and the Food and Nutrition Board and the Food Forum of the National Academy of Sciences.
EDUCATOR AWARD

John N. Sofos
Fort Collins, Colorado

Dr. John N. Sofos is this year's recipient of the Educator Award. This award recognizes an IAFP Member for outstanding service to the public, the Association and the arena of education in food safety.

Dr. Sofos holds a B.S. degree in agriculture from Aristotle University of Greece, a M.S. degree in animal science, and a Ph.D. degree in food science from the University of Minnesota. Currently he is a professor in the Department of Animal Sciences at Colorado State University. He has taught food processing technology, food microbiology, food fermentations, food biotechnology, and meat safety, and has served on over 70 M.S. and Ph.D. committees (over 40 chaired) of students from 18 countries. With his students and collaborators he has published over 160 refereed papers, three books, 30 book chapters, and numerous other publications.

Dr. Sofos has served on committees such as the United States National Academy of Sciences Institute of Medicine Committee on the Review of the USDA E. coli O157:H7 Farm to Table Process Risk Assessment, and is currently a member of the National Advisory Committee on Microbiological Criteria for Foods. He has lectured by invitation in 14 countries, has been recognized with distinguished research awards from the American Meat Science Association and the American Society of Animal Science, and is a Fellow of the American Academy of Microbiology and the Institute of Food Technologists. In 2001, he received the USDA Secretary’s Honor Award for Superior Service. Dr. Sofos has been a member of IAFP since 1975 and has served as a scientific co-editor of the Journal of Food Protection since 1996.

MAURICE WEBER LABORATORIAN AWARD

J. Stan Bailey
Athens, Georgia

Dr. J. Stan Bailey is this year’s recipient of the Maurice Weber Laboratorian Award. This award recognizes Dr. Bailey for his outstanding contributions in the laboratory and his commitment in the development of innovative and practical analytical approaches to support food safety.

Dr. Bailey is a lead scientist and research microbiologist for the US Department of Agriculture, Agricultural Research Service where he is responsible for research directed toward monitoring, controlling, reducing and ultimately eliminating contamination of live poultry by human enteric pathogens. During his 30-year career, Dr. Bailey has authored or co-authored over 480 scientific publications in the area of food microbiology, concentrating on controlling Salmonella in poultry production and processing, Salmonella methodology, Listeria methodology, and rapid methods of identification. Dr. Bailey is recognized nationally and internationally and has received numerous awards including the 2002 USDA, ARS Outstanding Senior Research Scientist of the Year.

Dr. Bailey has a B.S. in environmental health sciences, M.S. in food science and Ph.D. in poultry science, all from the University of Georgia. As an active member of IAFP since 1987, Dr. Bailey is a long-time member of the editorial board for the Journal of Food Protection and has served as chairperson of the Poultry Safety and Quality Professional Development Group, the Nominating Committee and the Program Committee. Other professional affiliations for Dr. Bailey include serving on the editorial boards of Poultry Science, Journal of Rapid Methods and Automation in
Microbiology, and the Journal of Applied Poultry Research, and membership in Southern Poultry Science Society, Worlds Poultry Science, American Society for Microbiology, American Academy of Microbiology, Poultry Science Society, Georgia Association for Food Protection, and AOAC.

IAFP President-Elect Paul Hall (left) and Tom Valitchka (right), Nasco International, present Fred Weber with the 2003 Harold Barnum Industry Award. Nasco International, Inc. sponsors this award.

HAROLD BARNUM INDUSTRY AWARD

Fred A. Weber
Hamilton, New Jersey

Mr. Fred A. Weber is the recipient of the Harold Barnum Industry Award for his service to the public, the Association, and the food industry.

Mr. Weber has been the principal of Weber Scientific since 1979. His company is a leader in the manufacture and distribution of laboratory supplies to the dairy and food processing industries throughout the United States and Canada. For nearly 25 years his work has focused on many applied contributions to quality control including dairy testing, bacteriological analysis, product and environmental sampling, and water and wastewater monitoring and analysis. Over the years, Mr. Weber has been requested to review various chapters in Standard Methods for the Examination of Dairy Products.

In 1986 Mr. Weber became a member of IAFP and has been the Affiliate Delegate and active board member of the Metropolitan Association for Food Protection (MAFP) since its inception in 1993. He served as the MAFP secretary-treasurer from 1998 through 2001. In 2002 the “Fred Weber Service Award” was created in recognition and sincere appreciation of outstanding and untiring efforts in food safety, and is presented annually. Mr. Weber was also the first recipient of this award.

Mr. Weber was IAFP Affiliate Council chairperson in 2001, while concurrently serving as a member of the IAFP Executive Board. He has served as a chair and judge on numerous other award committees, and has served on the DFES (now Food Protection Trends) Management Committee since 1998, and is the incoming chair.

Mr. Weber has a B.S. from Penn State University.

IAFP President Anna Lammerding presents Alex von Holy with the 2003 International Leadership Award. Kraft Foods sponsors this award.

INTERNATIONAL LEADERSHIP AWARD

Alexander von Holy
Johannesburg, South Africa

Dr. Alexander von Holy is this year’s recipient of the International Leadership Award. This award is presented to Dr. von Holy for his dedication to the high ideals and objectives of IAFP and for promotion of the mission of the Association in countries outside of the United States and Canada.

Dr. von Holy received undergraduate and postgraduate degrees from the University of the Witwatersrand, Johannesburg (B.Sc., B.Sc. HONS) and the University of Pretoria (M.Sc., Ph.D.) in South Africa. Dr. von Holy holds a personal chair in microbiology at the University of the Witwatersrand. He is director and partner of Consulting Microbiological Laboratory (Pty.) Ltd. and a food safety consultant, trainer and registered food safety auditor.

Research interests and activities include microbial ecology of foods, biofilms, food hygiene, food safety and food preservation. Dr. von Holy has acted as research supervisor for 25 M.Sc. and 7 Ph.D. students and is co-author of 95 peer-reviewed papers, 179 conference contributions and 43 trade journal papers. He pioneered in-service short courses on food quality, hygiene and sanitation, HACCP, food safety and food microbiology for Southern African food processors, retailers and their suppliers, in which he has trained over 7,000 delegates.
Dr. von Holy is a member of the South African Association for Food Science and Technology (SAAFoST), IAFP and ASM, executive board member of the International Committee on Food Microbiology and Hygiene (ICFMH) and scientific advisor to the International Foundation for Science. He is a member of several food safety-related working groups of the Department of Health in South Africa, and has acted as consultant to the WHO and ICMSF. He is an editorial board member for the *Journal of Food Protection* and is a management committee member for *Food Protection Trends*.

Jenny Scott (left) and Craig Henry, both representing NFPA present Katherine Swanson with the 2003 NFPA Food Safety Award. The National Food Processors Association sponsors this award.

NFPA FOOD SAFETY AWARD

Katherine M. J. Swanson
Minneapolis, Minnesota

Dr. Katherine M. J. Swanson is this year's recipient of the National Food Processors Association's (NFPA) Food Safety Award for her outstanding contribution to food safety research and education.

Dr. Swanson is director, global product safety at General Mills. She received her B.S. in dietetics from the University of Delaware, and her M.S. and Ph.D. in food science from the University of Minnesota. Her career with General Mills began in the Pillsbury organization in 1985. Prior to joining Pillsbury, Dr. Swanson developed innovative microbiological test methods for foods at 3M, provided microbiological consulting services with Economics Laboratory, and was assistant professor of food microbiology at Cornell University.

Dr. Swanson's industrial experience includes serving as director of quality and regulatory operations for Yoplait-Colombo; applied microbiological research on a variety of products including vegetables, bakery products, canned foods, and pizza; and development of specification systems, HACCP programs, and corporate product quality management systems. In her current role, Dr. Swanson’s team provides technical expertise on microbial safety and stability, toxicology, food allergens, and premiums for General Mills’ products worldwide.

Dr. Swanson is a member of the National Advisory Committee on Microbiological Criteria for Foods, FDA’s Science Advisory Board, the International Commission on Microbiological Specifications for Foods (ICMSF), and is a fellow of the Institute of Food Technologists. She is currently chair of the National Food Processors Association’s Microbiology and Food Safety Committee and is a member of the American Society for Microbiology and the International Association for Food Protection.

I AFP President Anna Lammerding presents Ben Gale, Santa Clara Dept. of Environmental Health, with the 2003 Samuel J. Crumbine Award.

SAMUEL J. CRUMBINE AWARD

County of Santa Clara Department of Environmental Health
San Jose, California

The Crumbine Award recognizes excellence and continued improvement in a comprehensive program of food protection at the local level. The winner of the 2003 Samuel J. Crumbine Consumer Protection Award is the County of Santa Clara Department of Environmental Health in San Jose, California.

This year’s sponsors include: the Conference for Food Protection in cooperation with American Academy of Sanitarians; Association of Food and Drug Officials; Foodservice & Packaging Institute, Inc.; International Association for Food Protection; International Food Safety Council; National Association of County and City Health Officials; National Environmental Health Association; NSF International; and Underwriters Laboratories, Inc.
This prestigious award honors professionals who have contributed to IAFP and its affiliates with quiet distinction over an extended period of time. These individuals received a distinguished plaque in recognition of this prestigious honor.

Robert B. Gravani
Ithaca, New York

Dr. Robert Gravani is a professor of food science at Cornell University. He received his B.S. degree in food science from Rutgers University and his M.S. and Ph.D. degrees from Cornell University. He joined the faculty at Cornell in 1978, after serving as assistant director of the Institute of Food Science and Marketing at Cornell and science director of the Cereal Institute, Inc.

Dr. Gravani works with all sectors of the food system and has developed innovative programs for constituents in production agriculture, food processing, food retailing, and food service, as well as consumers. He has published many scientific and popular articles, and developed numerous education programs for constituents. He is currently the principal investigator of two USDA/FDA collaborative grants on reducing microbial risks in fruits and vegetables.

He received the Cornell Institute of Food Science Teaching Excellence Award in 1994 and was the 1995 recipient of the IAFP Educator Award. In 2001, Dr. Gravani received the IAFP Harry Haverland Citation Award. He is a past president of IAFP, a Fellow of the Institute of Food Technologists and served seven years as a member of the National Advisory Committee on Microbiological Criteria for Foods. Dr. Gravani was appointed to the National Academy of Sciences (NAS) Committee on Review of Scientific Criteria and Performance Standards for Safe Foods and chaired the NAS Subcommittee on Seafood, Produce, and Dairy Products.
AFFILIATE AWARDS

MEMBERSHIP ACHIEVEMENT FOR AFFILIATES
Highest Number Increase:
Southern California Association for Food Protection

Highest Percentage Increase:
Wyoming Environmental Health Association

BEST COMMUNICATION MATERIALS FOR AFFILIATES
New York State Association for Food Protection

BEST EDUCATIONAL CONFERENCE FOR AFFILIATES
Wisconsin Association for Food Protection

BEST ANNUAL MEETING FOR AFFILIATES
Kentucky Association of Milk, Food and Environmental Sanitarians

C. B. SHOGREN MEMORIAL
Ontario Food Protection Association

Affiliate Award Winners: Gene Frey (right) presents Affiliate awards to New York State Association for Food Protection (John Schrade) (left to right), Kentucky Association of Milk, Food and Environmental Sanitarians (Sue Jewell), and Southern California Association for Food Protection (Margaret Burton and Jennylynd James).

Affiliate Council Chairperson Gene Frey (left) presents the Ontario Food Protection Association, (left to right) Malcolm McDonald, Gail Seed, and Judy Greig with the 2003 C. B. Shogren Memorial Award.

IAFP President Anna Lammerding (left) presents Tina Pedroso of the Portugal Association for Food Protection with an Affiliate Charter.

IAFP President Anna Lammerding presents Gordon Hayburn of the United Kingdom Association for Food Protection with an Affiliate Charter.
IAFP 2003 Special Contributors

IAFP New Member Orientation
Tuesday Afternoon Coffee Break
Portfolio Bags
Notepads with Logo
President’s Reception
Monday Morning Pastries and Coffee Break
Speaker Travel Support
Monday Evening Exhibit Hall Reception
Monday Evening Social
Cheese and Wine Reception
Student PDG Luncheon
Tuesday Morning Pastries and Coffee Break
Monday Afternoon Coffee Break
Awards Banquet Flowers
Name Badge Neck Wallets

3M Microbiology
Bio-Rad
The Coca-Cola Company
Deibel Laboratories, Inc.
Bio-Mérieux, Inc.
Bio-Rad Laboratories
Dole Food Company
DuPont Qualicon
IGEN International, Inc.
Kraft Foods North America
Nestlé USA, Inc.
Nice-Pak Products, Inc.
NSF International
PepsiCo
Strategic Diagnostics Inc.
Wegmans Food Markets

IAFP 2003 Black Pearl Award Winner

Rochester, New York, USA

Wegmans Food Markets began as the Rochester Fruit & Vegetable Company in 1916 by two brothers, Walter and John Wegman. As more family members joined the team, these humble beginnings transformed into one of the most admired retailers in the food business. It's now among the 100 largest privately owned corporations in the country, with over $3 billion in sales, 64 stores and more than 30,000 employees.

Wegmans' success can't be attributed to any one element. If you were to poll their customers, you might hear comments about incredible customer service, outstanding quality of perishable foods and private label products, giving back to the communities where they do business, and a reputation of clean, attractive, inviting stores. These factors didn't happen easily. Wegmans puts a great deal of effort into providing stores, products, and employees that build customer loyalty.

Not negotiable to Wegmans are high standards, especially in food safety and food quality. Carefully constructed procedures are followed to ensure that the highest quality products arrive at Wegmans' distribution facilities, the cold chain is protected during storage and shipping, and knowledgeable employees at the stores follow strict hygiene practices. The company consistently raises the bar on expected standards.

Food Safety Within Wegmans’ Stores

In recent years, Wegmans has become more proactive, anticipating food safety problems and correcting them before they can occur. Employee education has been the key in the changes.

Wegmans is focusing food safety education on the decision makers as well as the front line employees. There is an extensive 2-day HACCP training session with Dr. Robert Gravani of Cornell University for the store management teams and corporate executives (store managers, assistant managers, executive chefs, perishable managers, and service team leaders). It includes development of a HACCP plan. Participants employ the seven principles of HACCP, to gain an understanding of why Critical Control Points are important to food safety and how a particular process step becomes a CCP.

There is a Computer Based Training (CBT) program for all employees, so they could easily adapt the information to the Wegmans' work environment. Approximately 29,000 employees have taken the interactive training program in the first two years. The program is divided into five modules. Topics include food microbiology, good retailing practices such as good personal hygiene, maintaining product temperatures, avoiding cross-contamination, how to wash, rinse, and sanitize, and how to put this information into practice. It takes about 2.5 to 3 hours for a perishable department employee to complete.

HACCP is discussed in the CBT training. A shorter version is used for employees in non-perishable departments focusing on aspects of food safety pertinent to them: personal hygiene, maintaining product temperatures, product storage, etc. Food safety practices have been incorporated into job aids, which are written procedures detailing how certain tasks are to be performed.

The Good Retailing Practice (GRP) job aids cover the basic food safety procedures such as personal hygiene, taking product temperatures, calibrating a thermometer, etc. These also contain Skill Checks that allow a department manager to follow up with a new employee to assure that they understand the material.

Procedures at store level have been changed to minimize the potential for cross-contamination. One of the first procedures addressed was rotisserie chicken. The process was changed to eliminate the need for the raw chicken preparation in the deli/prepared foods areas. Now the meat employees do all raw chicken preparation and store the raw product in the meat room and cooler. The prepared food employees load the ovens taking precautions to avoid cross-contamination and then take (and record) product temperatures at cooking and at display to assure that critical limits are achieved.

Employees often pass this knowledge to customers when answering questions about food preparation.

Food Safety by Design

Building food safety into the design of new and remodeled stores increases the success Wegmans' employees have with food safety. Stores are designed with:
an understanding of food safety regulations. (FDA Food Code and local regulation)
• an understanding of how food flows through an area
• an understanding of the challenges employees encounter when preparing foods
• enough flexibility anticipating future programs and uses for the area

An example of an area that has these considerations included is the Cold Production room. This is a refrigerated room (40—45°F) where cold prepared foods are packaged. Fruits and vegetables are washed prior to entering the room. Once the product has been prepared it is stored in coolers dedicated to finished product. The cold chain is maintained throughout the process.

Hand sinks are plentiful and conveniently located throughout the production area. Stainless steel surfaces are used throughout the production area. The equipment is on wheels or elevated off the floor for easy cleaning. Racking for the coolers has been designed so that shelves can be removed for easy cleaning. Blast chillers are standard equipment in the prepared foods kitchens to allow products to be quick-chilled at retail.

To sustain the retail food initiatives, Food Safety Coordinators (FSCs) have been assigned to help reinforce the food safety message through continual coaching and periodic audits. The audits measure how a store is progressing with food safety. A scorecard is used to communicate the progress to upper management on a quarterly basis.

Wegmans' Supplier Quality Assurance (SQA)

Wegmans' SQA team members work directly with Wegmans Brand suppliers to provide our customers with safe, high quality products. These suppliers include outside vendors, internal production facilities and warehouse/distribution facilities.

The primary tool used by SQA is the supplier food safety and quality audit. Facilities are prioritized for audits with the focus being on suppliers new to Wegmans and those handling products in high-risk categories. Supplier expectations are clearly outlined in the Wegmans' Codes of Practice, which is provided to potential suppliers to an audit.

The audit is complete Good Manufacturing Practice (GMP) audit of the facility. The auditors review process, HACCP and prerequisite program records. Auditors look for compliance with Wegmans' Code of Practice, HACCP systems with regularly documented reviews, established and documented prerequisite programs such as GMPs, sanitation and pest control. Management commitment is evaluated and auditors look for a strong quality assurance manager with responsibility and authority. The supplier should have systems in place for self-assessment and should include independent audits. A comprehensive and documented employee-training program should be in place.

Wegmans views suppliers as partners, so the SQA team provides guidance and opportunities for improvement to suppliers while keeping Wegmans' customers the primary focus.

Wegmans' Egg Quality Assurance Program

To meet their quality standards, Wegmans has owned and operated its own egg farm since 1967. It is the largest egg farm in New York State (housing nearly 700,000 birds) and utilizes state-of-the-art technology. This facility supplies enough eggs for all the Wegmans Food Markets, Inc. stores. All eggs are kept refrigerated through retail sale.

In 1990, when it was known that Salmonella enterica serovar Enteritidis (SE) could be a problem in shell eggs, Wegmans adopted a SE control program. Swab samples are taken from each row in pullet and layer houses every 90 days. These samples are sent to the Cornell Diagnostic Laboratory and analyzed for Salmonella group D. All chicks are purchased from tested breeder flocks. All pullet and layer houses are cleaned, sanitized and tested for SE before repopulation. Strict bio-security practices are in place to maintain the health of our birds. Wegmans' Egg Farm has never tested positive for SE.

In addition to the SE program, Wegmans participates in the voluntary New York State Egg Quality Assurance Program, a program endorsed by both New York's Department of Agriculture and Markets and the Health Department. Wegmans is a leader in animal welfare and has embraced the United Egg Producers (UEP) voluntary guidelines for egg producing poultry. Wegmans is fully compliant with the voluntary guidelines; well ahead of the 2008 full implementation required by UEP. USDA performs compliance audits for the program.

The Wegmans' Way

The grocery industry is extremely competitive. Customers who are not content with one store can easily choose another. It is Wegmans' goal to be sure their customers are safe and satisfied. Providing unique, high-quality, great-tasting products is our way to meet that goal. Wegmans' philosophy for the past 30 years has been:

• At Wegmans, we believe that good people, working toward a common goal, can accomplish anything they set out to do.
• In this spirit, we set our goal to be the very best at serving the needs of our customers. Every action we take should be made with our customer in mind.
• We also believe that we can achieve our goal only if we fulfill the needs of our own people.
• To our customers and our people, we pledge continuous improvement, and we make the commitment: Every day you get our best.
I would like to identify some of the origins of the discipline called food safety, in order to give context to a discussion of the elements, or “tools,” that we use to accomplish the goals of food safety. Following this, I will discuss what I believe some of the priorities of food safety should be in the future.

Although I am an official of the US Food and Drug Administration, this article covers a wide range of topics, consisting of my own thoughts, which may or may not reflect the position of the FDA.

I have tried to define food safety. Although I am primarily a food microbiologist, I appreciate the importance of other disciplines to food safety, which depends on microbiologists, toxicologists, epidemiologists, food scientists, chemists, nutritionists, health inspectors, veterinarians, educators, packaging engineers, process engineers, attorneys, regulators, and even farmers and ranchers.

As for the origins of the discipline, especially from my perspective as a microbiologist, humanity was aware of the consequences of unsafe food by the dawn of recorded history. By about 2000 BC, there were writings about dietary strictures in China, India, Egypt and Palestine. Early cultures learned the lessons of food safety through hard experience and tried to modify their dietary practices to protect themselves. An absolute requirement of a stable village social structure was the ability to preserve and store foods, because once people ceased to be hunter/gatherers, they became at least partially dependent on others for a safe food supply.

Botulism is an example of an affliction connected long ago to a particular food. In the 10th century AD, Emperor Leo of Byzantium issued a decree forbidding production of blood sausage. However, botulism continued to be a problem for more than a thousand years thereafter.

Actually, the real scourge of the Middle Ages was ergot poisoning, or ergotism caused by the mold Claviceps purpurea growing in grain, especially rye. By the 16th century, there was some understanding of the problem, and efforts to control it helped reduce the problem.

From the late 19th century into the early 20th century, a rapid succession of discoveries contributed to food safety. The steam retort came into wide use...
for canning foods. Processes for making safe milk, by condensing it with sugar or by evaporation and canning, were developed. Salmonella was isolated in 1888 and Clostridium botulinum in 1896.

The germ theory of disease took decades to become accepted by scientists and particularly by the lay public. Even into the early 20th century, it was widely believed that filth and unclean conditions directly caused disease. Evidence of this is seen in the Federal Food and Drug Act of 1906, with its emphasis on the prohibition of filth and contamination, regulatory language that remains with us today.

Interestingly, experiments with irradiation in food preservation were carried out as early as 1925. The discipline of food safety must have started soon after researchers first began to study food microbiology in the late 1800s. The first commercial laboratory was established in 1902. In the 1920s, it was shown that spores die logarithmically when heated, and mathematical methods were developed for calculating retort process times.

Food safety research really took off after World War II. For example, productive programs began at Iowa State University. It is safe to say that the modern discipline of food safety began sometime between the early 1920s and the post-WW II years.

The major tools we have at our disposal to make the world’s food supply safer are the following:

1. A social infrastructure to support public hygiene
2. Education and training
3. Food processing and packaging technology
4. Laboratory and field research capability
5. Personal and organizational integrity
6. FSOs, HACCP, SSPOs, GAPs, and GMPs

Today, epidemiology is playing an important role in food safety, helping to identify more cases and more outbreaks, to discover “new” pathogens, to implement more effective preventive measures, to direct consumer education toward at-risk populations, and to gain a better understanding of host-pathogen interactions.

However, programs devised in developed nations may not be the answer for the developing world. There may be a better starting place than HACCP for these nations as we work with them in building a global public health infrastructure.

A return to food safety basics, not just in developing nations but in the developed world as well, may be needed throughout the farm-to-table continuum.

What we call Good Manufacturing Practices (GMP) needs particular attention. The FDA will be reviewing Food GMPs to determine whether or not they should change. The GMP regulations were conceived when the germ theory of disease was still fairly new, and we now know much more about effects of preventive controls on public health. The early emphasis was on visible filth, and although filth is never a good thing, it may not be the best measure of sanitation standards for food safety.

Microbiological standards and methods should also be reexamined. Tools such as coliform counts, for example must be applied wisely. At present, these tests are too widely used and yield data that have no meaning or that cannot be interpreted in terms of what action should be taken on the basis of the result.

When does a bacterium become a pathogen? Epidemiology allows detection of things previously unknown, which can present a problem for the regulator. If a previously benign organism causes an apparently healthy person to become ill, must we treat it as a pathogen henceforth? If not, how many such cases constitute a threshold for action?

We live in exciting times in which the opportunity for breakthrough discovery still exists.

We need to act globally. CODEX is important; it is painfully slow, but slow progress may be good in view of how much we have to do in the developing world.

Our food safety standards and criteria need to be continually challenged, and what doesn’t work, even if it has been around for a long time, must be discarded.

We need better processes for validating and standardizing test methods and sampling plans.

Finally, we need to stop putting too much focus on detection methods and not enough on sampling. There are hundreds of PCR and ELISA methods, but the same old sampling and enrichment methods. We have chip-based methods that can detect multiple pathogens, but how to get the food through that chip is a mystery. If a developer provides a biosensor that can detect one Salmonella cell, what is the processor supposed to do with that probe in order to find Salmonella on a whole chicken?
<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Microbiology</td>
<td>Wilbur Feagan</td>
</tr>
<tr>
<td>ABC Research Corporation</td>
<td>FoodHandler, Inc.</td>
</tr>
<tr>
<td>BD Diagnostic Systems</td>
<td>IAFP Foundation Fund</td>
</tr>
<tr>
<td>bioMérieux, Inc.</td>
<td>IGEN International, Inc.</td>
</tr>
<tr>
<td>Bio-Rad Laboratories</td>
<td>International Life Sciences Institute, N.A. (ILSI, N.A.)</td>
</tr>
<tr>
<td>The Coca-Cola Company</td>
<td>International Packaged Ice Association (IPIA)</td>
</tr>
<tr>
<td>Deibel Laboratories, Inc.</td>
<td>Jack-in-the-Box</td>
</tr>
<tr>
<td>Dole Food Company</td>
<td>Kraft Foods North America</td>
</tr>
<tr>
<td>DuPont Qualicon</td>
<td>John Morrell</td>
</tr>
<tr>
<td>Ecolab, Inc., Food and Beverage Division</td>
<td>Nasco International, Inc.</td>
</tr>
<tr>
<td>Environmental Health Laboratories (EHL) a Division of Underwriters</td>
<td>National Food Processors Association</td>
</tr>
<tr>
<td>Laboratories</td>
<td>Nelson-Jameson, Inc.</td>
</tr>
<tr>
<td>F & H Food Equipment Company</td>
<td></td>
</tr>
<tr>
<td>Nestlé USA, Inc.</td>
<td></td>
</tr>
<tr>
<td>Nice-Pak Products, Inc.</td>
<td></td>
</tr>
<tr>
<td>NSF International</td>
<td></td>
</tr>
<tr>
<td>PepsiCo.</td>
<td></td>
</tr>
<tr>
<td>Quality Flow, Inc.</td>
<td></td>
</tr>
<tr>
<td>rtech™ laboratories</td>
<td></td>
</tr>
<tr>
<td>Silliker, Inc.</td>
<td></td>
</tr>
<tr>
<td>Strategic Diagnostics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Underwriters Laboratories</td>
<td></td>
</tr>
<tr>
<td>Environmental and Public Health</td>
<td></td>
</tr>
<tr>
<td>United Fresh Fruit and Vegetable Association</td>
<td></td>
</tr>
<tr>
<td>Warren Analytical Laboratory</td>
<td></td>
</tr>
<tr>
<td>Weber Scientific</td>
<td></td>
</tr>
</tbody>
</table>
Plenary Session

“Breaking the Cycle of Foodborne Illness: The War on Pathogens”
presented by
Dr. Elsa A. Murane
Under Secretary for Food Safety
United States Department of Agriculture

Americans enjoy the safest food supply in the world. Data from the Centers for Disease Control and Prevention and USDA’s Food Safety and Inspection Service’s (FSIS) own regulatory testing indicate that the Agency is headed in the right direction toward further improving food safety.

Despite these positive trends, eradicating foodborne illness is an evolving challenge, and the Bush Administration is committed to taking food safety to the next level, as evident in USDA’s vision paper titled Enhancing Public Health: Strategies for the Future. Over the past two years, FSIS has focused on five goals to improve food safety programs. They are:

1) Improving the management and effectiveness of regulatory programs;
2) Ensuring that policy decisions are based on science;
3) Improving coordination of food safety activities with other public health agencies;
4) Enhancing public education efforts; and
5) Protect meat, poultry, and egg products against intentional contamination.

In addition to these goals, FSIS is implementing seven new initiatives to take food safety to the next level. First, a New Technology Staff office has been created that will expedite the implementation of safe technologies at slaughter and processing establishments. Second, FSIS is retooling training and education programs for all Agency employees. Third, the Agency has formed a Food Safety Risk Assessment Committee to evaluate and focus resources on hazards that pose the greatest public health risk along the farm-to-table continuum. Fourth, FSIS is working with USDA’s Research, Education, and Extension mission area to coordinate food safety research priorities and needs. Fifth, in consultation with livestock producers, researchers, and other stakeholders, FSIS is developing a list of best management practices for animal production facilities reduce pathogen loads before slaughter. Sixth, FSIS is conducting continuous baseline studies to determine the nationwide prevalence and levels of various pathogenic microorganisms in raw meat and poultry. Finally, FSIS will continue to review authorities and regulations and work with interested parties to modernize and enhance its compliance efforts.

Achieving the next level of the Food Safety Vision involves the ability to anticipate problems as much as possible before they arise. FSIS has identified three issues that need to be addressed if FSIS is to attain this next level of public health protection.

The first issue is predicting risk through enhanced data integration. If foodborne illness cycles are to be broken, then consistent and thorough data analysis must occur. This is where industry and government need to work together so that outbreaks can be prevented.

The second issue is improving the application of risk into regulatory and enforcement activities. FSIS recognizes the need to better document food safety problems as they occur in order to analyze conditions that should be corrected. This will help the Agency determine where its resources need to be concentrated so that it can be most productive.

The third issue is a better association of program outcomes to public health surveillance data. FSIS must be able to connect the occurrence of specific pathogens in specific foods to the occurrence of human foodborne illness. Accomplishing this task will help FSIS direct its inspection and enforcement on those practices where risk is deemed to be highest, resulting in a more efficient use of resources.

By concentrating on these goals, initiatives, and issues, FSIS will advance food safety. For more details, check out FSIS’ vision paper titled Enhancing Public Health: Strategies for the Future at www.fsis.usda.gov.
Members of the IAFP Student Professional Development Group assisted the convenors by serving as Session Monitors at IAFP 2003. Student Monitors prepared the following session summaries for presentation in Food Protection Trends.

Plenary Session –
Breaking the Cycle of Foodborne Illness:
The War on Pathogens
Dr. Elsa Murano, USDA
Renee M. Raiden, Virginia Tech
and Benjamin Chapman, University of Guelph

At the plenary session during the IAFP Annual Meeting, Dr. Elsa Murano, the current under secretary for food safety at the United States Department of Agriculture (USDA) spoke of the past, present and future of food safety in the US. She informed the audience that while the United States has the safest food supply in the world, we still must work harder in the future to attempt to continue reducing and/or eradicate incidence of foodborne illness. She began with several main accomplishments that have been met while working towards this goal.

The first accomplishment stated was the improvement of management and control of regulatory programs. There are currently 107 trained consumer safety officers in the Food Safety Inspection Service (FSIS), and an automated import information system is being implemented. The agency gave assurance that all policy decisions are, and will be based on science. Proof of this is seen in the new regulations for procedures of Salmonella testing, new ground beef regulations, as well as the zero-tolerance ruling for Listeria monocytogenes in ready-to-eat meat products. Another accomplishment has been in the improvement of coordination between food safety agencies and other public health agencies. Recently there has been a memorandum of agreement signed between states to aid in cooperation during recalls. A fourth accomplishment mentioned was the enhancement of public education of food safety issues. Consumer education has been achieved through press conferences, live broadcast interviews and cooking demonstrations. In addition a new USDA food safety mobile has been created to travel across the US and aid in food safety demonstrations. Finally, the USDA has strengthened coordination between government agencies as a response to the heightened terror threat since September 11th in order to protect meat, poultry and egg products from intentional contamination.

Dr. Murano announced that a new FSIS initiative that is currently being implemented. As part of the initiative, the agency is striving to update training programs and create a public health focus by integrating the scientific and technical principals in food safety. This includes a HACCP validation program. Improvements in training will include locating training facilities as close to employee worksites as possible and implicating regional and interactive computer training sessions. Finally the agency will strive to place a priority on risk assessments and attempt to coordinate these with other government and public health agencies.

Finally, Dr. Murano completed her presentation by discussing how to take food safety to an enhanced level in the future. Suggestions include being able to anticipate hazards in the future and predict their risks, in attempts to ensure corrective measures are taken. Coordination between government, public health organizations and industry is essential to ensuring food safety in the US forward in the future.

SOI – Use of Food Safety Objectives and Other Risk-based Approaches to Reduce Foodborne Listeriosis
Leslie K. Thompson, Kansas State University
and Yohan Yoon, Colorado State University

The first steps in developing a food safety plan to control Listeria monocytogenes are identifying a baseline, identifying at-risk populations, and identifying “High-Risk” foods along with other considerations such as virulence and dose response. Some control strategies are to reformulate foods, prevent post-packaging contamination, achieve acceptable storage times, and educate those who would be most susceptible to listeriosis. Recently, hazard characterization issues raised in 96% of all cases of listeriosis include virulence, human infectivity, host susceptibility, and infective dose. The infective dose response is based on the interaction between the food matrix, the pathogen, and the host. For Listeria, the infective dose is accepted as high but there are some outbreak cases where the infective dose was low due to lack of testing methods for L. monocytogenes. Therefore, a better understanding of physiology and stress response as well as improved detection may change the thoughts on infective dose.
The factors that are considered in primary exposure assessments of *L. monocytogenes* are prevalence and population of the microorganism; amount and frequency of food consumed; and potential for growth of *L. monocytogenes* at refrigeration temperatures are all. In an exposure model, all segments of the food system have a role from farm to table. Each step of the process can increase, decrease or maintain microbial population in the food. Time, temperature, food matrix, pH, acidity, water activity, preservatives, competitive flora, and processing treatments are all essential to determining the possibility of risk in a food. An important part of the continuum that has not been studied well is the persistence of the organism in the home. In addition, there is a need to establish information regarding food safety objectives and microbial criteria, and the impact of risk assessment. Also, food safety activities should be linked to public health outcomes. A food safety objective is the maximum frequency and/or concentration of a microbial hazard in a food at the moment of consumption that appropriately provides a level of protection established as both a scientific and society decision. A risk assessment articulates a public health goal, and a level of exposure must be calculated to achieve that goal. It must then be determined if this is feasible and can industry implement the standard. To reduce listeriosis the goal of strategies should be to reduce exposure of high-risk individuals, prevent growth, prevent contamination, educate, formulate food to prevent or slow growth of organisms, and limit time-temperature abuse. Because human behavior is a major factor in incidences of listeriosis, educating consumers and food handlers about knowing risks and prevent strategies should also be incorporated into food safety programs.

S02 – Intervention Strategies for Ready-to-Eat Meat Products

Adriana Velasquez, University of Nebraska-Lincoln and Marcos Sanchez, University of Nebraska-Lincoln

The session included topics related to intervention technologies that are used by Ready-to-Eat (RTE) meat processors to control the presence and populations of pathogenic bacteria. Technologies such as post-packaging thermal pasteurization, ingredient formulation, and non-thermal processes were discussed in the session. Initially, Bruce Tompkin from ConAgra discussed the development of Food Safety Objectives (FSO) in Ready-to-Eat meats. The presentation focused on the presence of *Listeria monocytogenes* (Lm) in these types of products, including non-cured poultry products. The use of FSOs should be considered for in pack pasteurization processes, for the use of additives incorporated to retard or prevent the growth of Lm and for the validation of code dates for safety. The second presentation included two speakers from Wayne Chemical Co. David Herweyer and Oliver Reeban. The talk focused on the use of chemicals and other sanitizers in manufacturing operations. Videos demonstrating the application of different sanitizing agents on equipment and plant facilities were shown. The presentation concentrated on a product based on Alkylene Hydrogen Peroxide (AHP). AHP was shown to be effective to control *L. monocytogenes* in plants due to strong oxidizing activity. Some other recommendations were detailed including the elimination of all standing water in manufacturing facilities, the atomization of plant rooms from ceiling to floor to avoid cross contamination, and the usage of plastic wheels instead of rubber due to the potential damage that could be caused by the sanitizing agent. Kathleen Glass from the University of Wisconsin provided a thorough summary of the different additives used in ready-to-eat operations to control pathogens. In order to select the appropriate additive to be sued in an operation, it was recommended to consider several issues including regulations, labeling requirements, consumer acceptance, allergen potential, functionality, sensory effects, costs, packaging, processing storage conditions, pathogen of concern and the efficacy of the product. Efficacy should be estimated based on several properties including solubility, dissociation constant, product pH, synergistic effects between additives, temperature and the potential presence of resistant populations of bacteria. Several additives and associated benefits in meat products were discussed, including the use of nitrates, lactates, diacettes, citrates, phosphates, bacteriocins and new products such as lactoferrin and monolaurin.

Lisa Szabo from Food Science Australia described various non-thermal intervention options to be used in ready-to-eat meat products. One of them is Pulsed Electric Field, which causes the buildup of electrical charge at the cell membrane of the bacterial cells, increasing its permeability, causing the eventual death of the cell due to leakage. Limitations associated with this technology include the lack of inactivation of spores and some food enzymes. Another described example was high-powered ultrasound, which causes cells to collapse due to changes in pressure. This option appears to be environmental friendly but could cause problems due to the possible lack of uniformity of treatment throughout the product. Dr. Harshavardhan Thippareddi from the University of Nebraska-Lincoln presented various alternatives for the thermal post-pasteurization interventions of ready-to-eat meats. Type and composition of the product, packaging, orientation and package design are among the aspects that will determine the appropriate intervention technology to be used. From a different perspective, Kevin Nanke from SureBeam Corporation described the mechanism and effects on the product involved in irradiation of food. He mentioned the increasing consumer awareness of electronic irradiation as well as the growing acceptance of irradiated products available in the market.
S03 – Hazard Identification in the Fresh Produce Industry
Montserrat Hernandez, Universidad Autonoma de Queretaro, and Glenner Richards, University of Georgia

The presentations that were made during this session identified potential sources of foodborne pathogens that contaminate produce and examined pre- and postharvest factors that are potential hazards for the safety of fresh produce. Drs. Barry Michaels (Georgia Pacific) and Ewen Todd (MSU) discussed the significance of field worker hygiene. Lack of barriers, such as gloves, was identified as the main source of pre- and postharvest contamination. Activities in some Central and South American countries where raspberries, cantaloupes, and mangoes have been identified as vehicles of foodborne disease were observed. Problems associated with field worker hygiene in these areas included high endemic rates, lack of appropriate water, lack of appropriate supplies and facilities, training difficulties, and domestic issues such as child care.

Dr. Trevor Sulusow (UC Davis) focused on the prediction of bacterial pathogen presence and behavior. An on-farm reservoir reservoir microbial survey was undertaken to develop baseline data of non-pathogenic E. coli. The results presented indicated that there is no correlation between E. coli and thermo-tolerant coliforms found in on-farm reservoirs. Positive E. coli/coliform results from water and plant samples were not an indicator of fecal contamination. Without confirmation, MPN tests greatly overestimate E. coli, because there are interfering genera. The survival of pathogens on produce was dependent on the arriving population.

Dr. Lee-Ann Jaykus (NCSU) presented data from a multi-institutional collaborative field study (Clean Greens) to assess the microbiological quality of domestic produce (433 samples—cantaloupes and leafy greens). Microbiological quality of produce in the field varied among and between produce types. Salmonella was detected only on cantaloupes, while Listeria monocytogenes was not isolated from any samples. Most farms and sheds used good agricultural practices, however, the contamination level on cantaloupes increased during postharvest processing (washing). This was associated with the wash water quality.

Dr. Jack Guzewich (FDA/CFSAN) highlighted FDA findings with respect to the mandatory reporting of foodborne disease outbreaks associated with produce. Outbreaks associated with produce of domestic and foreign origin continue to occur. The major factors involved are worker hygiene, wild and domestic animal presence in the fields as well as postharvest handling facilities, harvest tools and equipment, and water sources. Water quality was identified as the main issue of concern.

Dr. Yuhuan Chen (NFPA) discussed the results of a survey conducted in two states (Maryland and California). Overall, there was low prevalence (0.74%) of Listeria monocytogenes in bagged vegetables in both states. However, there were differences between locations (MD: 0.5%; CA: 0.9%). The data collected has been used by NFPA to conduct Listeria monocytogenes risk assessment, FDA/FSIS to perform risk modeling and FSIS in-plant dynamic model for deli meats.

Dr. Mark Walderhaug (FDA/CFSAN) described the information needs for the transportation and distribution component of a produce risk assessment. It was concluded that the difficulty of the transportation and distribution module was dependent on the risk manager’s wants and needs. Data collection was expensive and could affect the company’s competitive advantage. Transparency of some risk assessment may have to be sacrificed for security concerns. Currently, there is no complete risk assessment from farm to fork for produce.

S04 – Recipe for Food Safety at Retail
Kristen Mata, Virginia Tech and Angie Hartman, Virginia Tech

The number of Americans choosing to buy ready-prepared and ready-to-eat meals has dramatically increased in the past decade. According to Fred Reimers of H.E. Butt Grocery Company, there has been a shift in supermarkets to a central market where over 2,000 meals are served daily. Freshly prepared meals called “home meal replacements” have become increasingly common and therefore the manufacturing process of foods is no longer limited to the “manufacturer.” Steve Otwell, from the University of Florida, suggested that the introduction of HACCP at the retail level will survive only if there is a good foundation of prerequisite programs based on science-based guidance and uniformity of regulations from state to state. To make progress in the world of food safety at the retail level, there must be a certain amount of change. Frank Yiannas of Walt Disney World offered that education of consumers and employees may be facilitated using innovative approaches such as the newly developed international food safety icons to communicate food safety and HACCP principles. The use of the internet and automated processes of digitally recording/collection data have proven to be helpful in controlling food safety at the retail level by improving accuracy in monitoring, recognizing trends, and the ability to compare daily HACCP reports.

Joe Effert of Virginia Tech spoke in detail about the innovative International Food Safety Symbols, which are pictures alone or in combination with bilingual words that the non-English speaking workers can understand, regardless of native language, so they can perform proper food safety practices. Some of the symbols currently being used include: do not cross contaminate, do not come to work sick, and correct refrigeration temperature. In addition, future icons representing reheating food properly, poisonous substance, correct refrigeration temperature, discard date/times, and do not thaw at room temperature are being developed.

The prevalence of foodborne allergies is on the rise. Since allergens can cause health and regulatory risks, customer dissatisfaction, and business risk, the FDA requires that an ingredient must be declared on the label if an allergen is added to a food as an ingredient. Ernie
McCollugh explained how managing allergies in the retail environment using the Allergen Prevention Program would help prevent allergens from becoming a problem. This program includes an allergen awareness team, training, raw material program, rework rules, packaging controls, labeling controls, and sanitation programs. Pete Snyder spoke about Food Code Variances, in cases where processes in the Food Code are modified to meet retail needs. This program is important because processors need to be allowed to perform any process that can be both validated as safe and documented by the Retail/Food Process Authorities. To perform a process variance, the manager must first expose the kitchen staff to control hazards and provide a HACCP plan. The kitchen staff must then be trained so they can begin the controlled process. Then HACCP self-inspections are performed to determine the degree of hazard so that improved HACCP action can be taken. Finally, the HACCP authority trains employees so the owner and food handlers can control hazards. Many steps are being taken to increase the level of food protection at the retail level. The importance of proper food handling has not gone unnoticed to those in charge of food safety and quality. These programs and future programs will continue to evolve so that our food supply is as safe as it can be.

S05 - Effective Food Worker Hygiene Interventions: A Risk Assessment Approach

Jarret Stopforth, Colorado State University
and Yohan Yoon, Colorado State University

The safety of our food supply is constantly threatened by introduction of pathogens inherently associated with the product or as a result of environmental contamination. Among some of the most common sources of food product contamination include pests, equipment, facilities, animals and people. In any food processing facility it is inevitable that product will be subjected to human contact and may face potential contamination as a result. The risk of contaminating food and potentially introducing pathogenic bacteria is increased when food workers are infected with a communicable foodborne disease. The risk factors (and extent) associated with infected food workers transmitting disease include: (a) the lack of barriers in food preparation (90%), (b) bare hand contact with food (59%), (c) excessive handling with produce and salad preparation (31%), (d) asymptomatic carrier of disease (31%), (e) symptomatic carrier of disease (26%), and (f) preparation involving more than one food worker (23%). The progression of foodborne disease involving the food worker originates with an infected worker carrying a communicable disease which subsequently contaminates the environment, in turn contaminating other food workers, and all of which have the potential to contaminate the food and result in a rolling outbreak. It is suggested that restaurant food handlers may pose a significant risk to food product safety due to the misconception that food safety knowledge through educational programs implies safe food handling practices. The main factors linked to improper food handling practices by restaurant workers are: (a) working while ill, (b) improper handwashing, (c) cross-contamination, (d) improper glove use, (e) inadequate temperature monitoring, (f) inadequate reheating procedures, (g) improper product holding, and (h) inadequate cooling. When considering transmission of foodborne illness through food worker contamination, it is essential to consider risk assessment with both quantitative and especially qualitative data (QRMA). The factors for consideration using QRMA for mitigation strategy are directly related to the individual food handler and include: (a) exclusion of worker when infected, (b) restriction when infected, (c) hygienic practices, (d) vaccination programs, and (e) cross-contamination potential. Data for use in determining transmission potential using QRMA is based on probabilities of risk reduction or promotion with the inclusion or exclusion of certain preventative strategies. The problem with using this technique is the variability of the data, i.e., differences in contamination load (high vs. low soil) the effectiveness of hygienic practices changes but the variability of the data changes accordingly. It is estimated that 97% of foodborne illness in food establishments is due to poor food handling practices and this creates a demand for training and evaluation of food worker and manager training as it is believed that better trained managers result in production of safer food. It is important for risk assessment models to include attitude and behavioral content defined by certain psychological terms and other considerations for the models are the factors influencing training implementation and training design and delivery. In developing countries, street vending of food is a major problem; however, it is important as a source of income and a way of life. The major cause of food safety problems in these environments include: (a) lack of education and facilities, (b) lack of training, (c) lack of compliance / enforcement, (d) inadequate facilities, and (e) inadequate infrastructure. The benefit of improving personal hygiene activities outweighs the cost of improvements as it is more profitable to prevent rather than to try to cure the outcome of foodborne outbreaks which bear the burden of cost related to medical bills, loss in productivity, public health investigation, stock losses and litigation. It would be more sensible to forgo the cost of hygienic supplies (i.e. soap, towels...) than face a higher potential risk of foodborne disease outbreak.

S06 - Investigative Molecular Techniques and Their Application to Food Safety

Renee M. Raiden, Virginia Tech
and Justin Ransom, Colorado State University

As the field of food science advances, molecular techniques will become essential to both detecting foodborne outbreaks and in laboratory research. This symposium exhibited how molecular techniques may be applied to food safety. Lee-Ann Jaykus from North Carolina State University gave an overview of commonly used molecular techniques including polymerase chain reaction (PCR) and pulsed field gel electrophoresis (PFGE). These
techniques are being used to detect the presence of several key emerging pathogens that have been difficult to culture using traditional techniques, including Noroviruses, Cyclospora cayetanensis, Campylobacter jejuni, and Listeria monocytogenes. The use of genetic processes in investigating these pathogens was stressed and she stated that although these are expensive methods, they can significantly aid in investigative microbiology.

Martin Wiedmann from Cornell University, gave an overview of molecular subtyping. In the past serotyping based on surface antigens was used as the only subtyping method, but currently researchers are using DNA-based methods, ribotyping, and PFGE to subtype bacteria. Currently the most important subtyping program for food safety is PulseNet, a collaboration between the CDC, USDA, and FDA to use PFGE for identifying strains of microorganisms to help determine if outbreaks are related. He stated that the future of investigative molecular techniques lies in DNA based sequencing of specific genes associated with specific microorganisms.

Don Schaffner from Rutgers University complemented the symposium topic by presenting a risk assessment model that incorporates molecular biology data that may be implemented by researchers in the future. As more information is gathered about the genetics of foodborne pathogens, more data about virulence, survival under stress conditions, and other factors will be available to construct risk assessment models that may be more specific to a microorganism and food.

The role of molecular techniques in the food industry was discussed at length by Vickie Lewandowski from Kraft Foods. She described that molecular techniques could replace time-consuming conventional techniques and would provide heightened sensitivity and specificity for detection of pathogens. She noted that the widely publicized Listeria monocytogenes outbreak in fall of 2002 was tracked using PFGE, and researchers were able to link the outbreaks to each other. The creation of a confidential industry-wide database of PFGE patterns of L. monocytogenes may also provide industry with a resource to quickly identify potential outbreaks. She stressed the importance of the use of more than one method to be used for confirmation due to varying sensitivities.

Finally Franco Pagotto from Health Canada discussed DNA microarray technology. This technology involves specific DNA probes attached to a slide or membrane. Target DNA is labeled and color change is seen when the target DNA and the probes are bound. Microarray can provide vast information about the genetics of foodborne pathogens in a relatively short period of time.

S07 — Current Issues in the Microbiological Safety of Dairy Foods — From Farm to Table

Kristen Matak, Virginia Tech and Adriana Velasquez, University of Nebraska-Lincoln

Despite the fact that dairy products are widely distributed and consumed in high quantity, very few major incidences of microbial outbreaks have occurred. However, concerns over the emergence of resistant foodborne pathogens and the possibility of agricultural bioterrorism have given risk managers the task of providing safe quality foods without increasing production costs or imposing more restrictions on international trade. This is a subject that must be addressed at each phase of the food production cycle including at the farm level. Kathryn Boor of Cornell University described the findings of a literature review to understand the science behind current regulations for the production of dairy products. The importance of guidelines for the safe production of dairy products was realized early on, and in 1924 the Pasteurized Milk Ordinance (PMO) was developed. In these guidelines, the standards for the thermal treatment of milk were set according to the findings of a 1957 study by Enright that assured the destruction of Coxiella burnetti. Kathleen Kaufman of Cornell discussed the need for programs that assure food safety on the farm as well. One such program mentioned was the New York State Cattle Health Assurance Program. This program addresses three principles of biosecurity at the farm level: (1) preventing disease from entering the farm, (2) preventing disease from spreading within the animal environment, and (3) ensuring the quality of the product going off the farm. Mark Carter from Kraft Foods expressed the need for continued effort to eliminate problems in the processing plant environment. This would include, but not be limited to, validation of processes in the plant, conducting environmental sampling, assuring the quality of raw ingredients, and using indicator organisms to determine quality/safety. In recent years, much research has focused on the safety of the currently available production technologies of food items. Dr. Michael Digeronimo, from Dover Brook Associates explained the safety concerns of aseptic processing and packaging, a usual choice used during production of low acid foods. He highlighted the importance of the criteria that aseptic packaging materials should meet in order to ensure safety of both the product and the consumer. It is also required that the material also offers stability through the absence of chemical interactions with the food and its source must be acceptable for the consumer. Determining factors on the efficiency of the system include consistency during commercial sterilization of the materials to be used as well as in keeping aseptic conditions in the packaging environment. In order to ensure microbiological safety of cheeses manufactured with raw milk, the USDA mandates that the products must age for 60 days at no less than 2°C before being consumed. The results of various studies cited by Dr. Catherine Donelly from the University of Vermont show that some pathogens including E. coli O157:H7 and Listeria monocytogenes can survive and grow under these conditions. Although post-process contamination is believed to be the greater threat to the safety of these products, screening of incoming raw milk and regular testing for Listeria monocytogenes are highly recommended. Dr. Martin Wiedmann from Cornell University discussed the need for development of an understanding the farm to table transmission of pathogens in order to improve the system.
He also highlighted the importance of being able to predict the effects that changes in the pathogen, the host, the environment and the food will have on foodborne diseases and their transmission.

S08 – Hot Topics in Seafood Quality and Safety

John Allan, University of Georgia
and Hoan Jen Pang, Rutgers University

George Flick (Virginia Tech) discussed histamine production in fish. There are difficulties in tracing outbreaks due to scombrotoxin since record keeping is very poor with regard to where/how the fish were caught, how they were handled after catching, temperatures of the water in which they were caught and temperature they were held at before processing. There is a lack of research performed on scombrotoxins in fish. Some of the problems with the published studies include: (1) lack of fish history, (2) mis-identification of the microorganisms which produce histamines, (3) lack of a standard protocol for histamine testing, and (4) inconsistencies in published results. Dr. Flick pointed out that the dynamics of histamine production are unknown. Carbon monoxide-packaged fish keeps the color of the fish appealing but masks the quality degradation associated with scombroid decomposition. He recommends an expert panel be established to review research and develop protocols for processes from harvesting to consumption.

David Green (North Carolina State University) presented information on scombrotoxin production and prevention. Control is HACCP-based and limits time of exposure to temperatures associated with toxin production. The primary control is temperature which functions to limit production of histamine by bacteria. Scombrotoxin production is associated more with high temperature/short time spoilage than with low temperature/long time spoilage. Examples of control methods that can be used include: (1) evisceration of whole fish and gill removal, (2) freezing of fish, (3) high pressure treatment, (4) competitive enzymes, (5) coding of date and point of harvest, and (6) good hygiene.

Andy DePaola (FDA) discussed risk assessment of *Vibrio* spp. in oysters. *Vibrio* risk assessment performed by Codex Alimentarius should provide an excellent source for development of intervention strategies to reduce *V. vulnificus* illness based on several observations, including: consistent reporting of illness compared to other foodborne diseases, one predominant vehicle (oysters), raw consumption eliminates cook variability and corresponding uncertainty in thermal treatment, and Beta poison fit of model for dose response agrees with the seasonality of cases.

Rita Schoeny (EPA) discussed methyl mercury occurrence in seafood, which causes the most concern of all other heavy metals. The majority of the methyl mercury found in the environment comes from combustion point sources (87%). Methyl mercury accumulates up through the food chain with the muscle tissues of larger predatory fish having the highest levels.

Mike Russell (Gene Scan USA) made a presentation on the detection of genetically modified foods. PCR-based methods rely on genetically modified DNA (GM-DNA) being present in the food. ELISA methods, which are cheaper and easier to use, can be developed to detect protein products from GM-DNA, but require larger amounts of the protein to be present as compared to the amount of DNA need for PCR methods. Real time PCR methods give a relative amount (%) of GM-DNA in the total species DNA of the specimen being tested. The sampling size is very important for determining the presence of GM-DNA and labs should have good quality control programs established to minimize false negative results.

Douglas Marshall (Mississippi State University) spoke on the safety of ready-to-eat seafood. Controlling bacterial pathogens in seafood can be done through various means including, elimination of the microorganism from surfaces through rinses (i.e., lactic acid) and steam treatment, and through inhibition i.e., lowering temperature, adding competitor organisms, modified atmosphere packaging, and the addition of antimicrobials. To control viral levels in product, fecal contamination in the environment must be minimized. High pressure treatments have shown promising results in reducing viral loads, especially in raw oysters. Parasites can be destroyed by freezing and cooking parameters established by FDA.

S09 – New Horizons in Diagnostic Food Microbiology

Laura Bauermeister, Auburn University
and Ethan Solomon, Rutgers University

The goal of this symposium was to provide an update on a variety of new technologies that have been developed to speed the microbiological analysis of foods. These include real-time PCR, biosensors, microarray technologies, and the replacement of serotyping with molecular methods. In his overview, Dr. Peter Feng summarized the difficulties associated with performing rapid methods: interference by normal flora present in the sample, the complexity of the food matrix, and the low numbers of the target organism. Because of these hurdles, most rapid methods still require a culture-enrichment step prior to analysis. Next-generation methods are focused on the shortening or elimination of the enrichment step. A second limitation of the current methods is the variation in assay efficiency; an abundance of rapid methods, and no clear comparative or collaborative evaluation between methods. Lastly, Dr. Feng illustrated how the increased speed and sensitivity of rapid methods create a regulatory dilemma for government agencies and the food industry. The use of standard methodology passes many foods that may not pass under the conditions of rapid methods. In the next lecture, Dr. Pina Fratamico explained the differences of real-time over traditional PCR. Real-time PCR utilizes fluorescent reporter probes that increase in proportion to the amount of PCR product. Advantages
over traditional PCR are that real-time can be used to quantify the amount of initial template, real-time eliminates the need for time-consuming post-processing, and that it is extremely sensitive. She then demonstrated the rapid detection of *Escherichia coli* O157:H7 using a multiplex real-time PCR. The organism was detected in ground beef enrichments after 8 hours. Dr. Marianne Kramer presented the use of evanescent-wave fiber optic biosensors to detect pathogens directly from dirty sample homogenates. The complexities of the food matrix as well as the presence of particulate matter that may skew the results of conventional methods are not detrimental to the sensitivity and specificity of biosensors. She then demonstrated the use of a newly developed biosensor to detect *Salmonella* from spent sprout-irrigation water. Dr. Patricia Griffin lectured on the use of molecular techniques to type *Salmonella* isolates. Traditional *Salmonella* classification has been based on the characterization of the O and H antigens, known as serotyping. Serotyping is a tedious and time-consuming process. To take advantage of the simplicity of DNA technology, Dr. Griffin and her colleagues have developed specific probes based on the sequence of flagellar and O-antigen genes. Their goal is to develop probes for all of the common *Salmonella* serotypes in the United States. The applications of microarrays in the food industry was presented by Dr. Claude Mabilat. Microarrays (biochips) are extremely powerful tools to differentiate target organisms from background flora. Advances of biochips include great accuracy and robustness (redundancy). In the last lecture, Dr. Michael Brodsky presented the need for the accreditation and validation of analytical methods. Methods of analysis are extremely varied between laboratories and even within laboratories. Dr. Brodsky encourages the use of “fit for purpose” methods. The creation of eCAM (electronic compilation of analytical methods) will enable laboratories to select from a web-based list of proper methods.

S10 – Food Allergens: Past, Present and Future

Adriana Velasquez, University of Nebraska-Lincoln and Montserrat Hernandez, Universidad Autonoma de Queretaro

This session focused on the importance of food allergens and their impact on human health and the food industry. Susan L. Hefle from the University of Nebraska-Lincoln, mentioned that for sensitive individuals, the presence of allergens in food is potentially life threatening. Currently, there is no known cure for this sensitivity and the only successful method to manage allergic reactions is through avoidance of foods containing the allergen. Formulated foods, however, present a different challenge. In such cases, the individual relies on accurate ingredient labeling. Dr. Kenneth Falci from FDA-CFSAN, emphasized the need to increase awareness of food allergens. He also mentioned that the major goal of the FDA-CFSAN is to provide guidance to industry and regulators on how to manage allergens through appropriate manufacturing and labeling practices. As part of these efforts, the FDA is conducting food allergen education programs for both consumers and industry employees. The agency also is developing a strategy for clear, easy-to-understand labeling of food allergens.

FDA-CFSAN awareness efforts currently focus on the eight foods that are most frequently implicated in serious allergic responses: milk, eggs, fish, wheat, tree nuts, legumes (particularly, peanuts and soybeans), crustaceans and mollusks. Allergenic proteins in these eight foods are estimated to cause 90% of the allergic reactions in the US. Some of these foods, such as milk and eggs, are often used as ingredients in formulated products. Dr. Jupiter Yeung from NFPA mentioned that a number of test kits are manufactured in the US for commercial use and there are some other kits under development. Although there is not a test kit for each allergen in the food supply, kits are available for peanut, milk and egg protein. Although plans include standard development for other allergenic proteins, much work is needed to achieve this goal.

Bob Richardson, from General Mills, discussed the importance of sanitary design related to food allergens. He suggested the use of parallel modules to ensure the isolation and careful control of the path of allergenic ingredients when present in the plant. Also, as in all other food safety scenarios, training of engineers and employees is highly recommended.

Mark Moorman from W.K. Kellogg mentioned that the highest incidence of food allergenic reactions occur in children. He mentioned that the most common reasons for product recalls are incorrect ingredient statements, mixed foods, and/or inadequate allergen sanitation in the plant. The type, concentration, and form of the allergen are some of the determining factors in the sanitation of food plants to ensure the prevention of contamination.

Sheila Cohn from the National Restaurant Association reviewed the facts related to food allergens and the food service industry. She mentioned and suggested the use of the existing Food Allergy Training Guide, an already available resource for food establishments. The Food Allergy Initiative and Anaphylaxis Network created this set of guidelines in 2001. She also explained that the possibility of cross contamination is very unlikely to be completely eliminated in some restaurants due to multiple uses of utensils. As a consequence, special menu labeling could actually lead to a false sense of security by consumers since the lack of allergenic agents can not be completely guaranteed.

S11 – Costs of Industry and Government Food Safety Actions: What is at Stake?

John Allen, University of Georgia and Justin R. Ransom, Colorado State University

Amber Jessup (FDA-CFSAN) discussed how human costs from foodborne illness are derived. These costs include loss of productivity, medical costs, etc. To
determine the value of a life there are several approaches that can be used. A Hedonic approach can be used to determine how much people are willing to pay for a safety measure (e.g. irradiation of ground beef) to be put in place knowing that it could prevent illness or even death. The “Quality Adjusted Life Years” method places increased value on younger individuals due to the future years of productivity remaining for them.

Speaker Stan Bailey (USDA-ARS) presented costs associated with on-farm intervention strategies to reduce pathogen contamination. Some of these costs include: vaccines, facility improvements, monitoring programs, increased personnel, and sanitation and cleaning procedures. Producers also must factor in the costs of not performing certain interventions as well, which requires risk analysis and management strategies. Interventions can also provide certain cost savings related to prevented recalls, litigation, and bad publicity. Initiating interventions must require complete management commitment.

Larry Cohen (Kraft Foods) discussed the costs of in-plant interventions. These costs include sanitation, equipment/facility design, and personnel training. Deciding when and how thoroughly to perform plant sanitation protocols can control some of these costs. For instance, intensified deep cleaning of the environment and equipment with complete shutdown of production might only be performed every few weeks with a less intense cleaning daily or weekly — of course this would vary from plant to plant. Regulatory enforcement can lead to increased costs as well (i.e., a positive Listeria monocytogenes result requiring intervention).

Lori Ledenback (Kraft Foods) compared costs associated with in-house versus contract laboratory testing. Factors to consider include: overhead, labor, shipping of specimens, and the cost of obtaining results. To maintain the quality of results, proficiency samples are needed which require oversight and review. Audits can be done internally or through contracting with an outside reviewer. But, impartiality in conducting audits must be strictly adhered to. Flexibility in testing should be considered as well as certain times of the year may be busier than others and require higher turnaround time of lab results.

Phil Spinelli (USDA-FSIS) presented on the federal mandate requiring that government agencies must show the costs associated with new food regulations before being able to implement them. An economic assessment is required in order to identify where the market is failing to control a certain risk and then to aid in developing regulation to correct the failure. Also, an assessment is used to gather information about the economic impact of a regulation on industry, society, and government. The economic assessment consists of identifying the baseline level of a certain risk and then determining how it will change with new regulation.

Jenny Scott (NFPA) spoke about the costs of intervention versus recalls from the industry perspective. Market forces, food regulations, and liability laws drive the industry to pay the costs associated with intervention strategies (e.g. packaging, testing, environmental control, holding product during testing, etc.). The costs recalls are both direct and indirect. Direct costs include loss of product, cost of handling recalled product, wasted labor time, and other operational costs. Indirect costs include damage to brand reputation, decrease in stock value, and litigation expenses. A company must therefore weigh the financial costs/benefits associated with deciding to implement an intervention to determine what approach best suits the future needs of the company.

S12 – Spoilage and Pathogenic Fungi and Yeasts

Megan Hereford, Virginia Tech and Angela Hartman, Virginia Tech

Ailsa Hocking spoke about ochratoxin, a kidney toxin that is formed by unrelated species of *Aspergillus ochraceus*, *Penicillium verrucosum*, *Aspergillus carbonarius* and *Aspergillus niger*. While most isolates from *A. ochraceus* do not produce toxin, the majority of isolates of *A. carbonarius* and *A. niger* form varied levels of ochratoxin, and isolates of *P. verrucosum* may produce the major source of Ochratoxin A. While fungicides are ineffective, rapid drying is probably the most effective control and milling reduces ochratoxin by 30–60%. Due to ochratoxin production and spoilage by fungi, Maribeth Cousin stated that there is a need to identify fungi, detect mycotoxin producers, use online monitoring, and use detection for biosecurity concerns. Rapid methods such as flow cytometry, detection of acids, enzymes, or volatiles produced by the fungi, or immunological methods such as fluorescent microscopy, ELISA, and latex agglutination are commonly used for general fungal detection, detection of specific genus/species, or for mycotoxin producers.

Larry Beuchat spoke about metabolite associations of fungi and foodborne pathogens. A metabolic association occurs when the growth of one or more microbes causes an environmental change that favors the growth of the other. It has been shown that spoilage molds in tomatoes are capable of raising the pH so that *Clostridium botulinum* can grow and produce toxin. It was also shown that 20.2% of healthy portions, 26.4% of decayed portions, and 67% of *Alternaria* spoiled portions of fruit and vegetables were found to contain *Salmonella*.

Lloyd Bullerman spoke of the economic impact and control of Fungi and mycotoxins in food. The presence of fungi in food can lead to significant costs for food producers. Approximately 5 to 10% of the world food supply is lost annually due to the presence of fungi and mycotoxins, and FAO estimates that about 25% of the world’s food crops are affected by fungi. The total yearly cost in the US is estimated in the hundreds of millions to billions. The most common fungi found in foods are *Aspergillus* spp. that cause losses in corn, peanuts, and cottonseeds, among others. This organism has a worldwide occurrence. *Fusarium*, which produces fumonisins, causes
losses in corn and corn products and is found in all corn growing regions. Ochratoxin produced by Aspergillus and Penicillium spp. affects wheat, barley, green coffee, raisins, wine and beer.

Deepak Bhatnagar spoke of another problem caused by fungi, the production of aflatoxin in foods, which can occur pre or post harvest. This toxin has been shown to cause cancer in humans and animals, and aflatoxin B1 shows acute toxicity. The three lines of defense against aflatoxin are: preventing toxigenic fungus from getting to the crop; preventing the toxigenic fungus from invading the crop; and controlling toxin formation if it enters the plant. The proposed solution for achieving these three goals is genomics.

Dr. Stanley Brul spoke of use of genomics to develop novel antifungals for food use. He noted that fungi might be utilized for production of value added components in food, as well as it can spoil food or produce toxic compounds. Through use of genomics, spoilage in products may be prevented, making fungus more sensitive to preservatives, both natural and added.

S13 – Assuring Food Safety and Security

Sally Foong, Iowa State University and Angela Hartman, Virginia Tech

Overall strategy for FDA is awareness, prevention, protection, response, and recovery. Threat assessment models are based upon the Battelle Study, FDA-CFSAN Assessment Tools, IFT Task Order, and intelligence gathering. Critical needs for analytical methods (screening the fields and laboratories) are from sampling, behavior in foods, and validation of methods. Rapid detection can be carried out using lateral flow devices, biosensors, molecular methods, ELISA, LC-MS, GC-MS, g-ray detectors, and a or b detectors. Product security systems include product authentication (overt, covert, or forensic); tamper evidence (labels, tapes, seals); and trace and tracking systems (digital, barcodes, and electronic codes). Recovery systems validate disinfectant, decontaminate production areas, involve factors influencing disinfectant, and validation. Laboratory networks include FERN (Food Emergency Response Network).

Food safety is an issue of accidental or natural occurrence. Food security is an intentional threat which involves personnel, product, and property. An increase in screening and supervision of the human element is needed. Risk assessment matrix is used to deal with food security risks. Currently, there is a need to assess or evaluate current practices, to identify weaknesses, and to implement controls. The NFPA assists the industry by implementing the 3 “Ls” which are “Light it, lock it, and limit access”. Better communication network; better secure information sharing, collaboration, cooperation, and coordination through intelligence, threat assessments, vulnerability assessments, and rankings; laboratory capacity and competency; and tools (both scientific and behavioral) are important in assuring food safety/security.

Livestock operations are possible weapons of mass destruction. “B-NICE” is the acronym for biological (zoonotics), nuclear, incendiary, chemical, and explosives as other methods of destruction. Transportation and distribution of livestock is the key. Assessment of terrorism threats is based on intent, capability, and vulnerability in determining when the threats are credible. North Carolina Homeland Security Initiatives include task forces, teams, and training programs or exercises. Food security issues involve public-private partnerships, role of physicians and medical examiners, rapid detection and accurate patient history, state and federal laboratories, surveillance in-plant and on farm, access to retail or food business or customer database, and industry staff food security training.

Transportation security issues include trucks, loads, bulks; distribution; and drivers’ background checks.

Homeland Security is to protect the food supply in the United States. Terrorists can exploit multiple pathways in terms of weapons of mass destruction. Attacks on food supply other than being an easy target, cause sickness and death, disruption without deaths, and destroy brand names. Distinguishing between natural occurrence and intentional threat is difficult. The FSIS Directive Food Security Monitoring Procedure (Liberty Shield) enhances inspection activity, surveillance of in-distribution and import facilities, laboratory sampling for threat agents, and surveillance of human illnesses. Public Health Security and Bioterrorism protects the food supply by improving international meat inspection, recruitment from overseas in food production, and otherwise expand capacity to protect against the threat of bioterrorism. The FSIS Surveillance activities include consumer complaint monitoring systems, FoodNet, district veterinary medical specialists, epidemiology officers, regulating sampling data, and CDC.

S14 – Applied Microbiological Genomics for Food Safety and Quality

Laura Baurmiester, Auburn University and David Rasmussen, University of Tennessee

Dr. Stanley Brul of the University of Amsterdam and the Unilever Research group opened the session with the topic, “The Challenge of Genomics in Food Microbiology”. Also presented was a history of genetic advancements, milestones, ranging from 1859 to the present, noting the rapid change in our understanding of molecular structures and how 200–300 microbial genomes are known currently.

Dr. Brul next addressed the issue of biomarkers and their significance in the medical field, as well as potential use in the food industry. Biomarkers were noted for being useful for elucidating the effects of processing, identifying desirable fermentation traits, as well as discovering gene functions and cellular mechanisms.

Micro-arrays are an alternative to PCR, which can only look at one biomarker at a time, for the simultaneous
examination of the expression of an organism's entire genome under specified conditions. Different production methodologies for probe manufacturing were explained, comparing oligonucleotide synthesis versus pre-fabricated spotted arrays, with the pre-fabricated arrays being cheaper, yet having lower specificity than the synthesized probes.

Finally, an example of the application of micro-array technology was provided by a discussion of predictive behavior of Bacillus subtilis based upon gene expression during sporulation. Differences between a wild type strain and a heat resistant endospore in the presence of metals or minerals were detected by micro-array technology, otherwise known as "transcriptomics".

The second speaker, Dr. Servé Notermans of the TNO Nutrition and Food Research Institute (in The Netherlands), provided the next seminar, "Predictive Microbiology based on Genomics: exploring a new technology." After a brief history of microbiology was given, genomics was defined as the analysis of (genetic) patterns by pattern recognition via multivariate analysis. Micro-array technology was again for the focus of the discussion. Micro-arrays were derived from dot-blot hybridization, being spotted arrays of an organism's genome made available through high-throughput PCR amplification, yet now having 40,000 gene probes able to be spotted on each slide.

Dr. Notermans discussed how the bacterium can act as a sensor, exhibiting variable gene expression depending upon the conditions the bacterium is exposed to. RNA expression is tested for after a bacterium is grown in different growth parameters, including temperature, pH, time, and water activity. Repeated measurements of gene expression of a bacterium under various conditions then can provide a database of gene expression patterns at those different conditions. Micro-array technology may then be predictive for gene expression at a given set of conditions for a specific bacterium upon comparison of the databank for the specific microbe. Genomics (transcriptomics) therefore is an excellent tool for the access of emerging capacity of a microbe.

Dr. Paul Takhistov of Rutgers University provided the final discussion of the afternoon, "Cell-based Assay and Biosensors as the New Tools for the Detection and Qualification in Food Microbiology." Biosensors are devices that incorporate a biological sensing element connected to a transducer. BioMEMS detectors were discussed followed by a three types of transducers: optical, electrical/ electrochemical, mechanical. Dr. Takhistov discussed the advantage of BioMEMS over micro-arrays, as it provides continual monitoring capabilities. Flow cytometry and Nano-patterned Gold Surface were also discussed. Dr. Takhistov noted the advantages of having real-time sensors and the robustness of cell based assay sensors. Also discussed were numerous technologies relating to cell-based assays and biosensors.

S15 – Campylobacter: A Pathogen in Need of Resolution

Ethan Solomon, Rutgers University
and Yohan Yoon, Colorado State University

This session focused on the pathogen Campylobacter. The speakers were ordered so that the audience was first given a background on the sources and ecology of the organism, then in-depth coverage of the difficulties associated with microbiological analysis and detection of Campylobacter. This was followed by a fascinating talk on the goals of the poultry industry regarding Campylobacter. Finally, the application of quantitative risk assessment to understanding the ecology of the organism and risk factors for human illness was presented. The order of the speakers did an excellent job of bringing out the true "farm to table” difficulties associated with this pathogen, and why any resolution is still seemingly out of reach.

Although Campylobacter is the most frequently reported agent of foodborne gastroenteritis, its importance has been understated compared to other organisms. The level of infection of Campylobacter has decreased 24% since 1996; however, the consumption of poultry products and raw milk as well as international travel continue to be associated with Campylobacter infection. The degree to which cross-contamination plays a role in infection is still unknown and is difficult to study using case-control. Also the level of person to person spread is unknown. These areas requiring study in order to further reduce the level of Campylobacter. Dr. Eric Line discussed the difficulties associated with cultural methods for the detection of Campylobacter. Although more than 40 formulations for selective media for Campylobacter have been published, there is no standard methodology for the organism, further complicating intervention strategies. Contamination and low levels of target organisms hamper cultural methods for the detection of Campylobacter. Therefore, recently, new non-cultural methods have been put forth for the detection of Campylobacter. These methods may be extremely useful in understanding the ecology of the organism. The use of RT-PCR and its advantages over traditional PCR was also presented, detecting mRNA as an indicator of viable cells.

In industry, risk assessment is necessary to characterize the ecology of the organism in order to devise better intervention strategies and reduce the incidence of human illness. A further need in the poultry industry is better carcass enumeration methods as well as the structuring of performance criteria based on public health impact, not on process capabilities. Lastly, a large ongoing risk assessment in Iceland was discussed. The goal of the work was to understand the farm to table risk factors for the organism.

S16 – Microbial Stress Response to Intervention Technologies

Jarrett Stopforth, Colorado State University
and Marcos Sanchez, University of Nebraska-Lincoln

The session provided a review on the response of bacteria and viruses to the stress caused by several
intervention technologies such as irradiation, modified atmosphere packaging (MAP), ozone and heat, pulsed electric fields and high pressure processing. Aubrey Mendonca from Iowa State University indicated that the effectiveness of irradiation to control bacteria depends on the physiological state of the bacterial cell and the atmospheric gas composition used for packaging. Bacteria growing during the exponential phase were found to be more susceptible to irradiation when compared with organisms in the stationary phase that are able to repair DNA damage. Additionally, it was demonstrated that bacteria exposed to other environmental stresses such as starvation, heat shock, acid shock and osmotic pressure tend to be more resistant to this treatment than controls.

John Novak from the USDA-ARS-ERRC provided a summary of findings on the potential use of the combination of ozone and heat to eliminate spores of Clostridium perfringens. This organism responds to stress by developing spores that can resist up to 1 hour of heat at 100°C. Ozone was shown to be effective by attacking the cell membrane, thus allowing heat treatments to be more effective for the control of this pathogen.

Howard Zhang from Ohio State University summarized the work of several researchers in the area of pulsed electric fields. The benefits of this treatment included the rupture of cell membranes, the reduction in the number of bacteria (up to 5 logs) in acid liquid foods, the non-thermal nature of the treatment that minimizes organoleptic alterations of food products, and the minimal effect on the natural flavor and freshness of products treated. Some studies in juices to control L. monocytogenes, Salmonella Hartford, E. coli and Staphylococcus aureus were presented, indicating the effectiveness of this treatment.

Gary Richards from Delaware State University focused on antiviral intervention technologies. Such interventions should focus on damaging nucleic acids and the capsid of viruses. Some include heating and cooling, freezing and thawing, chemical disinfectants, restriction enzymes and irradiation. The capsid was also shown to be affected by high hydrostatic pressure treatments, such as Hepatitis A virus which can be eliminated by 450 MPa of pressure for 5 minutes. Finally, several pre- and post-harvest interventions to control viruses were detailed.

The last presentation was given by Dallas Hoover from the University of Delaware summarizing the resistance of sporeforming organisms to high pressure treatments. The technology used in meat, fruits, salsa and seafood products in levels from 100 to 800 MPa produces the leakage of intracellular components of the cell by damaging the membrane. However, a 15% reduction in the size of the product, damages to fragile foods and destruction of hydrophobic bonds may limit its applicability. In addition, the process may not be effective to eliminate spores. Endospores from bacteria were shown to resist up to 1724 MPa (250,000 psi) for 45 minutes. In fact, high pressure was found to induce germination of spores at levels of 100MPa by releasing dipicolinic acid, thus increasing hydration of the cells followed by germination.

S17 – Current Issues in Food Toxicology

Kelly Stevens, Universidad Autonoma de Queretaro and Lynette Kleman, North Carolina State University

Speakers in this session provided an overview of topics that are of current interest in food toxicology as it relates to food safety. Robert Hollingworth from Michigan State University kicked the symposium of current issues in food toxicology off with a very thorough review of the safety determinations and challenges of foods derived through biotechnology. His presentation included a review of methods producing genetically modified food, as well as several examples of the use of biotechnology used in plant foods. He continued with an overview of the four major concerns of biotechnology derived foods including antibiotic resistance, toxicity of the transgene itself, toxicity of the transgene product, as well as secondary effects from transformation. Standard methods to assess safety were also discussed including animal tests and epidemiological methods.

Dr. Hollingworth concluded that genetically modified foods present a low health risk, stating that the safety of foods is not determined by the method which they are produced, but by the composition of the food itself.

James Griffiths explored the definition(s), regulatory framework and safety of functional food ingredients. He separated functional food ingredients into dietary supplements and food additives and reviewed the major similarities and differences of these classifications as well as how they pertain to food processors. He proposed a scheme for public acknowledgment for ingredient manufacturers that undergo a higher standard of review.

The session ended with a lively discussion presented by Penelope A. Fenner-Crisp regarding the justified and unjustified use of human subjects and data in regulatory policy. The key premise of her presentation dealt with the issue of the key scientific and ethical issues that need resolution concerning the use of human data in safety assessments of chemicals, additives, nutraceuticals, and foodborne pathogens and whether different scientific and ethical standards should be applied based on the test substance i.e., pesticides, direct food additives, nutraceuticals, and pathogens. Her presentation ended with a discussion of the current administration policies and pending legislation in this topic area.

S18 – Science-based Shelf-life Dating of Ready-to-Eat Refrigerated Foods

Sally Foong, Iowa State University
and Elizabeth Duffy, Texas A & M University

Products are dated for food safety, stock rotation, assurance of nutritional value, and consumer selection. Product dating is open-dated for most perishable foods, “sell by” dates for perishables, “best if used by” dates for shelf-stables, and “consume within x days after opening”
for products in new packaging technology. Dating is not uniform and not clearly understood. Rules and regulations vary. The purpose of dating is quality assurance. Product variability in terms of packaging styles influence dating.

MAP and vacuum packaging increase public health hazard. Although they increase shelf-life and retain sensory characteristics of foods, they also suppress pathogens, especially psychrotrophs. RTE foods stored in refrigerators for extended time, enables growth. Retails and consumers may not store refrigerated foods properly. Innovative strategies are needed to kill or suppress growth of pathogens. Possible alternatives may be to decrease shelf-life, single serving packaging, or smaller portions.

Factors in RTE foods that may lead to illness are host-pathogen interaction, frequency and amount of food consumed, frequency and level of contaminant, potential for pathogenic growth, and storage time and temperature. Microbiological factors to setting dates include microbial strain, physiological state, inoculation method, recovery and enumeration methods, statistical certainty, and reliance on literature, models, or inoculated pack studies. If foods support growth, reformulate to inhibit, inhibit during distribution (freezing), inhibit with packaging, or aseptic or pasteurize in package to reduce recontamination after opening.

Estimation and validation of safety-based shelf-life dating is obtained from challenge studies. Products that have been tested include cheese, dressing and condiment, and RTE meats where formulations were challenged with specific pathogens in a shelf-life study. Safety-based code dating can be used for a variety of products and the process is matrix dependent and time consuming but can add significant value to the products. Coding provides a significant opportunity to learn more about the products.

A problem with open dating is not just time kinetics but time-temperature. Parameters in designing experiments include time to detect (TTD) period, lag period, and growth period. Lack of data is from growth and contaminant levels that are lower than detection. Microbial sensor tags are available but with limited use. A possibility is to combine time-temperature integrators (TTI) with open dates. The goal of TTI is to alert consumer if conditions existed in distribution (freezing), inhibit with packaging, or aseptic or pasteurize in package to reduce recontamination after opening.

This symposium provided an overview of some of the key foodborne disease outbreaks that have occurred in recent history, as well as some of the current food safety issues. The discussion began with Dr. Sami Gottlieb from the CDC speaking about a multistate Listeriosis outbreak associated with Turkey Deli Meat. She detailed the steps and actions taken by the CDC that covered this outbreak that lasted from July to November of 2012. There were a total of 5 cases, and the CDC conducted a case control study.

From the European perspective, shelf-life studies look at qualitative issues such as microbiological and organoleptic qualities. Product safety with respect to pathogens is not assured. Safety is assumed dealt with through management tools like HACC. Experimental designs for testing must mimic real practices which are often difficult to develop. More work is required in determining shelf-life of chilled products from practical testing (shelf-life and challenge), having greater variation in key parameters, working towards standard protocols (agreements to all parties so that comparisons can be made), and understanding how shelf-life determination ensure degree of standard.

Dr. Katrina Kretsinger, from the CDC, spoke about a foodborne outbreak of Salmonella Newport in tomatoes that occurred from August to September of 2012 in restaurants in Maryland and New York, and a hospital in New Hampshire. PFGE patterns were used to identify case clusters. This pattern was unusual one, and from July to November of 2012 of 512 cases of Salmonella infection this PFGE pattern matched 288 of the isolates. This outbreak was traced back to a single broker and packer in Virginia, which included packaging and 25 farms. It was thought that the possible source of contamination in this case was mammals and birds that were present in the shed and packing line. In a related talk, Larry Beuchat, from the University of Georgia, spoke about the behavior of Salmonella on and in tomatoes. He said that the organism is present on the skin as well as the stem scar, and active chlorine is not efficient in reaching it when tomatoes are washed. At a level of 1-320 ppm there is no significant reduction in bacterial cell populations on the surface of tomatoes, and this is same in the core of the tomato.

Hyperendemic botulism was an interesting addition to this symposium. While this is not an issue affecting the US it is a problem in the Republic of Georgia, formerly the Soviet Republic of Georgia. Katrina Kretsinger from the CDC discussed that the Republic of Georgia has the highest rates of botulism in the world. The methods of canning that are used are sited as the cause for these outbreaks. Currently the CDC is working to infiltrate the country and determine how to intervene so they can reduce the outbreaks.
Mary Palumbo from the California Department of Health discussed an outbreak of 58 cases of Salmonella Thompson in Southern California that was quite unusual. Through investigative techniques they were able to trace three different outbreaks of S. Thompson that occurred in beef, turkey burgers and bread; back to a bakery that shipped bread to restaurants. Using PFGE they were able to determine that these outbreaks were all related, and they traced it back to an ill employee that was not wearing gloves. The speaker stressed the importance of molecular investigative techniques in aiding with this outbreak.

The final speaker was Sherri McGarry from the FDA discussed the outbreaks of Salmonella Poona from imported cantaloupes from Mexico. Between 2000 and 2002 there were 4 multistate outbreaks with 35–50 reported cases per outbreak. A CDC research team found that there was no wastewater treatment set up and there was raw sewage in the fields, the pesticides were mixed with untreated water and there was poor training of the workers. In addition the packing shed was open and wild animals and birds were present. The CDC intervened halting all imported cantaloupe from Mexico, and implementing training programs, a cantaloupe certification program and criminal action against firms. With these programs, the growers can work towards cleaning up their environment and once they complete this, they can be certified to export cantaloupes to the US again.

S20 – Food on the Move

Kristen Matak, Virginia Tech and James Folsom, University of Georgia

The threat of bioterrorism is a major concern for the federal government. Programs are being designed to increase the security of the food supply and the safety of travelers within the US and abroad. Foodborne illnesses and outbreaks have been reported among travelers on airlines and trains, but the surge of recent outbreaks on cruise ships has caused many to wonder who is responsible for the safety of the food in these venues. The FDA’s CFSAN has developed a voluntary “Interstate Travel Program” under the Public Health Service Act where the major objective is “to prevent the introduction, transmission, or spread of communicable diseases from one state to another.” This program is made up of a series of food security educational materials and training based on the Food Code and the principals of HACCP and is aimed at airlines, trains, buses and other vessels where food is served. Regular inspections and certification are part of this program. In response to several major disease outbreaks on cruise ships, in 1975 the CDC developed a voluntary “fee-for-service” Vessel Sanitation Program (VSP) based on a modified Food Code. Any vessel that carries more than 13 passengers, has an international itinerary, or that calls on US ports must meet the criteria established by VSP in the “Vessel Sanitation Program Operations Manual” and may be subject to unannounced inspections. The International Flight Catering Association (IFCA) and the International Inflight Food Service Association (IFSA) have developed new food safety standards for the airline industry. These standards have included implementation of a “process specific” HACCP program and industry guidelines for all facets of the industry that deal with food and food service. NASA Food Technology is looking at ways of developing food processing technologies that may be used for travelers in space. The next generation of food is to extend shelf-life from 9 months to over 5 years. Safety, nutritional composition, and palatability will all play major roles in the success of this program. The highly publicized outbreaks on cruise ships have increased public awareness of food safety problems and safety programs are revamping to address these issues. While state and federal programs are designed to educate, regulate, assist and provide oversight to food handlers, food safety is the responsibility of everyone in the food industry.

S21 – Aquaculture: Safety and Quality Issues

Krishaun Caldwell, University of Georgia

Good Aquaculture Practices and the Role of HACCP Jackie Silva, Mississippi State University, Mississippi State, MS, USA. Dr. Silva outlined in this presentation Good Aquaculture Practices (GAPs). The role that the Food and Drug Administration, Environmental Protection Agency, United States Dept. of Agriculture and other government agencies play in ensuring high quality and safety of aquaculture products to consumers. These government agencies monitor the following areas: selection of site, soil quality, water source, water quality management, feed quality, animal control, human hygiene, ensuring proper worker sanitation, and the proper use of chemicals. Some of the Critical Control Points (CCPs) include: the production site, water quality, feed quality, chemicals used as well as drugs that may used.

Advances in Reducing the Off-flavors in Farm-raised Catfish, Casey Grimm, USDA-ARS-SSRC, New Orleans, LA, USA. This presentation began with an overview of off flavors, such as the causes, detection, prevention, and mitigation of off flavors in catfish products. Such things as algae, and algal metabolites that catfish may take up in the water cause the off flavors in catfish. Some of the odors in catfish can be described as blue green-earthly musty aroma, grassy-resembles fresh cut grass, diesel-hydrocarbons, and rotten-resembling that of decaying fish. Some others include: mothballs, corn, and piney. Dr. Grimm also stated how these undesirable flavors could be controlled. The manipulation of nutrition such as decreasing nutrients, reducing the amount of PO, and shifting the Nitrogen to Phosphorous ratio. This low ratio is good for cyanobacteria and may also increase inorganic nitrogen.

Modified Atmosphere Packaging of Aquacultured Seafood Products- Juan Silva, Mississippi State University, Mississippi State, MS, USA. Dr. Silva presented recommendations for the packaging of various types of fish as well as the shelf life of fish products. He made
recommendations for the packaging of fatty fish, lean fish, and cooked fish. The shelf life of catfish is as follows: iced packed — 4—10 days; retail — 2 days; with antimicrobials—2–6 additional days; chill pack — 19 days, modified atmosphere packaged — 12—75 days. Also presented were 2–6 additional days; chill pack — 19 days, modified atmosphere packaged — 4–10 days; retail — 2 days; with antimicrobials—sanitation, packaging, and storage of the product. In addition, Dr. Silva made some recommendations for the improvement of shelf life. He recommended that the Aerobic Plate Count for raw fish should be <10,000 CFU/g, there be a HACCP plan in place, a hazard/risk assessment should be conducted, there should be a system validation, proper labeling, time/temperature integration, and noted that sensory spoilage precedes toxin, and the maximum shelf life should be <30 days.

Chemical and Drug Use in Aquaculture — Rosalie Schnick, Michigan State University, North Central Regional Aquaculture Center, LaCrosse, WI, USA. The top 5 aquaculture-producing nations are: (1) China, (2) India, (3) Japan, (4) Philippines, and (5) Indonesia. Some recent issues related to the use of drugs are banned antibacterials, and banned malachite green residues in salmon. The worldwide issues related to drug use are that there are few approved drugs, and that there is a lack of regulations, validated analytical methods, risk assessment and management, and finally international harmonization. The solutions to these problems would be to educate farmers, produce a quality program, HACCP program, the development of analytical methods, create a national surveillance program, and to compile human health risk data.

Pesticides and Environmental Organic Pollutants in Farmed Fish—Charles Santerre, Purdue University, West Lafayette, IN, USA. The concerns with pesticides and environmental pollutants are that they can enter through the feed and some of the pesticide residues include DDT, which is the number 1 pesticide found in farmed fish. Also listed were chloroclanes, Hexachlorobenzene (HCB), and heptachlor epoxide. Residues of PCB (polychlorinated biphenyls), which was banned in 1979, is a B-2 carcinogen, and has a FDA action limit of 2 ppm. The at-risk population includes women who are pregnant or breast-feeding, women who will become pregnant, and children under the age of 15. Some of the sources of PCB in the diet include 13.6% from farmed salmon, 8.4% from other types of fish, 6.3% from beef, 5% from pork, 8% from poultry, and 2% from milk/milk products.

International Perspective on Aquaculture — Peter K. Emberek, WHO, Geneva, Switzerland. The recent changes in the supply of fishery products in a result of the sources of fishery products and the expansion of aquaculture. Developing countries are a major supplier of fishery products (87%) and most are found in the tropical/subtropical belt. Also, it is the fastest growing food production system. Some of the food safety issues related to aquaculture are that diarrhea (foodborne or waterborne) causes 2 million deaths/year in developing countries, in industrial countries up to 30% of the population contracts the disease and up to 20 million die as a result. Dr. Emberek also listed the outbreaks from 1990—1998 related to seafood. Fish was responsible for 263 outbreaks and 1,661 cases, Molluscan shellfish 66 outbreaks, and 3,281 cases, other shellfish 8 outbreaks and 148 cases for a total of 237 outbreaks, and over 5,000 cases. In the United States the main agents are: histamine, ciguatera toxin, viruses, Salmonella, and V. parahaemolyticus. In Russia: C. botulinum, Japan: V. parahaemolyticus, and in China: Trematode parasites. The research needs in this area are to determine and monitor national prevalence and disease in humans and in farmed fish, develop surveillance, and study transmission.

S22 — The Evolution of Foodborne Pathogens

Kristen Matak, Virginia Tech
and James Folsom, University of Georgia

Marguerite A. Neill and Martin Wiedman convened this session. The evolution of several notable pathogens and a method of analyzing the evolution of bacteria were presented.

Thomas Cebula from FDA, CFSAN, began by discussing the role of methyl-directed mismatch repair (MMR) in the evolution of bacteria. MMR mutants exhibit rates of mutation that are higher than their wild type compatriots. In addition these mutants share DNA more successfully with other bacteria. The implications are that small numbers of the mutants could be present in the wild type populations, and that could speed the adaptation to the ever-changing bacterial microenvironment, as well as drive the further evolution of pathogenic bacteria.

The next speaker, Thomas S. Whittam from Michigan State University, presented information on the evolution of Escherichia coli O157:H7. Extensive information on the evolution of E. coli O157, was given, including its diversification from a common ancestor shared with E. coli O55:H7. Escherichia coli O157 evolved as a result of the accumulation of many mobile genetic elements. Many more pathogens may arise through this kind of sharing of DNA.

Andreas J. Baumber, from Texas A&M, presented information on the evolution of a novel membrane protein in Salmonella enterica subspecies I, which allowed it to make the jump from reptiles to warm blooded animals. This subspecies of Salmonella enterica causes 99% of human illness compared to the other enterica subspecies, which are isolated mostly from reptiles. This is the result of a protein (ShdA) that mediates prolonged intestinal carriage, ultimately allowing the jump to warm blooded animals. This protein isn’t found in the reptilian Salmonella enterica subspecies.

Examples of how MultiLocus Sequence Typing (MLST) can be utilized to explore the evolution of Foodborne Pathogens were presented by Martin C. J. Maiden, from University of Oxford. This method is the result of the advent of high throughput procedures for the genetic characterization of bacterial isolates. The improvement in
cost effectiveness of these procedures will help to make them mainstream.

The final speaker, Martin Wiedmann, greatly expanded on his theory of three Listeria monocytogenes lineages. Using a wide variety of techniques he found that Lineage I and II seem to be predominantly clonal in nature, whereas those of Lineage III are more diverse. Lineage III isolates seem to exhibit much more evidence of recombination, and are more diverse.

S23 — Natural Antimicrobials — Current Trends and Future Perspectives

Leslie K. Thompson, University of Georgia, and Joshua Gurtler, University of Georgia

The use of natural antimicrobials in the food industry was discussed in this symposium. Some of the main goals include: prolonging shelf life, preserving quality, and/or inhibiting (inactivating) pathogens within a food product. Factors such as the microbial flora, intrinsic properties, extrinsic properties, and processing of the food product all affect the success of natural antimicrobials. There is a push to find effective natural antimicrobials that can be used in foods, because they may offer potential health benefits and products with clean labeling, and the absence of “synthetic” compounds may be more desirable to consumers. There are three different types of natural antimicrobials: animal derived, plant derived and bacteria derived.

Animal derived antimicrobials are usually biological secretions coming from milk, eggs, and muscle tissues. Their antimicrobial characteristics can harmfully affect microorganisms by depriving them of nutrients, exposing them to a toxin or by binding to a specific bacterial surface component, disrupting the cell. Some concerns associated with animal derived antimicrobials are their cost, effectiveness, potential for causing allergies, or interferences with food matrices.

Plant derived antimicrobials usually come from spices and essential oils. Some of these include, cinnamon, cloves, thyme, and oregano and have been shown to be effective antimicrobials. A major concern however, with these substances is that they have very strong flavors and therefore, cannot be added to all foods without creating off-flavors.

The metabolic products of microbial derived antimicrobials can also inhibit spoilage and pathogenic bacteria. Acids, bacteriocins, diacetyl, CO₂, H₂O₂, and reuterin are all compounds produced by bacteria that have been shown to have antimicrobial properties.

The addition of natural antimicrobials to packaging materials is another research area receiving attention. The concept is to insert, or apply the antimicrobial to packaging materials, which will then come into direct contact the food, or be released from the matrix as a vapor. A great deal of work has gone into the diffusion of antimicrobials from packaging matrices, with controlled release of the compounds essential. There have been promising results but the effect of food properties needs further study.

The food industry is very interested in natural antimicrobials because of the potential for consumer-friendly labeling. Some of the set backs that have been seen include the antimicrobials incompatibility with the current manufacturing process, or that they are not truly natural and do not have GRAS status. They can also create organoleptic problems, altering the taste of the food product. The use of antimicrobials may also add cost or complexity to producing the product. For a natural antimicrobial to be adopted by industry, it would need to be broad spectrum and effective over a wide pH range and wide product range. In addition a simple and rapid method must be available to confirm/verify its presence/level in food.

Regulatory issues with natural antimicrobials were also discussed during the symposium. A large problem is determining which agencies have jurisdiction over the substance. In order to get regulatory approval, the safety, efficacy, and claims must be proven.

S24 — Risk Communication — Putting Food Safety in Perspective

Lisa Mathiasen, University of Guelph and Ben Chapman, University of Guelph

This symposium had a wide range of speakers including risk communicators, journalists, industry leaders and physicians. David Ropeik from the Harvard Center for Risk Analysis provided attendees with a general overview of risk assessment and made his presentation very interesting with humorous photographs and stimulating anecdotes. For example, from whom would you rather receive a glass of water... Oprah or Saddam?

As humans weigh the costs of the risks and the benefits, we learned that many factors come into play in their ultimate actions and decisions; for example: trust, control, uncertainty and fear. An understanding of these factors is imperative to effective risk communication, however understanding these factors alone are not enough.

Risk makes a good story, which tempts media outlets to over-dramatize the facts. It is important that risk communicators not only understand the public, but the media as well. Another concern for risk communicators is the potential for the skewing of facts by activist groups as Cary Frye from the International Dairy Foods Association explained. While many activist attacks make the news, they often back fire especially when going up against sound scientific evidence.

David Schmidt from the International Food Information Council described some effective messages that resonate with consumers. These include current information about the risk, and proving consumers with actions (instead of doing this, try this). As explained by Carolyn O’Neil, author of The Dish on Healthy Eating and Being Fabulous if you take the science, focus on the key messages and make it fun consumers will pay attention. Carolyn provided suggestions of “on the air” makeovers of kitchens, refrigerators and desktops to address food safety risks and motivate consumers to practice food safety at home.
Dr. Daniel (Stormy) H. Johnson explained risk communication from a physician’s perspective. Physicians, a trusted source of information, must understand the value of science and the risks in order to help others. By providing patients with information and then a choice of their actions doctors can put a realistic premium on safety. By demonstrating the importance of science, effective messaging and the establishment of trust this session on risk communication successfully enhanced media and consumer communication strategies for attendees.

S25 – Emerging Issues in Water Quality for the Food Industry

Jordan Bowers, Auburn University, and Yassaman Shafaie, Rutgers University

Topics discussed in the Emerging Issues in Water Quality for the Food Industry session included microbial contaminants in drinking water, biofilms, impacts of animal agriculture on water quality, and water treatment technologies for the food industry. Organizer and convener, Susan K. McKnight presented an overview of the importance of water and water quality to humans in a food industry setting.

Kelly A. Reynolds from the University of Arizona discussed microbial contaminants in drinking water. These contaminants can be viral, bacterial, or protozoan and can cause a wide range of illnesses and in some cases chronic sequelae. Reynolds also mentioned emerging issues in drinking water quality, such as, emerging pathogens, treatment plant reliability, and contamination control.

The next speaker was Jeannette Thurston-Enriquez from USDA-ARS. She discussed the impact of animal agriculture on public and animal health and microbial water quality. Thurston-Enriquez presented information on animal waste dissemination routes, manure-born pathogens, and applications for the management of the prevention of water contamination by livestock. Contamination of water sources can be from runoff of feeding operations, improper application of manure to field as an organic fertilizer, bioaerosol generation or direct deposition into the stream.

Jim Van Vooran from Environmental Health Laboratories, presented information on issues concerning the safety and quality of water in the food industry. He discussed source water testing performed under the Safe Drinking Water Act (SDWA) which was passed in 1974. This act requires monitoring for 16 inorganic and 54 organic chemicals, 3 radionuclides and 3 microorganisms and is based on three-year monitoring cycles. Drinking water regulations, current drinking water issues, and water quality programs in other countries was also discussed.

The affects of biofilms on water quality and product safety in the food industry was presented by Adrian Peters from the University of Wales Institute. Information was presented on the role of water in food production; as well as problems regarding biofilm growth and development in the food industry. Biofilms were specifically discussed in regards to food contact surfaces, product wash water, and water lines. A case study on biofilms in vending machines water hoses was presented including recommendations for assessing the presence and removal of biofilms from food surfaces.

Kristina D. Mena from the University of Texas Health Center at Houston, discussed information on assessing water’s role on food quality and foodborne diseases. She spoke of hazard identification, microbial agents of disease, dose response and exposure assessment, risk characterization and assessment applications, and challenges in microbial risk assessment, to list a few.

The final speaker, Peter M. Kennedy from Quality Flow, Inc. discussed water treatment technologies for the food industry. Information was presented about the evolution of water treatment, modern treatment equipment and technology, such as gas chlorination, UV light filters, and ozone generators, as well as ideas about choosing appropriate water treatment technology for your specific needs.

T01 – Microbiological Methods

Jordan Bowers, Auburn University, and Jamie Isonhood, North Carolina State University

Topics discussed in the Microbiological Methods session included the use of PCR, Thin Agar Layer Resuscitation Media, DNA probe assays, and an Optical Interferometer Biosensor. Joshua Gurtler from University of Georgia, presented the recovery of *Listeria monocytogenes* (Lm), *Jonesia denitrificans*, *Salmonellae* and *Pediococcus* sp. using three modifications of an ecometric method across nine media. Excellent recovery of L.m. was observed with TSAYE, PALCAM, MOX, and Baird Parker. The best recovery for the other strains was obtained using TSAYE, although MOX was equally effective for recovering *J. denitrificans* and modified PRAB was best for *Pediococcus* sp.

Jeffrey Kornacki from University of Georgia, compared a modified drop plate method with conventional plating methods, spread plating and pour plating, across three solid media for recovery of *L. monocytogenes* in broth and frankfurters. No significant differences were found for all three plating methods. Heat injured cells were best recovered using TSAYE without the MOX overlay, and the overlay (TSAYE/MOX) was more effective than using MOX alone.

Beth Crozier-Dodson from Kansas State University, compared two mediums for the recovery of injured organisms in the air. A resuscitation medium that was developed at Kansas State University called Thin Agar Layer (TAL) was used. This study resulted in the TAL medium producing higher counts of target and non-target microorganisms recovered and less viable non-culturable microorganisms on all media, than without the TAL.

Gitika Panicker from University of Alabama-Birmingham, discussed the use of oligonucleotide microarrays and PCR to detect total and pathogenic *Vibrio vulnificus*. Biotin-labeled multiplexed PCR-amplified *vib* gene segments were oligonucleotide arrayed to detect total and clinical strains. PCR was used to amplify 16S
rDNA and viuB regions to specifically identify clinical isolates. These methods provide a sensitive and specific detection of microbial pathogens in shellfish.

Wendy Lepper from Silliker Inc., presented research on two rapid methods involving bioMérieux’s Second Generation VIDAS and Qualicon’s Automated BAX (ABAX), both kits developed for L. monocytogenes. Five processed meat and poultry products were tested, fortunately none were positive. The VIDAS (63/100) was able to detect 9 more samples than ABAX (54/100), but differences between the two methods were not statistically significant.

Omar Oyarzabal from Neogen Corp., presented a comparative analysis of the ELISA based test kit for Listeria spp. versus conventional methods. Seafood, meats, dairy products, and fruits and vegetables were inoculated and then stored for 48 h followed by a 24 h enrichment step. The two methods were found to be comparable. Doris D’Souza from North Carolina State University presented research on Nucleic Acid Sequence Based Amplification (NASBA) method, which targets RNA rather than DNA, to detect Salmonella enterica serovar Enteritidis from foods (chocolate, meats, poultry, seafood, etc.). The RNA was extracted using the NuliSens® Basic Kit. The NASBA electrochemiluminescence (ECL) reaction produced an end-point detection limit of 10^2 CFU/reaction, similar to PCR. The method was rapid and sensitive for detection of low levels of Salmonella contamination in a wide variety of foods.

Julie Jean from North Carolina State University, presented research on NASBA in a multiplex format for the specific and simultaneous detection of hepatitis A and Norwalk-like viruses. The multiplex NASBA system with ECL was more sensitive than RT-PCR (Reverse Transcription-Polymerase Chain Reaction). Detection of viruses inoculated on deli style turkey and lettuce was comparable, demonstrating the flexibility of the assay to detect viruses in foods.

Loralyn Ledenbach from Kraft Foods, discussed a system using BioSys for the rapid enumeration of yeast and mold in salad dressings. Yeast was detected within 15 hours and mold between 32 to 70 hours.

Patrick Marek from University of Connecticut, discussed PCR to optimize a rapid and specific detection of P. expansum on fruits. Post-harvest spoilage of fruits by this organism results in abbreviated shelf life and great economic losses to the fruit industry. C. M. Ngutter from University of Vermont, discussed the impact of selective versus non-selective recovery procedures on the recovery of nitrite-induced injury of L. monocytogenes from frankfurters. Three objectives were tested, to determine if sodium nitrite has the ability to injure cells, and, if the injury is reversible, also to compare recovery of the injured cells using Listeria Repair Broth (LRB) and UVM. Nitrite was found to injure cells, and the injury was completely reversible. LRB was consistently far superior to UVM in the recovery of injured L.m. cells in RTE meats containing sodium nitrite.

David Gottfried from Georgia Tech Research Institute, discussed pathogen detection using an Optical Interferometer Biosensor. It is a small, robust, highly sensitive tool that requires no tagging or rinsing at a low cost, that offers real-time monitoring of pathogens.

T02 – Food Safety Management and Communication

Gitika Panicker, University of Alabama-Birmingham and Marcos Xavier Sanchez, University of Nebraska

A variety of topics relating to food safety management were covered in this session. Spring Younts-Dahl, Texas Tech, presented a study on the prevalence of *Escherichia coli* O157:H7 in beef cattle after being fed a regular diet and a direct-fed microbial culture of *Propionibacterium* and *Lactobacillus acidophilus* strains. Cattle fed with the probiotic mix presented ~50% less *E. coli* than controls.

Keith Vorst, Michigan State, presented a study on transference coefficients for *Listeria monocytogenes* during commercial slicing of delicatessen products. The table, back plate, metal guard, blade and product collection area of the slicer were found to be critical for transferring this pathogen.

James Arbogast, GOJO Industries, showed the importance of hands, gloves and utensils as cross-contaminating agents for *E. coli* and *Salmonella* in food-service operations.

Dr. Ricardo Molins focused on some issues regarding food safety regulations in the US, like the need for a database for food-borne pathogen contamination surveillance; successful intervention methods, followed by effective risk assessment studies; communication to the public and maintenance of HACCP standards.

Jennifer Thomas, California Department of Health Services, introduced the Food Safety Notification System, a novel program to disseminate health information. It allows the center to provide information to key individuals that can act to prevent additional exposures. The web-based system transmits messages in multiple formats including cell phone, text, e-mails, fax and voice mail.

Several presenters from the University of Wales Institute-Cardiff, UK participated in this session. Ginny Moore presented a study to determine the efficacy of sponges to recover microorganisms from surfaces. Of interest was the fact that although the sponge was able to remove 80% of the bacteria artificially inoculated on a surface, only 1% of the bacteria were recovered from the sponge during sampling, thus suggesting that bacteria may in fact get trapped in the sponge matrix.

Louise Fielding presented information on the importance of air quality in hand drying devices. The air of toilet rooms was found to be contaminated with *Enterobacteriaceae*. Aerosols and hot air dryers showed high counts of indicator bacteria and *Staphylococcus aureus*.

David Lloyd presented trends and costs of microbial failures in ready-to-eat manufacturing facilities. It was found that failure increased proportionally with production increases and that 22% of cases were linked
to new temporary staff. Total costs were estimated at 386,000 for small and medium sized facilities.

Leane Ellis presented data based on a survey and visits with 850 small and medium sized operations in regards of the usage of hazard based quality management programs. It was found that 87% of plants having trained employees were able to identify hazard problems, versus 50% recognition in non-trained facilities.

The session also included several presenters from the University of Guelph in Canada. Benjamin Chapman described the implementation of a pro-active, on farm food safety program based on surveys and training visits to growers of vegetables. Liz Gomes described an educational resource to engage senior high school students in conversations about genetically engineered food. Results showed an increased knowledge among students after their participation in focus groups and field trips. Lisa Mathiasen summarized the findings of a study that determined common food safety errors observed in cooking shows worldwide. The main findings included the lack of hand washing, cross-contamination and time-temperature violations.

T03 – Produce Microbiology

Glenn Richards, University of Georgia and Renee Raiden, Virginia Tech

Presentations made in this session assessed efficacy of various decontamination methods and interactions of foodborne pathogens with several produce items.

Louise Fielding, University of Wales Institute, treated strawberries with ozone (10, 50, 100 ppm) for up to 8 h after inoculation with *Salmonella* and *E. coli*. These treatments resulted in 0.9 – 3.3 log reduction of microbial population. Organoleptic qualities were not significantly affected. Higher ozone concentrations and longer exposure times would give more efficacious decontamination, however this has cost and safety implications.

Y. Han, Purdue University, compared spot and dip inoculated strawberry seeds and flesh. Bacterial distribution was more uniform for spot-inoculated samples. Recovery did not differ significantly at 0, 2 h, 1 day and 3 days after inoculation. Spot inoculation had a higher reduction in *E. coli* population, when the samples were treated with chlorinated water. Dip-inoculated data showed a larger standard deviation.

Suresh Pillai, Texas A&M, Irradiated various retail brands fruits and nuts (walnuts, dates, raisins) infested with molds. Mold loads on retail dried fruits and nuts are variable. D values and inactivation rates varied due to differences in populations and response. Product, mold species and mold population affected e-beam effectiveness. 3 kGy was effective for total removal of molds. A 5-log reduction was obtained with 8 kGy, but it is not known whether this dose inactivated mycotoxins.

Tatiana Koutcham, NCFST, IIT, preformed an assessment of critical product and process parameters to validate UV disinfection of juices in flow through reactors and achieve a 5-log reduction in the population of *E. coli* K12 inoculated into unpasteurized fruit juice. The effect of absorbance, turbidity, and flow rate on UV inactivation varied with brands of apple juice. Inactivation rate was affected by flow rate but not microbial load.

Bassam Annous, USDA-ARS, found that *E. coli* spray-inoculated onto apple flower or fruits were able to survive field conditions on the surface and in the core. Internalization of *E. coli* can occur in the field at blossom or fruit stage and that apple orchards should be located away from pasture land where exposure to contaminated dust or irrigation can occur.

Pascal Delaquis, Agriculture and Agri-food, discussed whether accumulation of wound associated metabolites affect *Listeria monocytogenes* during storage. Metabolites on cut or wounded lettuce limit *Lm* growth. The anti-listerial factor accumulated in wounded iceberg lettuce stored anaerobically. The role of natural defense mechanisms in the ecology of foodborne pathogens in stored packaged fresh-cut produce must be examined. The nature of the factor remains unknown.

Gro Johannessen, NVI, found that the use of untreated manure does not significantly influence the bacteriological quality of lettuce. While *E. coli* O157:H7 was detected in firm manure, slurry and soil fertilized with the respective manures, the pathogen was not detected in lettuce.

Robert Gravani, Cornell University, completed a survey determining that worker understanding of toilet and hand-washing hygiene as well the status of facility hygiene in NY packing houses needed improvement.

Lynette Kleman, North Carolina State University, evaluated the microbiological quality of leafy greens and cantaloupes from the field to the packing area and the prevalence of foodborne pathogens. For both groups, there was no remarkable increase in Total Aerobic Bacteria throughout. Total coliform count, *Enterococcus* and *E. coli* count increased at the rinse step for cantaloupes, but for leafy greens *E. coli* count remained low. *Salmonella* was detected on 3.3% of cantaloupes samples.

Trevor Suslow, UC Davis, presented two research projects. *Citrobacter* is a primary co-enriched genus in *Salmonella* environmental and crop-based surveys. Survival of inoculated *C. youngae* is population dependent, but not proportional. Survival of *C. youngae* on lettuce leaves showed a significant decrease from the outer to inner leaves, but was still recoverable after 14 days. In his second presentation, he discussed that hydrocooling reduced *Pectobacterium carotovora*, *E. coli* O157:H7 and *Salmonella* populations at the stem end, but not the tip end of asparagus. The *Salmonella* population decreased. The predominant serotype recovered was Montevideo, while Agona was not recovered. Asparagine content in the tip could be a predictor of shelf life, as it increased 7—10 fold within 24—72 h after harvest; and sugar content declined in parallel.

J. E. Nychas, Agricultural University of Athens, found that *Monascus ruber* indicated the highest growth and widest...
“habitat domain” with respect to pH and NaCl at 30°C. pH, NaCl and temperature affected ascospore germination. Temperature affected ascospore germination, more than the growth/no-growth interface. The gradient plates allowed for quantitative expression of fungus growth.

T04 — Food Handling in the Domestic Food Service Environment

Adriana Velasquez, University of Nebraska-Lincoln and Lisa Mathiasen, University of Guelph

The way consumers handle food, as well as their cooking and eating habits are determining factors in the safety of the products. Surveys are usually used to show what consumers know about food safety and what they do when handling raw meat in the domestic environment. Roy Betts from Campden & Chorleywood Food Research Association presented the results of a survey performed in England and Scotland. Most participating members seemed to consider their kitchens to be clean and to have some knowledge about meat storage. Finally, he highlighted the importance of developing and spreading simple messages for consumers to follow to ensure safety in the domestic environment.

Vince Radke from CDC-NCEH expressed the existing need for the development of a system-based approach to food safety. This system would include an integral understanding of the dynamic interactions between the environment, host, and available epidemiology data to be able to identify how and why disease occurs.

Robin Lee from CDC-NCEH presented the results of a study on the prevalence of high-risk egg handling practices in various restaurants across the nation. Most participating food establishments seemed to use both shell and pasteurized eggs and to also pool them which could lead to microbial cross-contamination. Even though egg preparation policies exist, she recommended that guidelines are further revised and enforced to ensure safety.

Vince Radke spoke again reviewing the operational elements of retail food protection programs across various states. He mentioned that a great inconsistency exists between states in terminology and electronic databases used. Due to this fact, states can not be compared with one another consistently, thus it is difficult to have a centralized model of their operations. Behaviors of food workers could also contribute significantly to foodborne illness. Therefore it is important to continually strive to understand, monitor and modify these behaviors.

Laura Green from CDC, demonstrated that many efforts have contributed to the understanding of food worker behaviors with her summary of food workers food handling studies. Through the use of surveys, focus groups, and observation workers’ food safety knowledge, attitudes and behaviors have been assessed, and have shown that even though workers may possess considerable food safety knowledge, their behaviors do not reflect this knowledge.

In Laura’s second presentation she explained some barriers that could account for the discrepancy between knowledge and behavior. Such barriers include: time pressure, staffing conflicts, demographic characteristics, personal beliefs, kitchen facilities and restaurant policies and procedures. With similar barriers in mind the FDA has undertaken some activities to assist industry and regulators in preventing foodborne illness, as described by John-Mikel Woody. The main focus of these activities is the implementation of active managerial control over the risk factors that most contribute to foodborne illness. By training regulatory staff, creating a HACCP based inspection program, encouraging compliance and enforcement, promoting industry and community relations, providing program support and resources and through program assessment the FDA hopes to decrease food handling risks by 2010. However in order for such a program to be effective evaluation and modification is necessary to maintain program efficiency and effectiveness as demonstrated by David Lloyd from the University of Wales. All of the information presented has contributed to a better understanding of food handling in the domestic food service environment.

T05 — Foodborne Pathogens

Laura J. Bauermeister – Auburn University and Jordan Bowers, Auburn University

The Foodborne Pathogens technical session encompassed many topics. Manan Sharma from University of Georgia, discussed survival characteristics of wild-type and rpoS-deficient Escherichia coli O157:H7 in various alkaline cleaners. Conclusions drawn from this study included similar lethality patterns between strains, suggesting that the rpoS gene may not offer any direct protection when organisms are exposed to cleaners or alkaline conditions; similar population reductions at different growth phases indicated cleaners were sufficient in overcoming different physiological ages; viability and heat resistance of cells is affected by composition of cleaner, pH, and cleaner application temperature.

Wade Fluckey from Texas Tech University, looked at Salmonella and commensal enteric bacteria in feedlot cattle for the prevalence, potential cross-contamination, and antimicrobial drug susceptibility patterns. Results indicated between-animal fecal to hide contamination during transportation and hide to carcass contamination, suggesting a link between feedlot isolates and carcass isolates in the plant.

In his first talk, Justin Ransom from Colorado State University, determined how the prevalence of E. coli O157:H7 in feedlot pen floor fecal samples affected carcass sample prevalence during the slaughtering process. This data offers guidance in risk assessment as well as developing intervention strategies to reduce E. coli O157:H7 on fresh beef. Ransom indicated in his second talk that there is a need for reduction in prevalence and density of pathogenic bacteria on cattle hides when entering the slaughter floor. Effective decontamination was accomplished by using 1% cetylpyridinium chloride on animal hides, possibly reducing the prevalence and contamination of E. coli O157:H7.
Stephanie DeLong from the CDC, reported on the trends of Salmonella serotypes in the US from 1996-2001. Information from FoodNet indicated a decline in S. Typhimurium and S. Enteritidis (SE) exhibits success in meat, poultry, and egg food safety programs, but an increase in S. Newport, S. Heidelberg, and S. Javiana creates a need for further evaluation of risk factors.

Rob Davies from Veterinary Laboratories Agency looked at SE PT4 and S. Typhimurium DT104 trends in the UK SE persists in a few vaccinated flocks and is the predominant strain in packing plants, eggs, and spent hens. Improvement in cleaning, disinfection, pest control, and laying flock monitoring programs are needed.

Kun-Ho Seo from FDA-CFSAN, compared conventional and rapid detection and enumeration methods for Salmonella Enteritidis. Salmonella Enteritidis can be detected and enumerated within 4 hours using real-time PCR. This may provide the food industry with a useful tool in monitoring product safety and quality.

Victoria Lappi from Cornell University indicated an improvement in Listeria monocytogenes contamination patterns when implementing employee training and targeted intervention strategies in a ready-to-eat smoked seafood plant.

John Allan from University of Georgia, demonstrated the importance of removing the organic material during cleaning as it may allow for the formation of condensate, aiding the survival of L. monocytogenes.

Konstantino Koutsoumanis from Colorado State University found that the initial inoculum density of Lm affected the limiting factors associated with pH, water activity (a_d), and incubation temperatures. This information was used to develop a growth model indicating non-homogeneous cell populations of Lm and growth limits are best represented by distributions.

Guy Longeragan studied variation of E. coli O157:H7 within cattle fecal pats, how many samples per pat were necessary to determine prevalence, and if samples can be combined or what the optimum numbers of samples are. Data suggested that E. coli O157:H7 is not evenly distributed within pats, the greater the number of sample pats the greater the prevalence, however the optimum number of samples needed is still not clear.

T06 – Risk Modeling

Laura J. Bauermeister, Auburn University

and David Rasmussen, University of Tennessee

Topics discussed in this Risk Modeling session included the development of specific model systems, how to test the robustness of the models, and how to overcome issues when data is limited. Kause discussed the development of a Monte Carlo risk assessment model for Listeria monocytogenes (Lm) in hot dogs and deli meats. This model was used to demonstrate the effectiveness of testing and sanitizing food contact surfaces for Listeria spp. (Lspp) by the consideration of frequency and amount of Lspp on food contact surfaces, the transfer of Lspp to ready-to-eat (RTE) product and the ratio for Lspp to Lm from published data. Information obtained from this risk assessment provided the FSIS with limits regarding Lm for RTE products.

Koutsoumanis compared the use of a safety monitoring and assurance system (SMAS) to the traditional first-in first-out method. SMAS uses continuous product temperature monitoring and predictive models for growth evaluation of Lm. Within a local market results between the two models were similar. However, in an export market the use of SMAS reduced the number of spoiled products. Skandamis developed predictive models of several spoilage organisms in fresh meat, as a function of temperature and atmosphere packaging conditions. After comparing data to predictive growth rates of specific spoilage organisms from other sources, the models provided a reliable means of predicting shelf-life. Campos used a method of assessing the validity of microbial growth models by computing the robustness index (RI). This is a ratio of the standard error of prediction to the standard error of calibration for each model. The RI provides a quantitative means for evaluation of the various growth models. Powell proposed the use of Bayesian synthesis as an evaluation of robustness in predictive models. Bayesian synthesis assumes that information regarding inputs and outputs of the premodel is available from other sources. Davidson did a comparison of the Monte Carlo and Fuzzy models of Campylobacter jejuni through a poultry processing plant. Fuzzy models gave more conservative, yet identical numbers, where the Monte Carlo model varied with each simulation. Nevertheless, as long as the complexity of the model was relatively simple the means of the two models were relatively close. Kasuga conducted a risk model for Vibrio parahaemolyticus in Thailand. A small scale exposure assessment was done using the popular Bloody Clam in the region. Many limitations existed and assumptions were made, however, this served as an example for the first-step data generation for the risk model in this situation. Greig discussed a rising concern of Cryptosporidium and Giardia infections associated with mung bean sprouts in Norway. A risk assessment was conducted to determine the probability of infection and also to determine what data is still needed. Although the reported incidence of these infections in Norway is low, the risk assessment suggested that the probability of infection from Cryptosporidium and Giardia is much higher than what is reported each year in Norway. Walls discussed the outcomes of a workshop held in December 2002 to improve the scientific basis of microbial dose response models. When available these models are based on human feeding trial data. This creates many limitations; some current approaches to overcome the limitations are to use animal and tissue culture methods. The challenge is to develop meaningful mechanistic models that are not excessive.
Minutes of the 90th Annual Business Meeting

August 12, 2003
New Orleans, Louisiana

President-Elect Paul Hall welcomed attendees and introduced President Anna Lammerding.

Moment of Silence

President Anna Lammerding asked those present to observe a moment of silence in memory of departed colleagues. She also noted that this year’s Annual Meeting was dedicated to the memory of Harry Haverland.

Call to Order

The Annual Business Meeting of the International Association for Food Protection was called to order at 4:50 p.m. at the Hilton New Orleans Riverside in New Orleans, Louisiana. A quorum was present as defined by the IAFP Constitution.

With the approval of the Executive Board, President Lammerding appointed Randy Daggs as Parliamentarian for the Business Meeting.

Minutes

Minutes from the IAFP 89th Annual Business Meeting were approved as they appeared in the October 2002 Dairy, Food and Environmental Sanitation. The motion was made by Christine Bruhn and seconded by David Fry.

President’s Report

President Anna Lammerding reported on programs and activities of IAFP over the past year. She reported that a food toxicology group met to determine interest in forming a PDG, the Student PDG continues to see growing involvement with students serving as room monitors, and audiovisual assistants for IAFP 2003, and holding their third job fair.

President Lammerding then presented the President’s awards. David Larson, IAFP Publisher Representative, received the award for his continued efforts with the Exhibit Hall and Sponsorship programs in addition to selling advertising for the journals. Awards were presented to the IAFP Staff; Donna Bahun, Julie Cattanach, Bev Corron, Lucia Collison McPhedran, Karla Jordan, Pam Wanninger, Didi Loymachan, Donna Gronstal and Farrah Goehring for their tireless efforts on behalf of the Association. She then presented awards to Fred Weber, Weber Scientific, for his work on the FPT Strategic Plan and for implementing the Maurice Weber Laboratory Award; Wilbur Feagan, F & H Food Equipment Company, for his support of the Association through the Black Pearl Award and the Foundation Fund; Susan McKnight, Quality Flow, who began the Water Quality & Safety PDG and for her enthusiasm and support; and Frank Yiannas, Disney World, for being a strong personal supporter of the Association, an active member of the Florida Association that makes great gifts to the Foundation Fund, and, as Chair of the Retail Safety & Quality PDG, headed the International Food Safety Icon project.

President Lammerding then presented Charters to the two new Affiliates. Gordon Hayburn and Louise Fielding accepted on behalf of the United Kingdom Association for Food Protection and Tina Pedroso accepted on behalf of the Portugal Association for Food Protection.

Tellers Committee Report

Peter Slade, Teller, reported there were 790 votes received, with 6 being illegal. Frank Yiannas was elected as Secretary for the 2003–2004 year. A motion by Michael Brodsky and seconded by Jack Guzewich to accept the report and destroy the ballots was approved.

JFP Management Committee Report

Chairperson Isabel Walls reported 20% more manuscript submissions were received last year with 80–90% being published within 10–12 months of submission, half of the articles were from outside the US. JFP Online has been active for one year, and since online manuscript submission began in April, 36% of the 2003 manuscripts received were submitted online. The Committee considered a request regarding providing complimentary PDF reprints to authors and determined that the financial implications to the Association should be considered before making such a decision. There was considerable discussion regarding an article published in FPT and it was ultimately determined that they recommend to the Board that a formal policy for articles relating to food security should be developed. John Sofos agreed to another four-year term as Scientific Editor. Isabel thanked the IAFP Staff for their continued hard work with the Journal.

FPT Management Committee Report

Fred Weber reported that this was the first committee meeting as Food Protection Trends with 31 people in attendance. The new look and name for the journal began in January 2003. Weber thanked Christine Bruhn for her work as Chair and thanked outgoing member Harold Bengsch for his work both as a committee member and as the first Committee Chair. The article “Food as a Weapon” was added to the agenda at the beginning of the meeting. There was much discussion on the topic with several
members, the Scientific Editor and one of the authors participating. Fred expressed his appreciation to Isabel Walls and the JFP Editors who attended to give their perspective. Recommendations will be made to the Board to formulate a policy for enhanced review of articles that impact food safety and security and to reappoint Bill LaGrange for another four-year term as Scientific Editor. Fred noted that due to low article submissions, the journal is looking for articles.

Foundation Fund Report

Stan Bailey reported that the Committee’s discussion focused on Harry Haverland and how to continue his work and goals. One goal, suggested by Wilbur Feagan, was to build an asset base of one million dollars over the next few years. This year’s Silent Auction raised a total of $4,605.50. Everyone was encouraged to donate items to next year’s auction. Recommendations to the Board included sending Members a letter requesting memorial contributions to the Foundation Fund, consider naming the Fund the “Harry Haverland and IAFP Foundation Fund,” include a specific amount to the Foundation Fund on the membership renewal forms with an option for the member to strike out that amount from the form, and include a Foundation Fund contribution of $100 on the application form for exhibitors with the option to strike the amount. Gale Prince was elected as Vice Chair. Zeb Blanton, Frank Yiannas and Peter Hibbard of the Florida Association for Food Protection then presented the Foundation Fund with a $1,000 check in memory of Harry Haverland. Other members also contributed cash and checks in honor of Harry.

Affiliate Council Report

Gene Frey reported that 23 Affiliates, including the United Kingdom, were present at the meeting. This year two new Affiliates received their charters. Gene also noted that the Affiliate Education Session needs financial support and thanked Fred Weber for his continued support. The new Affiliate Council Secretary is Stephanie Olmsted. Two of the Affiliate membership awards were dropped and replaced with a single Membership Achievement Award that focuses on the affiliates’ efforts to grow their membership from within. Gene noted that leadership for the Affiliate Council was turned over to Steve Murphy, Chairperson, and Stephanie Olmsted, Secretary.

Executive Director’s Report

David Tharp reported that overall, the past year was a good one for the Association. Even in the tough economic conditions of the last year, Membership continues stable at just short of 3,000, which provides evidence of the quality information on food science and food safety distributed by IAFP. Publications ran on schedule throughout the year and record numbers of articles were submitted for the Journal of Food Protection. A nice growth curve for JFP Online was reported.

Student involvement continues to grow with the Student PDG holding its fourth annual luncheon this year in New Orleans. Again this year, students served as session room monitors and audiovisual assistants. In addition, students from Louisiana State University and Mississippi State University assisted the IAFP staff at registration and with social events. David thanked all students who helped out during IAFP 2003.

The General Fund Statement of Activity for the year ending August 31, 2002 was distributed showing results that reduced the General Fund balance by $62,460. This was a very disappointing result to an otherwise great year. David pointed to a few reasons for the financial results: IAFP’s investment portfolio lost more than $20,000, excess revenues for IAFP 2002 came in about $10,000 short of what was expected while the same shortfall of $10,000 was experienced from the Annual Meeting Workshops, and we incurred higher than expected expense for Journal production and shipping costs. On a better note, projections for this year show us recouping at least a portion of this loss.

David reported that IAFP 2003 again has set many new records. Attendance is expected to be above 1,450 attendees, submitted technical abstracts increased by 33%, 46 submitted symposium were received, a 15% increase in exhibitor booths and a 50% increase in Annual Meeting sponsorship revenues were seen. Even with this growth, IAFP 2003 continues to be small enough to network with the worldwide leaders in food science and food safety.

To conclude, David thanked the IAFP staff for their hard work in preparing for the Annual Meeting while carrying out their day-to-day responsibilities. He also recognized the Executive Board and IAFP Members for the trust and support they place in him.

Unfinished Business

No unfinished business was brought before the Annual Business Meeting.

New Business

Ewen Todd brought up a question of adding Annual Meeting presentations to the Web site. David Tharp responded that there would be much cost involved and difficulty obtaining the presentations from the presenters. Ewen asked that we consider adding a request to symposium organizers on the Call for Symposium form to provide the presentations for the Web site for next year.

Michael Brodsky presented four proposed amendments to the Association Bylaws as printed in Food Protection Trends. He was asked for clarification of each of the amendments. A motion was made by Christine Bruhn to amend the Proposal 2 by inserting the following wording after IAFP: “and shall contain articles of scientific and general interest.” Then remove “and” and capitalize “the”. Discussion took place with some opposition to the amendment. A motion was made by Sid Camp and seconded by David Fry to table the amendment for consideration next year. Christine Bruhn moved that the word “quiet” be removed from the Proposal 4. A motion to amend was seconded by David Golden and passed with one opposed. A motion to approve the amendments to the Bylaws as presented and amended was made by Jack Guzewich and seconded by Ewen Todd. It passed with one opposed.

Adjournment

President Lammerding adjourned the meeting at 5:52 p.m.
Respectfully Submitted,
Jeffrey M. Farber
Highlights of the Executive Board Meeting

August 8–14, 2003

Following is an unofficial summary of actions from the Executive Board Meeting held at the Hilton New Orleans Riverside in New Orleans, Louisiana, August 8-14, 2003:

Approved the following:

- Minutes of April 27–28, 2003 Executive Board Meeting
- Issuance of Affiliate Charter for the Portugal Association for Food Protection
- Certificate of Merit for Fritz Buss of the Wisconsin Association for Food Protection
- Reappointment of John Sofos as Scientific Editor for the Journal of Food Protection
- Reappointment of Bill LaGrange as Scientific Editor for Food Protection Trends
- A Student Membership with JFP Online only (does not include print copies) for $48 per year
- Noncompliant Affiliate
- Committee appointments
- Foundation Fund Committee — new Committee Members
- Communicable Diseases Affecting Man Subcommittee meeting after IAFP 2003
- Possible Food Toxicology PDG
- Committee and PDG Chairperson reports
- Committee recommendations
- IAFP 2003 — exhibits and sponsorship
- IAFP 2003 — opening session, business meeting, plenary session and awards banquet
- IAFP 2003 — Review
- IAFP 2003 — Workshops
- IAFP 2004 — Saturday golf tournament
- IAFP 2005 — Capital Area Affiliate to serve as LAC
- IAFP 2006 — Alberta Affiliate to serve as LAC
- Future Annual Meeting site selection
- IAFP on the Road — Worldwide Food Expo — October 2003
- IAFP on the Road — Food Safety Summit — March 2004
- European Meeting
- 3-A Sanitary Standards, Inc. — next board meeting at end of September
- IAFP and World Health Organization Non-Governmental Organization status

Next Executive Board meeting: October 2, 2003
Committee Minutes

IAFP 2003 — August 10-13, 2003

Held at the Hilton New Orleans Riverside
New Orleans, Louisiana

STANDING COMMITTEES

Food Protection Trends
Management Committee

Members Present: Fred Weber (Chairperson), Isabel Walls (IFP Chairperson), Carl Custer, Steve Berry, Dan Erickson, Alfred Fain, Judy Greig, Bill LaGrange (Scientific Editor) Tom McCaskey, Catherine Nnoka, John Rushing, Gloria Swick-Brown, Tom Tieso, Alex Von Holy, and Edward Wellmeyer.

Outgoing Members Present: Christine Bruhn (Outgoing Chairperson) and Harold Bengsch.

Members Absent: Michael Grant, Gisele LaPointe, Chris Newcomer, Deog-Hwan Oh, and Peter Slade.

Board Members Present: Kathy Glass, Liaison; Anna Lammerding, Paul Hall, and Jim Dickson.

Staff Present: Donna Bahun, David Tharp, and Lisa Hovey.

Guests: IFP Scientific Editors: Joe Frank, John Sofos, Michael Davidson, LeeAnne Jackson, Jenny Scott, Ann Draughon, and Ron Case.

Meeting Called to Order: 10:05 a.m.

Recording Secretary of Minutes: Christine Bruhn.

Addition to the Agenda: Concern was expressed that an article just published in FPT, “Food as a Weapon” could be used as a resource for terrorism. There is concern when locations are noted, i.e. schools, restaurants, toxic dose needed; presences-absence of an antidote. The opinion was expressed that it is not necessary to go into details and that a policy to review, by the FDA, is needed in the future.

Detailed concerns were expressed by a member of the FDA. The FDA has carefully avoided placing detailed information into print to prevent misuse by terrorists. There is concern when locations are noted, i.e. schools, restaurants, toxic dose needed; presences-absence of an antidote. The opinion was expressed that it is not necessary to go into details and that a policy to review, by the FDA, is needed in the future.

Food manufacturers then gave their perspective. There are other appropriate venues to alert people of vulnerability. They did not find the information of value to the industry, but believe the details may provide assistance to a rogue terrorist as a “one-stop-shop.” It was additionally commented that there is a need for this information but not in such a public venue.

The Scientific Editor discussed the review procedure. The manuscript was received in August 2002 and was reviewed by senior reviewers and published one year later. The Editor found it a good historical review of using food to kill people. He believes people so inclined can obtain this information from the Web or elsewhere in the public domain. Ignorance is not bliss and heightened surveillance is the best offense.

A committee member commented that when teaching vulnerability, there is a need to have concrete evidence to teach more effectively.

One of the article’s authors also responded. They believe this information should be available. The specifics never get to the level where people use it. The list of agents is on the CDC Web site. The paper was built from a standing-room-only presentation. The paper does not tell you how to make toxins.
Smaller companies and distribution centers do not have the resources to develop a comprehensive security program. As an educator, the author’s role is to get information out, so industry can prepare itself. A committee member commented that he is currently reviewing an article that might threaten the balance between education, government and the food industry. He will suggest that the article be published, but that the FDA have an opportunity to respond in the same issue of FPT.

The Chairperson and Editors of the Journal of Food Protection gave their perspective on this issue, which had been previously discussed at their committee meeting. They were highly concerned about the publication of this amount of detail and would have sent it to review persons familiar with bioterrorism. The JFP Committee decided to consider a policy like ASM – a box for the author (or reviewers) to check if an article contains sensitive information.

The FDA member reiterated their willingness to review our articles.

A motion was made and seconded for FPT to formulate a policy for enhanced review of articles that impact food safety and security.

Old Business: The Committee Proceeded to address the original agenda on an abbreviated basis. The minutes from the 2002 meeting were approved (Fain motion; Swick-Brown second).

Reports to Committee: Anna Lammerding, IAFP President, reported from the Executive Board. They are excited about the name change to FPT. United Kingdom and Portugal are new Affiliates this year. A new PDG was being explored for Food Toxicology. They are very excited about the new IAFP Food Safety and Quality Icons. The Outreach Education PDG revised the booklet “Before Disaster Strikes.” The Committee on Communicable Diseases Affecting Man is formulating a paper regarding food hygiene for workers. The Committee suggested that FPT is the appropriate venue for its publication.

David Tharp, IAFP Executive Director, gave a report. Membership is stable. Gold and Silver sustaining memberships have increased. 500 Members now have JFP Online, and the number is growing. There were 426 technical papers submitted for this meeting, a 33% increase. A record number of symposia were submitted, and they are working to accommodate more. Expected are over 1,400 attendees this meeting, with a record 108 exhibit booths. The Foundation Fund continues to grow, with $170,000 in assets.

Scientific Editor, Bill LaGrange, detailed the types of articles published in 2002; the number of manuscripts submitted and published in 2002 and 2003 to date; timelines between submission and publication.

Publication Editor, Donna Bahun, said it is taking longer to publish due to concern that if FPT publishes three articles monthly, we may run out of articles. We need to encourage more articles on food safety. Chairperson Fred Weber urged the Committee to encourage their colleagues to submit articles.

The status of the 2002 recommendations to the Executive Board were discussed. The request to publish certain ILSI and other symposium abstracts in FPT was accepted but hasn’t been done and should still be pursued. Thoughts on Food Safety column report: An updated committee was formed to solicit topics, including Steve Berry, Fred Weber, and Anna Lammerding. FPT Strategic Plan: Fred Weber requested the Committee carefully review the plan and use it to help provide direction to the journal. They should use this plan as a foundation for discussion and recommendations at the 2004 meeting (August 8, 2004).

New Business: A motion was made and seconded (Bengsch motion; McCaskey second) that Bill LaGrange be appointed for another four-year term. This is a recommendation to the Executive Board. The redesign of FPT received very favorable comments from Steve Berry and other members agreed. Donna Bahun was commended on her great graphic design work. Additionally, it was discussed that this journal should now be more attractive to advertisers, and we should solicit more use of color throughout.

Letters to the Editor and Readers Comments policy. It was clarified that “Letters to the Editor” pertain to manuscripts published while “Readers Comments” pertain to general comments. Isabel Walls said that JFP now has a written policy on “Letters to the Editor”. Donna Bahun responded that FPT has an internal editorial policy and this policy will be circulated to all Committee members. Fred Weber, mentioned that, according to the Reader’s Survey, this is a highly valued part of the journal and must be encouraged.
Fred Weber thanked departing Chairperson, Christine Bruhn, for her excellent job over the past two years, and recognized departing member, Harold Bengsch, who indicated that he will no longer be active on the Committee. Harold was warmly thanked not only for his 40 years as an IAFP member, but as the first Chairperson of this Committee.

Recommendations to the Board:

1. *FPT* to formulate a policy for enhanced review of articles that impact food safety and security.

2. Bill LaGrange be reappointed for another four-year term as Scientific Editor.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 4:03 p.m.

Chairperson: Fred Weber.

Journal of Food Protection Management Committee

Members Present: Isabel Walls (Chairperson), Roger Cook (Vice Chairperson), John Sofos (Scientific Editor), Michael Davidson (Scientific Editor), Joseph Frank (Scientific Editor), Fred Weber (*FPT* Chairperson), Bev Corron, David Acheson, Maria Teresa Destro, Warren Dorsa, Judy Fraser-Heaps, Randall Phebus, Payton Pruett, and Elliot Ryser.

Members Absent: Mindy Brashears, Lone Gram, Mark Moorman, Melissa Newman, Greg Siragusa, and Marian Wachtel.

Board Members/IAFP Staff Present: James Dickson, Anna Lammerding, Paul Hall, David Tharp, Katherine Glass, Lisa Hovey, Bev Corron, and Didi Loynachan.

Guests Present: Jack Guzewich, Larry Beuchat, Jeff Rhodehamel, and Ailsa Hocking.

Meeting Called to Order: 10:05 a.m.

Recording Secretary of Minutes: Roger Cook.

Old Business: Minutes of 2002 meeting were reviewed and approved (Dorsa, Hocking).

New Business:

- Amendments to agenda: Added discussion on “Food as a Weapon” article (Dorsa).
- Report from IAFP President: Anna Lammerding provided an update of activities in 2002.
- Report from *JFP* Scientific Co-Editors: Joseph Frank tabled a report of activities in 2002 and 2003 to-date. Volume 65 (2002) contained marginally less pages/manuscripts than in 2001, primarily due to the determined effort to reduce the backlog in 2001. In contrast, to date in 2003 the number of pages and manuscripts is up 20% over last year. Despite the increased Editor workloads, 77% and 91% of articles are published within 10 and 12 months respectively. This contributes to the high standing in which the journal is now held. The backlog is now optimal at 2.4–2.5 issues. The Committee thanked the Scientific Editors for their continuing hard work.
- Report from Administrative Editor: Bev Corron tabled reports on:
 - Online-submission to *JFP*. Implementation (April 2003) went rapidly and smoothly. To date 127 of 352 papers were submitted electronically to the journal (36%) – well above expectations.
 - *JFP* Online. Again implementation one year ago went rapidly and smoothly. We now have almost 500 member subscribers and 30 institutional subscribers. Initial issues with Ingenta support now minimized. Many subscribers to the online version still taking the paper version. Committee members made positive comments. Committee offered vote of thanks to Bev Corron, Didi Loynachan, and all the IAFP Staff for their efforts.
 - Supplements to *JFP*. Three supplements to the journal are planned for this year; two within the standard journal publication, and the third, a separate volume.
 - Letter to the Editor policy. A formal written policy was prepared based on existing unwritten policy and except for grammatical errors, was accepted.
 - Assignment of Copyright. After review by legal team, Committee agreed current policy is acceptable.

November 2003 | Food Protection Trends 933
Complementary reprints for authors: A request was received to consider the provision of a complementary electronic copy (PDF format) of papers to authors. The Committee agreed with the concept following comprehensive discussion on financial technological, and behavioral issues. However, it was also agreed that the financial consequences to IAFP should be considered, and the following recommendation was made:

- That the IAFP staff consider the financial implications of provision of a complementary electronic copy (PDF format) to the corresponding author of papers accepted for publication by JFP, and further that they consider whether or not provision would be open to all corresponding authors or just those that are IAFP Members.

- Page charges: It was agreed that the policy on page charges should remain as is.

- Articles related to Food Security: Warren Dorsa and Paul Hall reported on concerns with a paper published in FPT (August '03) entitled “Food as a Weapon”. The issue of whether this could be used as a guide for food terrorists (professional or amateur) and freedom of speech considerations were discussed. JFP Editors indicated that currently they have procedures in place to review and consider whether such articles are appropriate for publication in JFP. However, the Committee agreed that the following recommendation be made to the Board:

Recommendations to the Board:

1. That the IAFP staff consider the financial implications of provision of a complementary electronic copy (PDF format) to the corresponding author of papers accepted for publication by JFP, and further that they consider whether or not provision would be open to all corresponding authors or just those that are IAFP Members.

2. Articles related to Food Security: Warren Dorsa and Paul Hall reported on concerns with a paper published in FPT (August '03) entitled “Food as a Weapon”. The issue of whether this could be used as a guide for food terrorists (professional or amateur) and freedom of speech considerations were discussed. JFP Editors indicated that currently they have procedures in place to review and consider whether such articles are appropriate for publication in JFP. However, the Committee agreed that the following recommendation be made to the Board:

3. John Sofos has very kindly agreed to extend his term by four more years as Scientific Editor for JFP.

The Committee recognized that Ailsa Hocking, Eric Line, Servé Notermans and Jeff Rhodehamel were completing their term with the Committee this year and offered thanks for their significant contributions.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 11:45 a.m.

Chairperson: Isabel Walls.

Program Committee

Members Present: Gary Acuff, Catherine Donnelly, Alejandro Castillo, Emilio Esteban, Faye Feldstein, Gordon Greer, Margaret Hardin, LeeAnne Jackson, Tim Jackson, Vickie Lewandowski, Shelagh McDonagh, Lynn McMullen, Indaue Mello, Steven Murphy, and Ron Schmidt.

Members Absent: Ingrid Klinth Holm.

Board Members/Staff Present: Anna Lammerding, Paul Hall, Kathy Glass, David Tharp, and Bev Corron.

Guests: Over 10 guests attended the meeting.

Meeting Called to Order: 4:00 p.m.

Recording Secretary of Minutes: Gary Acuff.

Summary of Activities and Actions Taken: The following people have finished their term on the committee: LeeAnne Jackson, Ingrid Klinth Holm, Lynn McMullen, Karen Mullery, and Steven Murphy. On behalf of the Program Committee, we want to thank them for their contributions during their term. Their efforts were, in part, responsible for the successful programs presented at the Annual Meetings, and we truly appreciate all their hard work and dedication.
Members who will join the committee this year are: Alejandro Castillo, Faye Feldstein, Tim Jackson, Indaue Mello, and Ron Schmidt. Catherine Donnelly will serve as Vice Chairperson for IAFP 2004 and will become Chairperson for IAFP 2005 in Baltimore, MD.

The committee reviewed symposia and workshops proposed for IAFP 2004. Further review of all symposia will be made at the Wednesday meeting.

Summary of Program Committee Meeting, Wednesday, August 13: Members Present: Gary Acuff, Catherine Donnelly, Alejandro Castillo, Emilio Esteban, Faye Feldstein, Gordon Greer, Margaret Hardin, Tim Jackson, Vickie Lewandowski, Shelagh McDonagh, Indaue Mello, and Ron Schmidt.

Members Absent: None.

Board/Staff Present: Paul Hall, Kathy Glass, and Bev Corron.

Meeting Called to Order: 12:30 p.m.

The committee reviewed 45 proposed symposia. After detailed discussions, 10 proposals were rejected and 4 were recommended to be combined with other proposals. Total accepted symposia were 31. Letters will be sent out to the organizers with instructions to finalize their submissions. Final acceptance will be made at the January meeting.

The committee reviewed five workshop proposals. All five workshops were accepted for further development. Three workshops will be in conjunction with IAFP 2004. The remaining two workshops will be off-site workshops being planned for spring 2004.

Recommendations to Executive Board: The committee will draft a Proposed IAFP Policy on Non-presentation. This policy will affect poster and oral presenters who fail to present an accepted abstract at the Annual Meeting. It is recommended that upon acceptance by the Board, the policy take effect immediately.

Next Meeting: January 16-18, 2004, Phoenix, AZ.

Chairperson: Gary Acuff.

SPECIAL COMMITTEES

3-A Committee on Sanitary Procedures Committee

Members Present: Ron Schmidt and Charles Price.

Guests Present: Steve Sims (advisor), Dan Erickson, and John Bruhn.

Members Absent: Sherry Roberts, Randy Elsberry, William Fredericks, Michael Ely, Jon Lauer, Adolf Liebe, Gary Newton, Stephen Pierson, John Ringsrud, Stanley Welch, Lynn Wilcott, Don Wilding, and Philip Wolff.

Board Members/Staff Present: Jeff Farber and Didi Loynachan.

Meeting Called to Order: 10:05 a.m. (by Ron Schmidt, Acting for Sherry Roberts, Chairperson).

As a quorum was not achieved, no formal business was conducted at the meeting. Thus, the meeting was an informal discussion, or brain-storming session about the role of CSP.

Recording Secretary: Ron Schmidt.

Old Business: Report from 3-A Meeting, May 12-16, 2003, Milwaukee, WI.

New Business: The new directions of 3-A SSI were discussed. This process appears to be moving smoothly and CSP is in support of the direction it is moving. The current and future CSP role was discussed. It was emphasized that the strength of 3-A is the triad approach and that thorough review of standards by CSP is important to the integrity of the program.

Streamlining the Standards Writing Process: Ways in which CSP may facilitate or assist in streamlining the standards writing process was discussed. While there has been some suggestion that thorough nature of CSP may, in fact, slow down the process, it was the opinion of those assembled that this is not founded, and that such thorough review was imperative to the program. It is CSP’s suggestion that the whole process be looked at with regard to identifying potential slowdown points or “log jams”.

Several suggestions were discussed:

* Task forces need to be reminded to be more thorough in regard to submitting standards for review in better shape, with the scope more well-defined and using language from the current version of the 3-A Model Standard in writing standards and that the 3-A SSI clerical staff proofread and assist in making sure that the current model language is being used, and make appropriate editorial changes prior to the final submission;

* While consideration is given to staffing situation and the back-log of work prior to the May meeting, it was suggested that every attempt be made to provide standard documents to CSP members for review with more lead time than has been traditional. Further, the use of “Track Changes” feature in MSWord is strongly encouraged;
* CSP should have more involvement in the task forces and participate in the discussion throughout the process. The involvement of task force members in CSP discussion is also welcome and encouraged. However, the organizational structure of meeting separately should be continued;
* CSP should meet (as needed) more often than just the May meeting (suggested twice/year). This could be accomplished via conference call or internet/email. 3-A SSI should be pursued for funding (as appropriate) to facili-tate such meetings;
* 3-A has a strong track record with regard to efficiency of standards writing when compared to the time lag involved with many other technical standards writing bodies (e.g. Codex, EHEDG);

3-A Annual Meeting. In discussion of the 3-A Annual Meeting, it was suggested that the format and scheduling of the May meeting should be evaluated to optimize time utilization and to allow for more interaction between CSP and task forces. Further, the time proximity of the meeting dates to those of the biennial NCIMS meeting may cause problems for CSP (and PHS) members which are heavily involved in NCIMS. It was further suggested that there be a general 3-A issues session at the next 3-A meeting.

Printing of Standards: CSP strongly suggests continuing the printing of 3-A standards in the IAFP Journal as a benefit to IAFP members. They further suggest that the process be evaluated to optimize the efficiency of timely printing of the standards.

Review and Revision of Documents: The 3-A Model Standard Document was discussed. This document has traditionally been a little “fluid”, and often, different stakeholders may be using different versions of the document. This needs to be more efficiently handled and the document should be thoroughly reviewed and all changes and revisions be put through the 3-A process prior to final inclusion in the document.

NSF/3-A Document: It was suggested that this document may need to be reviewed and revised as well.

Third Party Verification/Certified Conformance Evaluators (CCE): The progress of the CCE examination and orientation process was discussed. Certification exams were given to CCE candidates at two locations. Plus, a CCE orientation has been held.

Dan Erickson, a CCE, reported on these activities. In the discussion that followed, it was suggested that the CCEs will play a strong role in 3-A in the future.

Symposium Proposal for 2003 IAFP Meeting: The concept of CSP submitting a proposal for a symposium for the 2003 IAFP meeting was discussed. Schmidt and Smucker will put the proposal together with input from Price.

Recommendations to Executive Board: While this was not a formal meeting (quorum not achieved), no formal recommendations are given. However, the committee asks for board support in the issues discussed above.

Next Meeting Date:
The concept of holding a CSP meeting at the World Food Expo in October 2003 was discussed. This would depend upon the need for standards review activity.

The CSP will meet at the annual 3-A meeting as well as at the IAFP meeting in 2004.

Chairperson: Ronald H. Schmidt (Acting for Sherry Roberts).

Audiovisual Library

Members Present: Tom McCaskey, Judy Harrison, Don Schaffner, Dorothy Wrigley, Warren Clark, and Bob Sanders.

Board Members/Staff Present: Lisa Hovey and Lucia McPhedran.

Meeting Called to Order: 3:05 p.m.

Recording Secretary of Minutes: Judy Harrison.

Old Business: Review of library since last meeting. All requests for materials were fulfilled this year. The wait was no more than two weeks. Additional videos that were purchased made operation flow smoothly. New videos were purchased or donated totaling
$1,285.07 for 10 single titles and 1 series. Additional copies of two of the most popular ones were added for $358.40.

New Business:
1. Budget: Warren Clark recommended reviewing budget for last few years. After looking at figures, it was decided budget is adequate for now;
2. Member Survey: A recommendation was made to survey members about types of materials they would like to see in library. Lucia will draft a form for review and possible inclusion in *Food Protection Trends*, Affiliate newsletters, and on the Web site;
3. Long Range Goal: Make a searchable database of everything available for education and training in the food safety area and where to direct members to find materials not in our IAFP library;
4. Spanish materials: Call requests, 10% are for Spanish materials. Lucia will check to see if National Ag Library has more resources of this type. A particular area of interest will be in the poultry processing area. Judy Harrison will contact the IFT Extension Division about possible videos to include. Don Schaffner suggested that Tom McCaskey send all committee members an electronic list of holdings in the National Ag Library.

Recommendations to Executive Board: The committee would like to ask permission to include the AV survey in *Food Protection Trends* and on the IAFP Web site.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Old Business:
2. Partially 2 papers on “The Importance of the Infected Food Handler in Foodborne Illness Outbreaks.”

New Business:
2. Discussed future projects (risk assessment paper) and revision of booklets (HACCP).
3. A select group of the committee will continue working on the food worker-hygiene paper following the conference.

Recommendations to Executive Board:
2. Does Executive Board want CCDAM to revise the HACCP manual beginning in 2004?
3. Write a draft of a risk assessment approach to food worker hygiene in 2004.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 6:00 p.m.

Chairperson: Ewen Todd.

Constitution and Bylaws

Members Present: Michael Brodsky, Ron Case, David Fry, and Robert Sanders.

Members Absent: None.

Board Members/Staff Present: Frank Yiannas and Didi Loynachan.

New Members: Charles Price.

Meeting Called to Order: 3:05 p.m.

Recording Secretary of Minutes: Michael Brodsky.

Old Business: None.

New Business:
1. Committee ratified all proposals to Bylaws that were approved by E-mail.
2. Michael Brodsky endorsed to remain as chairperson to 2004.

Recommendations to Executive Board:
1. Reinstate C&B Committee membership of Charles Price and David Fry immediately.
2. Add Zeb Blanton, current president of Florida affiliate to committee (pending Frank Yiannas discussion with Zeb to confirm his willingness to serve).
3. Add Steve Murphy incoming chair of affiliate council as a committee member starting in 2004.
4. Accept committee recommendations for extension of Michael Brodsky’s term as chair to 2004 and Ron Case’s assumption of chair after 2004.

Next Meeting Date: August 8, 2004, Phoenix, AZ.
Meeting Adjourned: 3:20 p.m.
Chairperson: Michael Brodsky.

Foundation Fund Committee
Members Absent: Peter Hibbard, Kathleen Glass and Earl Wright.
Board Members/Staff Present: Anna Lammerding, Paul Hall, Lisa Hovey, and David Tharp.

Meeting Called to Order: 1:05 p.m.
Recording Secretary of Minutes: Bob Marshall.

Old Business:
1. Reviewed the investment policy of IAFP Board to invest in mutual funds with A. G. Edwards as advisor.
2. David Tharp explained that IAFP has allocated funds for support of speaker travel to augment those allocated by the Foundation. These are invested with Foundation Fund monies and should be accounted for separately.
3. Paul Hall announced the effort to gain corporate donations to the fund will be continued.

4. Paul Hall suggested a conference call of the committee between annual meetings would be valuable.

New Business:
Motion made, seconded and passed:
1. To include in the membership renewal form a line indicating a $10.00/member contribution to the Foundation Fund with the option for the member to strike out that amount from the form.
2. To include on the application form for exhibitors a contribution of $100.00 to the Foundation Fund with the option to strike that amount from the form.
3. To form a subcommittee to develop a plan for recognizing donors to the Foundation Fund. The sub-committee is Gale Prince (chair), Susan Sumner, and Stan Bailey.
4. That there be a mailing to IAFP members announcing that the Foundation Fund invites donations in memory of Harry Haverland the first and long-term chair of the fund committee who passed away in June 2003.
5. That the IAFP Board consider naming the Foundation Fund as follows: The Harry Haverland and IAFP Foundation Fund.
6. Gale Prince was nominated and elected by the committee as Vice Chairperson of the Foundation Fund Committee.
7. That efforts should be made to avoid conflicts between the times of the meeting of this committee and others on which the members serve.

Recommendations to Executive Board: That each of the motions passed by the committee be approved and endorsed by the Board of Directors of IAFP (except motion 3, a prerogative of the Foundation Fund committee).

Next Meeting Date: August 8, 2004, Phoenix, AZ.
Meeting Adjourned: 2:59 p.m.

Nominating Committee
Members Present: Sam Palumbo, Lee-Ann Jaykus, LeeAnne Jackson, Carl Custer, Peter Slade, Michael Johnson, and Michael Davidson.
Board Members/Staff Present: Paul Hall and David Tharp.
Guests Present: John Cerveny.

Meeting Called to Order: 3:05 p.m.

Recording Secretary of Minutes: Sam Palumbo.

Old Business: Agenda and 2002 minutes approved.

New Business: Members of the committee proposed a list of potential candidates from the academic sector. From the suggested names, a list of 9 possible candidates was assembled. The committee will await input from the membership before holding a conference call in early November to select the final candidates for the ballot. Nominations close Oct. 31, 2003. Further details are given in the August, September, and October issues of Food Protection Trends.

The committee used the following criteria in selecting and evaluating potential candidates.

1. Promotes the goals of IAFP
2. Attends IAFP Annual Meeting on a regular basis
3. Leadership skills
4. Can work well with IAFP Membership and the IAFP professional staff
5. Prior IAFP participation on professional development groups, participation on appointed committees, organizer of symposia for Annual Meetings, etc.

Recommendations to Executive Board: None.

Next Meeting Date: Conference call, early November 2003.

Meeting Adjourned: 4:10 p.m.

Chairperson: Samuel Palumbo.

Past Presidents’ Committee

Members Present: Jack Guzewich, Jenny Scott, Gale Prince, Ann Draughon, Dave Fry, Michael Brodsky, Ron Case, Harold Bengsch, Bob Sanders, Bob Gravani, and Henry Atherton.

Members Absent: Sid Barnard, Jim Dickson, Bob Marshall, Howard Hutchings, Orlowe Osten, Archie Holliday, Leon Townsend, and Earl Wright.

Board Members/Staff Present: Anna Lammerding and David Tharp.

Meeting Called to Order: 3:19 p.m.

Recording Secretary of Minutes: Jack Guzewich.

Old Business: Agenda and 2002 minutes approved.

New Business: Moment of silence for Harry Haverland, Dick Whitehead, and Bill Kempa; For 2003 Jack Guzewich and Jenny Scott to co-chair to bring chairmanship in line with by-laws; JFP online: questioned whether switching to online would allow for cost savings due to decreased publication and mailing costs, e.g. would online subscribers drop hard copy subscription thereby reducing those costs; suggestion made that international lounge might be established to encourage attention to these members; and discussion of Foundation Fund support for students. David Tharp discussed Association finances.

Recommendations to Executive Board:

1. That the board consider developing a program for financial support for students in the finals of the Developing Scientist Competition.
2. The Executive Board develop a policy for dealing with publication or presentation of food security-related information.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 4:35 p.m.

Chairperson: Jenny Scott and Jack Guzewich.

PROFESSIONAL DEVELOPMENT GROUPS

Applied Laboratory Methods PDG

Members Present: Timothy Jackson, Robert Brooks, Michael Brodsky, Elizabeth Johnson, Claire Lee, and Shelagh McDonagh.

Meeting Called to Order: 10:00 a.m.

Recording Secretary of Minutes: Patricia Rule.

Old Business:
1. Thanked Robert Brooks for past performance as Chairperson.
2. Discussed the purpose of PDG for promotion of professional development related to specific area.
3. Reading of Anti Trust Statement.
4. Requested volunteer for minutes Secretary.

New Business:
1. General discussion of previous and current workshops
2. Requested update from Jeff Kornacki and Patricia Rule on this year's Workshop: Assuring Confidence in Laboratory Data.
 a. Jeff Kornacki reported the workshop to be success in spite of lower than expected attendance (9). The background of the attendees was appropriate for the content and there was a high level of discussion and interaction from all in attendance.
 b. All were in agreement to the value of the workshop and a repeat performance in 2004 under the new Title: "Defensible Data: Quality Systems for Microbial Food Analysis."
3. Chair requested input from the members for nominations for the 2004 Laboratorian Award. Criteria for the award will be emailed to current and new members so that nominations can be provided.
4. General discussions of symposium topics for 2004, with some possibilities for Campylobacter, Enterobacter sakazakii, Molecular Methodology, Validation of Methods. Agreement for two symposia:
 a. Evaluation and Implementation of New Methods, co-convenors Phillip Combs and Ruth Eden.
 b. Joint symposium with Microbial Risk Analysis PDG: "Risk and Control of Enterobacter sakazakii" co-convenors Maria Nazarowec-White/Tim Jackson.
5. General discussion about emerging concerns: E. sakazakii Mycobacterium, BSE and other toxicology testing methods. All in agreement for vigilance to the current environment and methods are not limited to microbiological testing (see mission statement — "To provide a forum for the exchange and sharing of information related to the development and use of laboratory methods for the analysis of food and related commodities").
6. Call for nominations for new Vice Chair. Patricia Rule nominated and voted in for new Vice Chair 2004.
7. Discussed the option of the Applied Methods PDG to have Web page on the IAFP Web site.
 a. Readings from the Committee Handbook (p. 20–21) for the general intent and guidelines for use.
 b. The members were in agreement that this would be a value to the group.
 c. No champion was assigned at this time.

Recommendations to Executive Board:
3. Propose symposium in cooperation with Microbial Risk Analysis PDG for “Risk and Control of Enterobacter sakazakii” co-convenors Maria Nazarowec-White/Tim Jackson.
4. Propose the development of a Web page for the Applied Laboratory Methods PDG on the IAFP Web site.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 12:05 p.m.

Chairperson: Timothy Jackson.

Dairy Quality and Safety PDG

Members Present: Steve Murphy, Gaylord Smith, Kay Sadler, John Rushing, Helene Uhlman, Linda Haywood, Stephanie Olmsted, Dan Erickson, Ron Schmidt, Charles Price, Joe Smucker, Steve Sims, C.R. Gilman, Gene Frey, Don Breiner, Kathy Glass, and Randy Daggs.
New Members: Melinda Fortune, Kristen Matak, Michelle Clark, John Bruhn, Dave Blomquist, Lori Ledenbach, Vickie Lewandowski, and John Sanford.

Meeting Called to Order: 1:10 p.m.

Old Business: Symposia Development:
A. Overview and update (S. Murphy).
 1. Topics offered for 2003: BSE - rejected because the topic was not about food safety. Foot and mouth - rejected the topic because it was no longer current/relevant. Regulatory review/update - initially approved; later rejected.
 2. Selection process: Last year Program Committee initially accepted 32 symposia for 24 spots. Initial selection process to be more stringent in 2004.
 3. Criteria to consider when submitting a symposium proposal: Well-planned – have appropriate selection of topics and speakers. Topic should be current or “timely.” Topic must be fully developed by established deadlines.

B. Discussion/comments.
 1. Dairy students will often attend IFT for technical info.
 2. Students also attend ASM because of technical nature of dairy topics.
 3. Producer topics “not the way to go;” IFT seems most attractive to students. Dairy contingent still prominent among IAFP membership. Producer milk quality still important for retail product quality.
 4. Question: How do we encourage dairy science departments to send their students?
 A. Can the PDG advance technical issues?
 B. Laboratory methodology may be a topic to raise awareness.
 C. Consider a review of known dairy science/state of dairy science.

New Business:
Dairy symposia for 2004 Annual Meeting:
A. Suggested topics.
 1. Why is milk regulated?
 2. Raw milk cheese.
 3. Retail products shelf life.

B. Peripheral/Cross-over topics.

1. Equipment sanitation (proposed by 3-A Committee on Sanitary Procedures).
2. Alfatoxins (possible crossover subject with Toxicology PDG).

Board Recommendation:
1. Review committee membership – many inactive people still listed as active.
2. Consider ways to advertise IAFP dairy symposia among constituency.
3. Recommend Gaylord Smith as new PDG Chairperson.

Next Meeting Date: August 8, 2004, Phoenix, AZ.
Chairperson: Don M. Breiner.

Food Safety Network PDG

Members Present: Sid Camp, Giselle Julien-Davis, Steve Bell, Brian Himelbloom, and Paul Uhler.

Board Members/Staff Present: Jim Dickson and Donna Bahun.

New Members: Gideon Zeidler.

Meeting Called to Order: 10:07 a.m.

Recording Secretary of Minutes: Giselle Julien-Davis.

Old Business: No old business discussed.

New Business: Mission statement review: Mission statement was reviewed and accepted by group. Proposed by Brian Himelbloom, seconded by Giselle Julien-Davis “to provide IAFP members with information on current trends and issues in Food Protection.”

Proposal for Symposia: Steve Bell proposed (seconded by Brian Himelbloom and unanimously accepted) submitting a topic for next year’s meeting. Topic will be “Emerging Technology and Applications in Food Safety and Security.”

Recommendations to Executive Board:
1. Recommend accepting topic proposed by the Food Safety Network PDG, Emerging Technology and Applications in Food Safety and Security, as a mini 2-hour symposia for next year’s IAFP meeting.
2. To accept new PDG mission statement reading: “to provide IAFP members with information on current trends and issues in Food Protection.”

Next Meeting Date: August 8, 2004, Phoenix, AZ.
Meeting Adjourned: 11:30 a.m.
Chairperson: Sid Camp.
Food Sanitation PDG

Members Present: Mark Moorman, Gordon Mowat, Frank Pool, Gloria Swick-Brown, Dennis Bogart, Peter Snyder, Veny Gapud, Ginny Moore, Scott Burnett, Tom Boufford, Larry Mendes, and Fred Reimers.

Board Members/Staff Present: Paul Hall.

New Members: Jeff Varcoe, Adel Makdesi, Charles Giambrone, Michael Curiale, Valerie W. Ling, Bill Weissinger, Zeb Blanton, John Foster, Lynn Helmers, Trevor States, Mark Carter, and Sally Vater.

Meeting Called to Order: 1:00 p.m.

Recording Secretary of Minutes: Mark Moorman.

Old Business: The allergen symposium proposed at the San Diego meeting was accepted and will convene Tuesday morning, August 12, 2003; Acceptance of revised mission statement will now state “To provide information on developments in cleaning and sanitation in the food industry.”

New Business:

1. Food Safety Icons, Mark Carter has requested support from the Food Sanitation PDG in developing food safety icons for food manufacturing. Select members will support.

2. An opportunity to bring to membership a symposium on making the case for sanitation. Despite having knowledge, sanitation time and focus tend to go to the wayside.

Recommendations to Executive Board:

1. Proposal to consider symposium entitled “Sanitation – Because You Have to be Clean to be Safe.”

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 3:00 p.m.

Chairperson: Mark Moorman.

Fruit and Vegetable Safety and Quality PDG

Board Members/Staff Present: Frank Yiannas and Jeff Farber.

New Members: Mickey Parish, Rene Cardinal, Sabah Bidawid, Pamela Wilger, Shanna Lively, Ethan Solomon, and Brian Yuan.

Meeting Called to Order: 1:00 p.m.

Recording Secretary of Minutes: Toni Hofer.

New Business: 2004 Symposia/Workshop Ideas: The group discussed five workshop ideas with the top three submitted.

Recommendations to Executive Board: None at this time.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 2:40 p.m.

Chairperson: Philip Blagoyevich.

Meat and Poultry Safety and Quality PDG

Members Present: Gary Acuff, Carl Custer, Stan Bailey, Phil Blagoyevich, Michael Bradley, John Cerveny, Warren Charminski, Al Fain, Jerry Erdmann, Margaret Hardin, Richard Holley, Ruff Lowman, Shelagh McDonagh, Lynn McMullen, Ann Marie McNamara, Joseph Meyer, Randall Phebus, Dianne Peters, Jeff Rhodeshamel, Jenny Scott, and Paul Uhler.
New Members: Eric Johnson, Marcos Sanchez, Suzanne Duquette, Ian Jenson, Peter Bodnaruk, Bruno Cristau, Denise Ebler, Kristina Barlow, John McEvoy, Gary Acuff, Andres Vargas, Kevin Webster, Adriana Velasquez, Wafa Birbari, and Orla Cloak.

New Business: Chair outlined three proposed symposia for 2004; Chair called for nominees for Vice Chairperson. Gary Acuff nominated Margaret Hardin. No other nominations. Margaret Hardin elected by acclamation.

Chair called for new symposia for 2004.
- Nuts and Bolts of Validation (Acuff and McNamara).
- Secondary Inhibitors (R. Phebus and R. Holley).
- Need for Leak-proof Packaging for Raw Products (R. Lowman).

Recommendations to Executive Board: None.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 1:05 p.m.

Chairperson: Carl Custer.

Microbial Risk Analysis PDG

Board/Staff Members Present: Anna Lammerding.

New Members: Paul Baxter, John Bassett, Michael Curiale, Richard Hayes, Jean Kamanzi, Mickey Parish, and Jeff Varcoe.

Meeting Called to Order: 10:15 a.m.

Recording Secretary of Minutes: Leon Gorris.

Welcome and Introduction. The chair welcomed all present. All attendees briefly introduced themselves. The PDG membership roster was circulated for additions & corrections.

Minutes of 2002. The meeting approved these.

Additional agenda items. No new items were submitted.
Servé Notermans informed the meeting of a European Union sponsored research project on the use of Microbial Risk Assessment to guide the specification of Time Temperature Integrators. The project is in its second year, covers three commodities and runs under the 5th Framework program. More info can be obtained via Servé (notermans@voeding.tno.nl).

Nominations for vice-chairperson. The chair asked for nominations from the meeting. There were none. He informed the meeting that Aamir Fazil and Mark Tamplin, both PDG members, had expressed their willingness to fulfill the function. Shortly after the annual meeting an e-mail ballot will be initiated to involve all PDG members in the election. A short description of the nominees’ areas of interest will be provided as requested by the meeting.

Ideas for symposia and workshops in 2004. Richard Whiting and Don Schaffner asked the meeting for their consent that they could submit the “Hands-on course on QMRA” to be re-run off-site (not in conjunction with the Annual meeting). Consent was given.

The chair mentioned that several lecture topics or symposia ideas were sent in before the meeting by a number of PDG members.

The meeting discussed these and many other proposals from the meeting at length. It was found advisable to limit the topics that would actually be submitted for consideration by the program committee. Small groups (members indicated in parenthesis) took the following topics further.

Lectures on the actual use of MRA results in practice for risk management and/or decision-making in different contexts: government, industry, developing countries (Leon Gorris, Richard Whiting, Jean Kamanzi, and Ewen Todd).

Lectures on “data in MRA”, possibly covering use of industry data, sampling protocols, use of expert opinion. (Don Schaffner, John Bassett, and Michael Brodsky).

Lectures on the use of cutting-edge investigative molecular biology methods in MRA, e.g. use of genomics for sub-typing, characterizing virulence, etc. (Yuhuan Chen, Ruff Lowman, and Richard Hayes, Don Schaffner).

Together with the PDG “Applied Laboratory Methods” a symposium would be proposed on E. sakazakii. This could cover topics on methodology, physiology, ecology and risk assessment (Michael Brodsky PDG contact).

Next Meeting Date: August 8, 2004, Phoenix, AZ.
Meeting Adjourned: 11:45.

Chairperson: Richard Whiting.

Outreach Education PDG

Members Present: Veny Gapud.

New Members: Robert Brooks, Christine Bruhn, John Rupnow, Gordon Mowat and Bill Weissine.

Board Members Present: Jeff Farber.

Meeting Called to Order: 3:00 p.m.

Recording Secretary of Minutes: Robert Brooks.

Old Business: Two pamphlets updated since the last PDG meeting: “Before Disaster Strikes...A Guide to Food Safety in the Home” and “Food Safety at Temporary Events” were distributed and reviewed.

An agenda item suggested that additional outreach pamphlets be developed. This item was tabled for review in 2004.

Another agenda item proposed a modification of the mission statement for the PDG. The proposed statement was rejected. However, the PDG did adopt a modified mission statement. The mission statement now reads: The mission of this Professional Development Group is “To develop and disseminate outreach educational materials for consumers and educators.”

PDG chairperson and vice-chairperson responsibilities were vacant as of this meeting. Robert Brooks agreed to chair the PDG while Gordon Mowat agreed to serve as vice chairperson. The membership wishes to recognize the contribution of Veny Gapud in service as chairperson and facilitator during this meeting.

New Business:

The PDG decided to communicate via e-mail to incorporate the new membership’s considerable experience from extension service and outreach into a cohesive plan to reach our target audience.

Operational paradigms were adopted. Our tactic is to identify our target audience (church organizations, science teacher organizations) and query them as the most effective mechanism to reach them. Secondly, we plan to assemble existing outreach materials as links for our PDG.

While various academicians and extension specialists have work to present, we decided to review the possibility of an outreach symposium for the 2004 meeting.
Recommendations to the Executive Board:

1. Convert the two updated pamphlets to PDF format and make them available on the IAFP Web site. Our feeling here is that printed copies are expensive to produce and expensive to purchase in this time of economic uncertainty. As our objective is dissemination, a PDF format enables dissemination while protecting IAFP from liability.

2. To accept a new PDG mission statement reading, "to develop and disseminate outreach educational materials for consumers and educators."

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 5:00 p.m.

Chairperson: Robert Brooks.

Retail Food Safety and Quality PDG

Members Present: Joe Eifert, Carl Custer, Gordon Mowat, Al Fain, Pete Snyder, Tom McCaskey, Alex von Holy, Kathleen O'Donnell, Jena Roberts, Larry Mendes, Colleen Gemmill, Milinda Fortune, Fred Reimers, Tom Schwarz, and Frank Yiannas.

Board Members/Staff Present: Anna Lammerding and David Tharp.

New Members: Courtney Holbrook, Lynn Helmers, John Foster, Charles Otto, Faye Feldstein, Susan McKnight, Trevor States, Gloria Swick-Brown, Pam Metheny, Zeb Blanton, and Peter Kennedy.

Meeting Called to Order: 10:00 a.m.

Recording Secretary of Minutes: Joe Eifert.

Old Business:

1. Reviewed symposia developed last year #S04 Recipe for Food Safety at Retail.
2. Discussed International Food Safety Icons project.
3. Members provided several suggestions to IAFP Executive Board.
4. Suggestion to have the icons adopted by the Conference by Food Protection.
5. Suggestion to promote icons through Extension Educators via OSREES or IFT Extension Division.
6. Zeb Blanton and Larry Mendes volunteered to organize a Web site with links to other graphics/icons Web sites for food safety.

New Business:

2. A second symposium proposal was discussed and will be submitted by Peter Snyder.
3. Elections were held for new Chairperson and Vice Chairperson. Four members were nominated. Election winners: Joe Eifert, chairperson and Al Fain, Vice Chairperson.
4. Members suggested more frequent or regular communication from this PDG prior to next year's annual meeting.
5. Suggestion to develop a 2005 meeting symposia on food safety at institutions (schools, prisons, and hospitals).
6. Pete Snyder requested volunteers to author chapters on several topics for a book (to be published by IFT) based on a document. "Retail Food Operations HACCP-TQM Technical Guidelines."
7. Pete Snyder requested volunteers to help write a paper for Food Protection Trends that will report HACCP validation studies for new retail foods.

Recommendations to Executive Board:

1. Take digital photos of PDG members at meetings and add to appropriate Web site.
2. International Food Safety Icons
 a. Add a higher resolution format (jpeg) to the IAFP Web site or provide a weblink to jpeg files. This will facilitate use by many groups and individuals.
 b. Provide a black and white only version of the icons for those who cannot print in color.
 c. Ask commercial label company to produce the icons as stick-on labels for purchase.
3. Approve Joe Eifert as Chairperson and Al Fain as vice chairperson.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 11:50 a.m.

Chairperson: Joe Eifert.

Seafood Safety and Quality PDG

Members Absent: All Others.

Board Members/Staff Present: Donna Bahun, Jim Dickson, and David Tharp.
Guests Present: Ron Case.

Meeting Called Order: 1:10 p.m.

Recording Secretary of Minutes: Linda Andrews.

Introductions of members present.

Agenda approved. Linda Andrews moved, Marlene Janes seconded.

Old Business:
1. Minutes moved for approval by Peter Hibbard, Marlene Janes seconded. Approved.
2. Announcement of two symposia 2003
 a. Peter Hibbard announced that industry members he knows will attend meeting this year because of symposia topics.
 b. Of the three symposia that were submitted for approval, two of them were accepted by the program committee. Of the 48 symposia submitted to IAFP, 25 were accepted and two were seafood related.

New Business:
Shellfish (crustacean and mollusks) – Instructor: Linda Andrews.
Finfish Coldwater – Instructor: Tom Gill.
What Works for Industry: Instructor to be identified.
Field Trip to Aquaculture Facility in Arizona.
Intended audience: Seafood retailers, processors, producers, regulatory officials (state, national, international), academics.
What will the audience learn: Proven methods to control quality and safety problems associated with production and processing.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Symposium Title:
C. botulinum – Graham Fletcher.
Edible Films – Marlene Janes.

Regulatory Perspective – National Fisheries Institute, Roy Martin.
Active Packaging and Time-Temperature Integrators (TTIs) – Industry leader to be determined.
Intended audience: Seafood retailers, processors, producers, regulatory officials (state, national, international), academics.

Recommendations to Executive Board: We recommend that the Executive Board accept the symposium and workshop proposals from the Seafood Safety and Quality Professional Development Group.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 2:59 p.m.

Chairperson: Brian Himelbloom.

Student PDG

Members Present: Total present – 73, Total Members – 59, including Michelle Danyluk, Chair; Renee Raiden, Vice Chair; Justin Ransom, Treasurer; Yash Burgula, Secretary; and Manan Sharma, Outgoing Chairperson.

Meeting Called Order: 1:20 p.m.

Recording Secretary of Minutes: Yash Burgula.

New Business: Session monitor sheet posted on the board. Third symposium is on Monday afternoon, August 11, 2003. Introduced the new officers for the SPDG. Renee talked about the t-shirt program. She encouraged everyone to buy a t-shirt and participate in the job fair.
The fundraiser money will be put towards the mixer (suggestion from Manan). Justin should also look at the mixer and organize it. Another fundraiser with golfing! (Challenge people to a contest.) Use the money raised from the lowered International student rate to contribute towards social causes. Manan talked about the role of SPDG, its objectives and the benefits to the student members. Michelle encouraged further inputs/thoughts about fundraising. Justin raised the possibility for setting up means to raise more interaction within the exhibitors. Something like the IFT’s “Students as Exhibitors”.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Symposium Title:
C. botulinum – Graham Fletcher.
Edible Films – Marlene Janes.
Michelle encouraged students to encourage other students from their respective universities to get involved with the IAFP's SPDG. Jeffrey Rhodehamel from Cryovac was the guest speaker at the SPDG luncheon. To discuss the speakers for next year's SPDG symposium "International Food Safety Opportunities" and "Challenges in the Developing World." Students would be encouraged to submit their resumes at the SPDG. Michelle talked about discussing the "Students as Exhibitors" idea with the companies.

Recommendations to Executive Board:

1. Current annual membership rates for international student members should be reassessed and possibly changed. Student members in the United States currently pay $47.50, and students from Canada and Mexico pay $62.50 with a subscription to *Journal of Food Protection*. However, students in other countries pay $92.00 for membership with subscription to JFP or $72.50 with a subscription to *Food Protection Trends*. While we are aware of the administrative costs of maintaining records of international members and the shipping costs of journals overseas, we find these membership costs prohibitively high and possibly exclusionary to those international students who are interested in joining IAFP. We would like to suggest an international student membership rate that is lower in price that would include secure access to the online version of *Journal of Food Protection*. If providing online access ONLY to the journal would reduce shipping costs of the journal overseas, then maybe international student membership rates could be reduced. We would appreciate the Board’s interest into this matter.

2. The current name of the Student Professional Development Group should be changed. Although the Student Professional Development Group (SPDG) accurately describes our PDG, saying the name of this group is sometimes long and confusing to students new to IAFP. Therefore, we would like to change the name to the Student Association of the International Association for Food Protection. We would still like to be considered a PDG and would be governed by the rules and regulations associated with PDGs, but a simpler name may be less confusing them the current one.

3. Providing a partial travel stipend for the officers of the SPDG should be considered. The SPDG appreciates IAFP's efforts in the past to support student travel to the annual meeting through the session monitor program. Although it is understood that other PDG officers do not receive travel funds, we think that students are in a unique situation in their professional development compared to other members of IAFP. Providing a partial travel stipend for the officers would also encourage other student members to become involved in the SPDG leadership as well.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 1:45 p.m.

Chairperson: Michelle Danyluk.

Viral and Parasitic Foodborne Disease PDG

Members Present: Lee-Ann Jaykus, Nigel Cook, Yvon Trottier, Judy Greig, Gail Greening, Bart Bartleson, and Sabah Bidawid.

Board Members/Staff Present: Jim Dickson.

New Members: Julie Jean, Alain Houde, Kristen Brown, Peter Tips, Doris D’Souza, and Franco Pagotto.

Meeting Called to Order: 1:00 p.m.

Recording Secretary of Minutes: Lee-Ann Jaykus.

Old Business: Unanimously passed minutes of 2002 meeting.

New Business: Sabah Bidawid presented the food and environmental virology network that is under development in Canada. Nigel Cook mentioned a similar network proposed in Europe. Both are
intended to be international in scope and provide a forum for collaboration communication, and exchange. This PDG can facilitate this. A proposal for a symposium next year was developed and presented to the PAC. Symposium title: “Impact of Environmental Viral and Parasitic Contamination on Food Safety.”

Recommendations to Executive Board: None.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 11:00 a.m.

Chairperson: Lee-Ann Jaykus.

Water Safety and Quality PDG

Members Present: Susan McKnight, Michael Brodsky, K. T. Rajkowski, Jack Guzewich, Peter Kennedy, M. Nazarowec-White, Jeanette Thurston-Enriquez, and Isabel Walls.

Board Members/Staff Present: Frank Yiannas and Didi Loynachan.

Meeting Called to Order: 1:00 p.m.

Recording Secretary of Minutes: Susan McKnight.

New Business:

1. Review of suggestions received from emails to PDG members in May and June for 2004 symposium. Two ideas were formulated and submitted to the Program Committee - a symposium on “Water’s Role in Food Contamination” and a roundtable proposal.

2. Wiley and Sons interest in the PDG publishing a book on water quality and food safety was rejected at this time.

Recommendations to Executive Board:

1. Susan McKnight stay on as Chairperson another year.

2. The PDG would like to have the symposium (2003), put on its Web site with speaker's approval.

Next Meeting Date: August 8, 2004, Phoenix, AZ.

Meeting Adjourned: 3:00 p.m.

Chairperson: Susan McKnight.
Affiliate Council Minutes
IAFP 2003 – August 10, 2003
Held at the Hilton New Orleans Riverside
New Orleans, Louisiana

Affiliates Present:
Alabama
Brazil
British Columbia
California
Capital
Carolina’s
Florida
Georgia
Indiana
Kentucky
Metropolitan
Michigan
Missouri
Nebraska
New York
Ohio
Ontario
Pennsylvania
Southern California
Texas
United Kingdom
Upper Midwest
Washington
Wisconsin

Tom McCaskey
Maria Teresa Destro
Terry Peters
Johnny Bruhn
Carl Custer
Jeff Rhodehamel
Peter Hibbard
David Fry
Helene Uhlman
Sue Jewell
Fred Weber
Becky Ouellette
Linda Haywood
Tom Tieso
Steve Murphy
Gloria Swick-Brown
Gail Evans Seed
Gene Frey
Margaret Burton
Fred Reimers
David Lloyd
Dan Erickson
Stephanie Olmsted
Randy Daggs

Report from IAFP Executive Board: Anna Lammerding, IAFP president welcomed the affiliates with a special welcome to our newest affiliate from the United Kingdom. She also announced that the charter for the Portugal Association for Food Protection was just accepted by the Executive Board (member not present). David Lloyd commented on the nature of the UK affiliate with emphasis on intentions for outreach to the rest of Europe to spread the word on IAFP.

Anna continued by discussing the status of the IAFP journals (JFP and FPT) while noting the growth of manuscript submissions online and the over all appeal of the new name and cover designs for FPT. Anna stressed the importance of our Committees and Professional Development Groups, informing the affiliates of the exploration of a new PDG on Food Toxicology as well as the development of the International Food Safety Icons by the Retail Food Safety and Quality PDG. Frank Yiannas commented that these icons were developed and screened with a focus group of nearly 400, most of whom were non-English speaking individuals. Kathy Glass added to the PDG discussion, indicating that the Outreach Education PDG has developed materials on Crisis Response and Food Safety Procedures for Temporary Food Service Operations (e.g., church groups). Anna also indicated that the Student PDG was active and doing well. Anna closed her comments by informing the affiliates that this year’s Annual Meeting will be dedicated to Harry Haverland who will be dearly missed by the organization and whose legacy will live on in the IAFP Foundation Fund.

Report from IAFP Staff: Executive Director, David Tharp welcomed the affiliate members with positive news about the IAFP membership, which is at approximately 3,000 with 9 Gold/Silver Sustaining Members. The IAFP Web site continues to improve and the use of online subscriptions to JFP is on the rise. The annual meeting appears set to break last years record with approximately 1,350 pre-registered. Over 420 abstracts were received and 46

Guests: Michelle Clark, Judy Greig, Shelly Rodrigo, Sid Camp, Zeb Blanton, and Charles Price.

Meeting Called to Order: 7:15 a.m.

Recording Secretary of Minutes: Steve Murphy.

Introduction and roll call.
Symposia were submitted. With limited slots for presentations, these increases present challenges for the Program Committee. In addition to increased presentation submissions the number of exhibitors are up as well as the sponsorships, reflecting the growing interest and dedication to IAFP.

Lucia Collison McPhedran reminded the affiliate delegates of the services provided by IAFP, requesting that she be kept up-to-date on affiliate activities and that they provide materials for the newsletter. It was suggested (Tom McCaskey, AL) that affiliate programs be included in the newsletter or alternatively on the Web site. Peter Hibbard (FL) praised the quality and content of the newsletter.

Election of Affiliate Council Secretary: Chairperson Gene Frey reported that Stephanie Olmsted (WA) was selected by the nomination committee to serve as Incoming Affiliate Council Secretary. No further nominations were made and a motion was made to close the nominations by Carl Custer (Capital Area) and seconded by Jeff Rhodehamel (Carolinias). Stephanie was elected by unanimous vote. Stephanie accepted and also was welcomed by Anna and Gene, and indicated that she looked forward to serving.

Affiliate Reception: The members indicated that the reception went very well and it was stated that “they get better every year” (David Fry, GA). Fred Weber was thanked as a sponsor, with a reminder that sponsorship is needed for future receptions, which council expressed they would like to continue.

Affiliate Status: Gene welcomed again the new affiliates from the United Kingdom (present) and Portugal (not present). Delegates from our three newest affiliates, David Lloyd (UK), Margaret Burton (So. Cal.) and Maria Teresa Destro (Brazil) described the process of becoming an IAFP affiliate. Gene briefly discussed the compliance status of the affiliates, which he indicated was in good shape due to the hard work and dedication of the affiliates and the IAFP staff. Two former affiliates are no longer associated with IAFP. Massachusetts withdrew while Virginia had discontinued contact with IAFP.

Affiliate Awards: Gene recognized the accomplishments of all affiliates indicating that selecting award recipients has become a difficult process because of the range of activities and quality of the reports. Awards went to Ontario Food Protection Association (Shogren Memorial Award); Wyoming (Highest Percentage Increase); Southern California (Highest Number Increase); Wisconsin (Best Educational Conference); Kentucky (Best Annual Meeting); and New York (Best Communication Materials). A motion was made to drop the 2 existing membership awards and to replace these with a single Membership Achievement Award that recognized affiliates efforts and innovations at increasing membership within the affiliate with less emphasis on actual numbers. John Bruhn made the motion, which was seconded by Gloria Swick-Brown and accepted by the council. A “proposal” to not allow an affiliate to win an award two years in a row was discussed and rejected by the council.

New Business: Affiliates were reminded that “Fellows” award nominations could come from the affiliates. Certificate of Merit nominations were also encouraged. Paul Hall brought up a suggestion from the board to consider moving the Affiliate Council Meeting to Saturday afternoon in conjunction with the Affiliate Reception. This was to allow greater flexibility in board member schedules. Discussion leaned toward leaving the council meeting as a Sunday morning breakfast meeting and a show of hands confirmed this.

Affiliate Reports: Affiliate delegates present gave a brief synopsis of their activities over the past year reflecting membership, scholarships, educational and annual meetings, newsletters and Web sites and association with IAFP and other organizations.

Recommendations to Executive Board:
1. Randy Daggs indicated that it would be nice to have a date put on the awards so affiliates can keep track of which year(s) the award was won.
2. John Bruhn suggested (after the council meeting) that PDGs and other committees update their member lists to be current with active members.

Passing of Gavel: Chairperson, Gene Frey expressed his appreciation and enjoyment in serving as Affiliate Council Chairperson, thanking the affiliates, Lucia and David and the IAFP staff and board. He then passed the gavel to Steve Murphy signifying the beginning of his term as chairperson of the affiliate, who indicated that he was looking forward to his term and welcomed all input from the affiliate council.

Next Meeting Date: August 2004, Phoenix, AZ.

Meeting Adjourned: 10:15 a.m.

Chairperson: Gene Frey.
Committee and Professional Development Group

Executive Board’s Response to the Committee Recommendations

New Orleans, Louisiana
August 10, 2003

AFFILIATE COUNCIL

Recommendations to the Executive Board:

1. Randy Daggs indicated that it would be nice to have a date put on the awards so affiliates can keep track of which year(s) the award was won.

 Board Response: This has been addressed and is being done now.

2. John Bruhn suggested (after the council meeting) that PDGs and other committees update their member lists to be current with active members.

 Board Response: Chairpersons have been asked to update all committee and PDG lists.

STANDING COMMITTEES

FOOD PROTECTION TRENDS

Recommendations to the Executive Board:

1. FPT to formulate a policy for enhanced review of articles that impact food safety and security.

 Board Response: Agree. The Board asks FPT and JFP Scientific Editors along with the Chairperson and Vice Chairperson of both committees to prepare a policy addressing review of articles dealing with sensitive subject matters such as bioterrorism and homeland security for Board review and acceptance as soon as possible.

2. Bill LaGrange be reappointed for another four-year term as Scientific Editor.

 Board Response: Agree.

JOURNAL OF FOOD PROTECTION

Recommendations to the Executive Board:

1. That the IAFP staff consider the financial implications of provision of a complementary electronic copy (PDF format) to the corresponding author of papers accepted for publication by JFP, and further that they consider whether or not provision would be open to all corresponding authors or just those that are IAFP members.

 Board Response: Agree. Staff to review financial considerations and report to the Board at the January Board meeting.

2. That while the JFP Editorial Board has issues of security in mind when determining fitness of a paper for publication in JFP, a formal policy for articles relating to food security should be developed.

 Board Response: Agree. The Board asks JFP and FPT Scientific Editors along with the Chairperson and Vice Chairperson of both committees to prepare a policy to address review of articles dealing with sensitive subject matters such as bioterrorism and homeland security for Board review and acceptance as soon as possible.

3. John Sofos has very kindly agreed to extend his term by four more years as Scientific Editor for JFP.

 Board Response: Agree.

PROGRAM

Recommendations to the Executive Board:

1. The committee will draft a Proposed IAFP Policy on Non-presentation. This policy will affect poster and oral presenters who fail to present an accepted abstract at the Annual Meeting. It is recommended that upon acceptance by the Board, the policy take effect immediately.

 Board Response: Agree. The Board asks the Program Committee to draft a policy for Board review and acceptance.
SPECIAL COMMITTEES

3-A COMMITTEE ON SANITARY PROCEDURES

Recommendations to the Executive Board:
1. While this was not a formal meeting (quorum not achieved), no formal recommendations are given. However, the committee asks for board support in the issues discussed previously.
 Board Response: The Board will review issues discussed and provide support where possible.

AUDIOVISUAL LIBRARY

Recommendations to the Executive Board:
1. The committee would like to ask permission to include the AV survey (to be written) in Food Protection Trends and on the IAFP Web site.
 Board Response: Agree. Once survey is written, provide to IAFP office for publication.

COMMUNICABLE DISEASES AFFECTING MAN

Recommendations to the Executive Board:
 Board Response: Program Committee will review and notify you about its status.
2. Does Executive Board want CCDAM to revise the HACCP manual beginning in 2004?
 Board Response: Currently, it is felt that there is an abundance of HACCP materials available and that IAFP does not need to "reinvent" what is already available.
3. Write a draft of a risk assessment approach to food worker hygiene in 2004.
 Board Response: The Board needs additional information and to be able to compare it to the article currently being completed by the Committee.

CONSTITUTION AND BYLAWS

Recommendations to the Executive Board:
1. Reinstate C&B Committee membership of Charles Price and David Fry immediately.
 Board Response: Agree.
2. Add Zeb Blanton, current president of Florida Affiliate to committee (pending Frank Yiannas discussion with Zeb to confirm his willingness to serve);
 Board Response: Agree.
3. Add Steve Murphy incoming Chairperson of Affiliate Council as a committee member starting in 2004.
 Board Response: Agree.
4. Accept committee recommendations for extension of Michael Brodsky’s term as Chairperson to 2004 and Ron Case’s assumption of Chairperson after 2004.
 Board Response: Agree.

FOUNDATION FUND

Recommendations to the Executive Board:
That each of the motions passed by the committee (shown below) be approved and endorsed by the Board of Directors of IAFP (except motion 3, a prerogative of the Foundation Fund committee).

1. To include in the membership renewal form a line indicating a $10.00/member contribution to the Foundation Fund with the option for the member to strike out that amount from the form.
 Board Response: Agree.
2. To include on the application form for exhibitors a contribution of $100.00 to the Foundation Fund with the option to strike that amount from the form.
 Board Response: Agree. (Note: the application form for IAFP 2004 has already been printed so this will begin with IAFP 2005.)
3. To form a subcommittee to develop a plan for recognizing donors to the Foundation Fund. The sub-committee is Gale Prince (chair), Susan Sumner, and Stan Bailey.
 Board Response: Committee prerogative as indicated above.
4. That there be a mailing to IAFP members announcing that the Foundation Fund invites donations in memory of Harry Haverland the first and long-term Chairperson of the Foundation Fund Committee who passed away in June 2003.
 Board Response: Agree. Mailing to be conducted via E-mail.
5. That the IAFP Board considers naming the Foundation Fund as follows: The Harry Haverland and IAFP Foundation Fund.
 Board Response: The Board will discuss this recommendation at its next Board meeting.
6. Gale Prince was nominated and elected by the committee as Vice Chairperson of the Foundation Fund Committee.
 Board Response: Agree.
7. That efforts should be made to avoid conflicts between the times of the meeting of this committee and others on which the members serve.
 Board Response: Committee meeting scheduling on Sunday is very difficult. The board suggests meeting at 2:00 p.m. until 4:00 p.m. on Saturday.
NOMINATING
Recommendations to the Executive Board: None.

PAST PRESIDENTS'
Recommendations to the Executive Board:
1. That the Board considers developing a program for financial support for students in the finals of the Developing Scientist Competition.
 Board Response: Agree. The Board asks the Past Presidents’ Committee to prepare a proposal for the Board to consider that outlines a proposed budget and potential ways to support the budget needs.

2. The Executive Board develops a policy for dealing with publication of presentation of food security-related information.
 Board Response: Agree. The Journal Management Committee Chairpersons and Vice Chairpersons along with the Journal Scientific Editors have been asked to write a policy for Board review and acceptance.

PROFESSIONAL DEVELOPMENT GROUPS

APPLIED LABORATORY METHODS
Recommendations to the Executive Board:
 Board Response: The Program Committee will review your proposal and make recommendation to the Board on workshops to present at IAFP 2004.

 Board Response: The Program Committee will review your proposal and notify you about its status.

3. Propose symposium in cooperation with Microbial Risk Analysis PDG for “Risk and Control of Enterobacter sakazakii” co-convenors Maria Nazarowec-White/Tim Jackson.
 Board Response: The Program Committee will review your proposal and notify you about its status.

4. Propose the development of a Web page for the Applied Laboratory Methods PDG on the IAFP Web site.
 Board Response: IAFP set up Web pages for each of the Professional Development Groups. Contact the IAFP office for further information on how to post information.

DAIRY QUALITY AND SAFETY
Recommendations to the Executive Board:
1. Review committee membership – many inactive people still listed as active.
 Board Response: The Board requests that each PDG Chair look closely at their roster of members and notify the office of inactive members listed.

2. Consider ways to advertise IAFP dairy symposia among constituency.
 Board Response: It is suggested that the PDG Chairperson and Vice Chairperson look at the program in March or April to identify sessions and presentations that are of interest to members with interest in dairy topics, then send to PDG members and IAFP Affiliates for further distribution.

3. Recommend Gaylord Smith as new PDG Chairperson.
 Board Response: Agree.

FOOD SAFETY NETWORK
Recommendations to the Executive Board:
1. Recommend accepting topic proposed by the Food Safety Network PDG, Emerging Technology and Applications in Food Safety and Security, as a mini, 2-hour symposia for next year’s IAFP meeting.
 Board Response: The Program Committee will review your proposal and notify you about its status.

2. To accept new PDG mission statement reading: “to provide IAFP members with information on current trends and issues in food protection.”
 Board Response: Agree.

FOOD SANITATION
Recommendations to the Executive Board:
1. Proposal to consider symposium entitled “Sanitation – Because You Have to Be Clean to be Safe.”
 Board Response: The Program Committee will review your proposal and notify you about its status.

FRUIT AND VEGETABLE SAFETY AND QUALITY
Recommendations to the Executive Board: None.

MEAT AND POULTRY SAFETY AND QUALITY
Recommendations to the Executive Board: None.
MICROBIAL RISK ANALYSIS

Recommendations to the Executive Board: None.

OUTREACH EDUCATION

Recommendations to the Executive Board:

1. Convert the two updated pamphlets to PDF format and make them available on the IAFP Web site. Our feeling here is that printed copies are expensive to produce and expensive to purchase in this time of economic uncertainty. As our objective is dissemination, a PDF format enables dissemination while protecting IAFP from liability.

 Board Response: The Board will ask staff to review the revenue implications of this move and will discuss at a future Board meeting.

2. To accept new PDG mission statement reading: “to develop and disseminate outreach educational materials for consumers and educators.”

 Board Response: Agree.

RETAIL FOOD SAFETY AND QUALITY

Recommendations to the Executive Board:

1. Take digital photos of PDG members at meetings and add to appropriate Web site.

 Board Response: Staff will work to achieve this.

2. International Food Safety Icons
 a. Add a higher resolution format (jpeg) to the IAFP Web site. This will facilitate use by many groups and individuals or provide a Web link to jpeg files.

 Board Response: Higher resolution files are available for purchase for $25 (includes all icons in jpeg, tif and eps file formats). Icons on the Web site are in gif format and are made available for quick, easy downloads (not for high quality reproductions).

 b. Provide a black and white only version of the icons for those who cannot print in color.

 Board Response: Icons presented in color can be printed in black and white.

 c. Ask commercial label company to produce the icons as stick-on labels for purchase.

 Board Response: This is being pursued.

3. Approve Joe Eifert as Chairperson and Al Fain as Vice Chairperson.

 Board Response: Agree.

SEAFOOD SAFETY AND QUALITY

Recommendations to the Executive Board:

1. We recommend that the Executive Board accept the symposium and workshop proposals from the Seafood Safety and Quality Professional Group.

 Board Response: The Program Committee will review your proposals and notify you about their status.

 2. Current annual membership rates for international student members should be reassessed and possibly changed. Student members in the United States currently pay $47.50, and students from Canada and Mexico pay $62.50 with a subscription to *Journal of Food Protection*. However, students in other countries pay $92.00 for membership with subscription to *JFP* or $72.50 with a subscription to *Food Protection Trends*. While we are aware of the administrative costs of maintaining records of international members and the shipping costs of journals overseas, we find these membership costs prohibitively high and possibly exclusionary to those international students who are interested in joining IAFP. We would like to suggest an international student membership rate that is lower in price that would include secure access to the online version of *Journal of Food Protection*. If providing online access ONLY to the journal would reduce shipping costs of the journal overseas, then maybe international student membership rates could be reduced. We would appreciate the Board’s interest into this matter.

 Board Response: Agree. The Board approved an Online Membership for Student Members at a rate of $48 per year for Student Members anywhere in the world. Student Members will be the only Members eligible for an Online Membership at this time.

 2. The current name of the Student Professional Development Group should be changed. Although the Student Professional Development Group (SPDG) accurately describes our PDG, saying the name of this group is sometimes long and confusing to students new to IAFP. Therefore, we would like to change the name to the Student Association of the International Association for Food Protection. We would still like to be considered a PDG and would be governed by the rules and regulations associated with PDGs, but a simpler name may be less confusing them the current one.

 Board Response: The suggested name changes sounds more like an Affiliate name than that of a PDG. The Board suggests that the Student PDG officers consider whether to continue as a PDG or convert to an Affiliate status.
3. Providing a partial travel stipend for the officers of the SPDG should be considered. The SPDG appreciates IAFP’s efforts in the past to support student travel to the annual meeting through the session monitor program. Although it is understood that other PDG officers do not receive travel funds, we think that students are in a unique situation in their professional development compared to other members of IAFP. Providing a partial travel stipend for the officers would also encourage other student members to become involved in the SPDG leadership as well.

Board Response: Agree. The Board approved up to $1,000 to be used for the Student PDG officers to travel to IAFP Annual Meetings. The current Chairperson of the PDG should communicate with the executive director prior to each Annual Meeting to obtain this support for the officers of the PDG.

VIRAL AND PARASITIC FOODBORNE DISEASE

Recommendations to the Executive Board: None.

WATER SAFETY AND QUALITY

Recommendations to the Executive Board:

1. Susan McKnight stay on as Chairperson another year.

Board Response: Agree.

2. The PDG would like to have the symposium (2003), put on its Web site with speaker’s approval.

Board Response: Submit the presentations to the IAFP office along with speaker’s written approval and the symposium will be posted.

Thank You

IAFP would like to extend a special thank you to **Ron Case** for his photography services during IAFP 2003!

IT’S A FACT

Order Your Booklets Today

- Procedures to Investigate Waterborne Illness
- Procedures to Investigate Foodborne Illness
- Pocket Guide to Dairy Sanitation
- Before Disaster Strikes… A Guide to Food Safety in the Home
- Food Safety at Temporary Events

or visit our Web site at www.foodprotection.org
Exhibitors of IAFF 2003

☆ IAFF Sustaining Member

☆ 3-A Sanitary Standards, Inc.
1451 Dolley Madison Blvd., Suite 210
McLean, VA 22101
Phone: 703.790.0295
Fax: 703.761.4334
www.3-a.org

☆ 3M Microbiology
3M Center, Bldg. 275-5W-05
St. Paul, MN 55144-1000
Phone: 800.328.1671
Fax: 651.737.1994
www.3m.com/microbiology

☆ ABC Research Corporation
3437 SW 24th Ave.
Gainesville, FL 32607
Phone: 352.372.0436
Fax: 352.378.6483
www.abcr.com

AESC-Chemunex, Inc.
301 N. Harrison St., Suite 109
Princeton, NJ 08540
Phone: 609.497.0166
Fax: 609.497.7307
www.aesc-chemunex.com

AIHA Food Laboratory Accreditation Program
2700 Prosperity Ave., Suite 250
Fairfax, VA 22031
Phone: 703.846.0762
Fax: 703.207.3561
www.aiha.org

aLF Ventures, LLC
299 S. Main St., Suite 2310
Salt Lake City, UT 84111-2263
Phone: 801.961.1030
Fax: 801.961.1031
www.activatedlactoferrin.com

American Proficiency Institute
1159 Business Park Drive
Traverse City, MI 49686
Phone: 800.333.0958
Fax: 231.941.7287
www.foodptc.com

AOAC International
481 N. Frederick Ave., Suite 500
Gaithersburg, MD 20877
Phone: 800.379.2622
Fax: 301.924.7089
www.aoac.org

Association of Food and Drug Officials
2550 Kingston Road, Suite 311
York, PA 17402
Phone: 717.757.2888
Fax: 717.755.8089
www.afdo.org

☆ BD Diagnostic Systems
7 Lovetown Circle
Sparks, MD 21152
Phone: 410.316.4024
Fax: 410.316.4906
www.bd.com

☆ BioControl Systems, Inc.
12822 SE 32nd St.
Bellevue, WA 98005
Phone: 800.245.0113
Fax: 425.603.0080
www.biocorlumsys.com

☆ Biolog, Inc.
3938 Trust Way
Hayward, CA 94545
Phone: 510.785.2564
Fax: 510.782.4639
www.biolog.com

☆ bioMérieux, Inc.
595 Anglum Road
Hazelwood, MO 63042-2320
Phone: 800.634.7656
Fax: 800.657.3053
www.biomerieux-usa.com

☆ Bio-Rad Laboratories
2000 Alfred Nobel Drive
Hercules, CA 94547
Phone: 800.4BIORAD
Fax: 510.741.5630
www.foodscience.bio-rad.com

Bioscience International, Inc.
11607 Magruder Lane
Rockville, MD 20852-4365
Phone: 301.230.0072
Fax: 301.230.1418
www.biosci-intl.com

BioSys, Inc.
3810 Packard Road, Suite 100A
Ann Arbor, MI 48108
Phone: 866-3Biosys
Fax: 734.477.9261
www.biosystesting.com

Booz Allen Hamilton
12345 Parklawn Drive
Rockville, MD 20852
Phone: 301.255.2836
Fax: 301.255.2897

Carmina Technologies, Inc.
36 Toronto St., Suite 250
Toronto, ON M5C 2C5 Canada
Phone: 416.410.6114
Fax: 416.214.6419

Center for Food Safety and Applied Nutrition, FDA
5100 Paint Branch Parkway HFS-32
College Park, MD 20740-3835
Phone: 888SAFEFOOD
Fax: 301.436.2605
www.cfsan.fda.gov

Charm Sciences, Inc.
659 Andover St.
Lawrence, MA 01843-1032
Phone: 800.343.2170
Fax: 978.687.9216
www.charm.com

Copan Diagnostics, Inc.
2175 Sampson Ave., Suite 124
Corona, CA 92879
Phone: 800.216.4016
Fax: 909.549.8850
www.copanusa.com
<table>
<thead>
<tr>
<th>Item</th>
<th>Contributor</th>
<th>Highest Bidder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foodborne Diseases, 2nd Edition</td>
<td>Academic Press, Elsevier London</td>
<td>LeeAnne Jackson</td>
</tr>
<tr>
<td>South Africa Wildlife Calendar</td>
<td>Alex von Holy</td>
<td>M. Murray</td>
</tr>
<tr>
<td>Food Microbiology: Fundamentals and Frontiers</td>
<td>American Society for Microbiology</td>
<td>Paul Ham</td>
</tr>
<tr>
<td>“Taste of Chicago” Gift Certificates</td>
<td>Illinois Affiliate</td>
<td>Fred Reimers</td>
</tr>
<tr>
<td>“Taste of Chicago” Gift Certificates</td>
<td>Illinois Affiliate</td>
<td>Indaue Mello</td>
</tr>
<tr>
<td>Caipirinha Kit</td>
<td>Brazil Affiliate</td>
<td>Paul Hall</td>
</tr>
<tr>
<td>Coffee Beans</td>
<td>Brazil Affiliate</td>
<td>Ed Donnell</td>
</tr>
<tr>
<td>2002 Beaujour Zinfandel</td>
<td>California Affiliate</td>
<td>Vickie Lewandowski</td>
</tr>
<tr>
<td>Barefoot Reserve Chardonnay</td>
<td>California Affiliate</td>
<td>Gloria Swick-Brown</td>
</tr>
<tr>
<td>Beringer 2002 Chenin Blanc</td>
<td>California Affiliate</td>
<td>Gloria Swick-Brown</td>
</tr>
<tr>
<td>Buena Vista Sauvignon Blanc</td>
<td>California Affiliate</td>
<td>Doug Johnson</td>
</tr>
<tr>
<td>Coastal Ridge 2000 Cabernet Sauvignon</td>
<td>California Affiliate</td>
<td>Joe Donnelly</td>
</tr>
<tr>
<td>Indian Spring 2000 Cabernet Sauvignon</td>
<td>California Affiliate</td>
<td>Fred Weber</td>
</tr>
<tr>
<td>Mont Pellier Chardonnay</td>
<td>California Affiliate</td>
<td>Larry Cohen</td>
</tr>
<tr>
<td>Montevina Sauvignon Blanc</td>
<td>California Affiliate</td>
<td>Dory Johnson</td>
</tr>
<tr>
<td>San Simeon Cabernet Sauvignon</td>
<td>California Affiliate</td>
<td>Fred Weber</td>
</tr>
<tr>
<td>Sonoma Creek 2000 Cabernet Sauvignon</td>
<td>California Affiliate</td>
<td>Fred Weber</td>
</tr>
<tr>
<td>Valley Oaks Cabernet Sauvignon</td>
<td>California Affiliate</td>
<td>Frank Leonardo</td>
</tr>
<tr>
<td>Valley of the Moon Pinot Blanc</td>
<td>California Affiliate</td>
<td>Joan Redder</td>
</tr>
<tr>
<td>U.S. Flag Flown over the U.S. Capital</td>
<td>Capital Area Affiliate</td>
<td>Frank Yiannas</td>
</tr>
<tr>
<td>Handbook of Fermented Functional Foods</td>
<td>CRC Press</td>
<td>Lynn McMullen</td>
</tr>
<tr>
<td>Natural Food Antimicrobial Systems</td>
<td>CRC Press</td>
<td>Jean Anderson</td>
</tr>
<tr>
<td>Pearl Necklace</td>
<td>David & Connie Tharp</td>
<td>Paul Hall</td>
</tr>
<tr>
<td>FAFP Shirt-Large</td>
<td>Florida Affiliate</td>
<td>Jenny Scott</td>
</tr>
<tr>
<td>FAFP Shirt-Medium</td>
<td>Florida Affiliate</td>
<td>Mel Kramer</td>
</tr>
<tr>
<td>FAFP Shirt-XL</td>
<td>Florida Affiliate</td>
<td>Sue Jewell</td>
</tr>
<tr>
<td>Florida Vineyards Wine</td>
<td>Florida Affiliate</td>
<td>Doug Johnson</td>
</tr>
<tr>
<td>Florida Vineyards Wine</td>
<td>Florida Affiliate</td>
<td>Fred Weber</td>
</tr>
<tr>
<td>Variety of Florida Products Gift Basket</td>
<td>Florida Affiliate</td>
<td>Fred Reimers</td>
</tr>
<tr>
<td>Variety of Florida Products Gift Basket</td>
<td>Florida Affiliate</td>
<td>Albert Espinoza</td>
</tr>
<tr>
<td>“Food Microbiology: The Laboratory” with FPI Carry-All</td>
<td>Florida Affiliate</td>
<td>Nobi Tanaka</td>
</tr>
<tr>
<td>Iowa State Collectables Box</td>
<td>Food Processors Institute</td>
<td>Dave Larson</td>
</tr>
<tr>
<td>Three Stooges</td>
<td>Food Safety Research, Iowa State University</td>
<td>Darlene Bengsch</td>
</tr>
<tr>
<td>Waterford Crystal Bowl</td>
<td>Food Safety Research, Iowa State University</td>
<td>Kathleen Rajkowski</td>
</tr>
<tr>
<td>Continuous Thermal Processing of Foods</td>
<td>Food Safety Research, Iowa State University</td>
<td>Indaue Mello</td>
</tr>
<tr>
<td>Fruit Processing: Nutrition, Products, and Quality Management</td>
<td>Food Safety Research, Iowa State University</td>
<td>Kathleen Rajkowski</td>
</tr>
<tr>
<td>Guidelines for Sensory Analysis in Food Product Development and Quality Control</td>
<td>Food Safety Research, Iowa State University</td>
<td>Pete Snyder</td>
</tr>
<tr>
<td>International Standards for Food Safety</td>
<td>Food Safety Research, Iowa State University</td>
<td>Gail Seed</td>
</tr>
<tr>
<td>Shelf-Life Evaluation of Foods</td>
<td>Food Safety Research, Iowa State University</td>
<td>Indaue Mello</td>
</tr>
<tr>
<td>Ty Beanie Baby - Wales</td>
<td>Fred Weber</td>
<td>Vince Radke</td>
</tr>
<tr>
<td>Haagen Dazs Gift Certificates (6)</td>
<td>Fred Weber</td>
<td>Charles Price</td>
</tr>
<tr>
<td>Haagen Dazs Gift Certificates (6)</td>
<td>Fred Weber</td>
<td>Donna Garren</td>
</tr>
<tr>
<td>Item</td>
<td>Contributor</td>
<td>Highest Bidder</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Miscellaneous Books</td>
<td>Henry Atherton</td>
<td>Steve Murphy</td>
</tr>
<tr>
<td>Hygiene for Management</td>
<td>Highland Publications</td>
<td>Gregory Phillips</td>
</tr>
<tr>
<td>Food Safety Icon CD</td>
<td>IAFP</td>
<td>Val Hilliers</td>
</tr>
<tr>
<td>Food Safety Icon CD</td>
<td>IAFP</td>
<td>Gregory Phillips</td>
</tr>
<tr>
<td>IAFP 2004 Registration</td>
<td>IAFP</td>
<td>Pete Snyder</td>
</tr>
<tr>
<td>Waterborne/Foodborne Booklets</td>
<td>IAFP</td>
<td>Nobi Tanaka</td>
</tr>
<tr>
<td>Waterborne/Foodborne Booklets</td>
<td>IAFP</td>
<td>Susan James</td>
</tr>
<tr>
<td>Bundy Duck Decoy</td>
<td>Indiana Affiliate</td>
<td>Peter Slade</td>
</tr>
<tr>
<td>Food Safety Handbook</td>
<td>John Wiley & Sons</td>
<td>Paul Hall</td>
</tr>
<tr>
<td>Kansas Artifacts Glass Etching</td>
<td>Kansas Affiliate</td>
<td>Kristina Barlow</td>
</tr>
<tr>
<td>A Taste of Ohio Cookbook</td>
<td>Kathy Haviland Jones</td>
<td>Shelagh McDonagh</td>
</tr>
<tr>
<td>Bourbon Balls</td>
<td>Kentucky Affiliate</td>
<td>Steve Murphy</td>
</tr>
<tr>
<td>Maker's Mark Bourbon Whiskey</td>
<td>Kentucky Affiliate</td>
<td>Brian Heldt</td>
</tr>
<tr>
<td>Maker's Mark Gourmet Sauce</td>
<td>Kentucky Affiliate</td>
<td>Christina Collins</td>
</tr>
<tr>
<td>Oscar Mayer Weiner Mobile</td>
<td>Kraft Foods</td>
<td>Frank Leonardo</td>
</tr>
<tr>
<td>Oscar Mayer Weiner Mobile</td>
<td>Kraft Foods</td>
<td>Dave Larson</td>
</tr>
<tr>
<td>Oscar Mayer Weiner Mobile</td>
<td>Kraft Foods</td>
<td>Dave Larson</td>
</tr>
<tr>
<td>Oscar Mayer Weiner Mobile</td>
<td>Margaret Burton</td>
<td>Nobi Tanaka</td>
</tr>
<tr>
<td>IAFP New Orleans Towels</td>
<td>Margaret Burton</td>
<td>Henry Atherton</td>
</tr>
<tr>
<td>IAFP New Orleans Towels</td>
<td>Metropolitan Affiliate</td>
<td>Wilbur Feagan</td>
</tr>
<tr>
<td>Ultimate Garden State Gift Basket</td>
<td>Michigan Affiliate</td>
<td>Ewen Todd</td>
</tr>
<tr>
<td>Copper Sculpture of Michigan Wildflower</td>
<td>Missouri Affiliate</td>
<td>Wilbur Feagan</td>
</tr>
<tr>
<td>Country Cured Ham Basket</td>
<td>New York State Affiliate</td>
<td>Kathy Bernard</td>
</tr>
<tr>
<td>Cornell Cow with Coffee Mugs</td>
<td>New York State Affiliate</td>
<td>Kathleen O'Donnell</td>
</tr>
<tr>
<td>Cornell University Dairy Shirt</td>
<td>Ohio Affiliate</td>
<td>Tim Larson</td>
</tr>
<tr>
<td>Tranquil Sounds Stress Relief Clock</td>
<td>Ontario Affiliate</td>
<td>Jimmy Young</td>
</tr>
<tr>
<td>Laser Etch/Works</td>
<td>Ontario Affiliate</td>
<td>Paul Hall</td>
</tr>
<tr>
<td>Ontario Ice Wine</td>
<td>Ontario Affiliate</td>
<td>Indaue Mello</td>
</tr>
<tr>
<td>Ontario Ice Wine</td>
<td>Ontario Affiliate</td>
<td>Jack Guzewich</td>
</tr>
<tr>
<td>Penn State Sweatshirt</td>
<td>Ontario Affiliate</td>
<td>Vickie Lewandowski</td>
</tr>
<tr>
<td>Intriskillun Ice Wine</td>
<td>Pennsylvania Affiliate</td>
<td>Indaue Mello</td>
</tr>
<tr>
<td>Thirty Bench Ice Wine</td>
<td>Schneider Foods Canada</td>
<td>Deborah Hoyt</td>
</tr>
<tr>
<td>McCormick's Spice Rack</td>
<td>Schneider Foods Canada</td>
<td>Fred Reimers</td>
</tr>
<tr>
<td>5 TAP Series' Food Safety Manager Certification Training</td>
<td>Southern California Affiliate</td>
<td>Ryan Galasso</td>
</tr>
<tr>
<td>5 Tap Series' NSF International HACCP Manager Training Programs</td>
<td>TAP Series</td>
<td></td>
</tr>
<tr>
<td>Texas Wine from HE Food Central Market</td>
<td>TAP Series</td>
<td></td>
</tr>
<tr>
<td>Six Nation Rugby Shirt</td>
<td>Texas Affiliate</td>
<td>Mike Doyle</td>
</tr>
<tr>
<td>4 - One-day Theme Park Tickets</td>
<td>United Kingdom Affiliate</td>
<td>Ewen Todd</td>
</tr>
<tr>
<td>3-Month “Cheese of the Month” Membership</td>
<td>Walt Disney World Co.</td>
<td>Joe Furuie</td>
</tr>
<tr>
<td>Breyer Holstein Cow Model #02</td>
<td>Washington Affiliate</td>
<td>Lori Ledenbach</td>
</tr>
<tr>
<td>Chia Cow</td>
<td>Weber Scientific</td>
<td>Kathy Bernard</td>
</tr>
<tr>
<td>Divco 1950 Milk Delivery Truck Bank</td>
<td>Weber Scientific</td>
<td>Dawn Birt</td>
</tr>
<tr>
<td>Harley Davidson 100th Anniversary T-Shirt</td>
<td>Weber Scientific</td>
<td>Robert Smith</td>
</tr>
<tr>
<td>Harley Davidson 100th Anniversary Visor</td>
<td>Weber Scientific</td>
<td>Brian Heldt</td>
</tr>
<tr>
<td>Harley Davidson Coffee Mugs, Biker Brew Coffee Carister</td>
<td>Wisconsin Affiliate</td>
<td>Tom Schwarz</td>
</tr>
<tr>
<td>Inspector T-Shirt</td>
<td>Wisconsin Affiliate</td>
<td>Don Breiner</td>
</tr>
<tr>
<td>Lionel Electric Train</td>
<td>Wisconsin Affiliate</td>
<td>Anna Lammerding</td>
</tr>
<tr>
<td></td>
<td>Wisconsin Affiliate</td>
<td>Gordon Mowat</td>
</tr>
<tr>
<td></td>
<td>Wyoming Affiliate</td>
<td>Nick Nickelson</td>
</tr>
</tbody>
</table>

Raised $4,605.50
The International Association for Food Protection welcomes your nominations for our Association Awards. Nominate your colleagues for one of the Awards listed below. You do not have to be an IAFP Member to nominate a deserving professional. To request nomination criteria, contact:

International Association for Food Protection
6200 Aurora Ave., Suite 200W
Des Moines, Iowa 50322-2864
Phone: 800.369.6337; 515.276.3344
Fax: 515.276.8655
Web site: www.foodprotection.org
E-mail: info@foodprotection.org

Nominations deadline is March 15, 2004. You may make multiple nominations. All nominations must be received at the IAFP office by March 15, 2004.

♦ Persons nominated for individual awards must be current IAFP Members. Black Pearl Award nominees must be companies employing current IAFP Members. NFPA Food Safety Award nominees do not have to be IAFP Members.

♦ Previous award winners are not eligible for the same award.

♦ Executive Board Members and Awards Committee Members are not eligible for nomination.

♦ Presentation of awards will be during the Awards Banquet at IAFP 2004 – the Association’s 91st Annual Meeting in Phoenix, Arizona on August 11, 2004.
Nominations will be accepted for the following Awards:

Black Pearl Award — Award Showcasing the Black Pearl

Presented in recognition of a company's outstanding achievement in corporate excellence in food safety and quality.

Sponsored by Wilbur Feagan and F&H Food Equipment Company

Fellow Award — Distinguished Plaque

Presented to Member(s) who have contributed to IAFP and its Affiliates with quiet distinction over an extended period of time.

Honorary Life Membership Award — Plaque and Lifetime Membership in IAFP

Presented to Member(s) for their devotion to the high ideals and objectives of IAFP and for their service to the Association.

Harry Haverland Citation Award — Plaque and $1,000 Honorarium

Presented to an individual for years of devotion to the ideals and objectives of IAFP.

Sponsored by Silliker Inc.

Harold Barnum Industry Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the food industry.

Sponsored by Nasco International, Inc.

Educator Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the arena of education in food safety and food protection.

Sponsored by Nelson-Jameson, Inc.

Sanitarian Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the profession of the Sanitarian.

Sponsored by Ecolab, Inc., Food and Beverage Division

Maurice Weber Laboratorian Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding contributions in the laboratory, recognizing a commitment to the development of innovative and practical analytical approaches in support of food safety.

Sponsored by Weber Scientific

International Leadership Award — Plaque, $1,000 Honorarium and Reimbursement to attend IAFP 2004

Presented to an individual for dedication to the high ideals and objectives of IAFP and for promotion of the mission of the Association in countries outside of the United States and Canada.

Sponsored by Unilever, Safety and Environmental Assurance Centre

NFPA Food Safety Award — Plaque and $3,000 Honorarium

This Award alternates between individuals and groups or organizations. In 2004, the award will be presented to a group or organization in recognition of a long history of outstanding contributions to food safety research and education.

Sponsored by National Food Processors Association
Call for Abstracts

IAFP 2004
The Association’s 91st Annual Meeting
August 8–11, 2004
Phoenix, Arizona

General Information

1. Complete the Abstract Submission Form.
2. All presenters must register for the Annual Meeting and assume responsibility for their own transportation, lodging, and registration fees.
3. There is no limit on the number of abstracts registrants may submit. However, presenters must present their presentations.
4. Accepted abstracts will be published in the Program and Abstract Book. Editorial changes will be made to accepted abstracts at the discretion of the Program Committee.
5. Photocopies of the abstract form may be used.

Instructions for Preparing Abstracts

1. Title — The title should be short but descriptive. The first letter in each word in the title and proper nouns should be capitalized.
2. Authors — List all authors using the following style: first name followed by the surname.
3. Presenter Name & Title — List the full name and title of the person who will present the paper.
4. Presenter Address — List the name of the department, institution and full postal address (including zip/postal code and country).
5. Phone Number — List the phone number, including area, country, and city codes of the presenter.
6. Fax Number — List the fax number, including area, country, and city codes of the presenter.
7. E-mail — List the E-mail address for the presenter.
8. Format preferred — Check the box to indicate oral or poster format. The Program Committee makes the final decision on the format of the abstract.
9. Category — Check the box to indicate which category best fits the subject of the abstract.
10. Developing Scientist Awards Competitions — Check the box to indicate if the paper is to be presented by a student in this competition. A signature and date is required from the major professor or department head. See “Call for Entrants in the Developing Scientist Awards Competitions.”
11. Abstract — Type abstract, double-spaced, in the space provided or on a separate sheet of paper, using a 12-point font size. Use no more than 250 words.
Abstract Submission

Abstracts submitted for IAFP 2004 will be evaluated for acceptance by the Program Committee. Please be sure to follow the format instructions above carefully; failure to do so may result in rejection. Information in the abstract data must not have been previously published in a copyrighted journal.

Abstracts must be received no later than January 5, 2004. Return the completed abstract form through one of the following methods:

1. Online: Use the online abstract submission form located at www.foodprotection.org. You will receive an E-mail confirming receipt of your submission.
2. E-mail: Submit via E-mail as an attached text or MS Word document to abstracts@foodprotection.org.

Selection Criteria

1. Abstracts must accurately and briefly describe:
 (a) the problem studied and/or objectives;
 (b) methodology;
 (c) essential results; and
 (d) conclusions and/or significant implications.

2. Abstracts must report the results of original research pertinent to the subject matter. Papers should report the results of applied research on: food, dairy and environmental sanitation; foodborne pathogens; food and dairy microbiology; food and dairy engineering; food and dairy chemistry; food additives and residues; food and dairy technology; food service and food administration; quality assurance/control; mastitis; environmental health; waste management and water quality. Papers may also report subject matter of an educational and/or nontechnical nature.

3. Research must be based on accepted scientific practices.
4. Research should not have been previously presented nor intended for presentation at another scientific meeting. Papers should not appear in print prior to the Annual Meeting.
5. Results should be summarized. Do not use tables or graphs.

Projected Deadlines/Notification

Contact Information

Questions regarding abstract submission can be directed to Bev Brannen, 515.276.3344 or 800.369.6337; E-mail: bbrannen@foodprotection.org.

Program Chairperson

Gary Acuff
Texas A & M University
Department of Animal Science
2471 TAMU
College Station, TX 77843-2471
Phone: 979.845.4402
Fax: 979.845.9354
E-mail: gacuff@tamu.edu
Abstract Form
DEADLINE: Must be Received by January 5, 2004

(1) Title of Paper __

(2) Authors __

(3) Full Name and Title of Presenter __

(4) Institution and Address of Presenter _______________________________________

(5) Phone Number __

(6) Fax Number ___

(7) E-mail ___

(8) Format preferred: □ Oral □ Poster □ No Preference

The Program Committee will make the final decision on presentation format.

(9) Category: □ Produce □ Foods of Animal Origin □ Seafood □ Other Food Commodities

 □ Risk Assessment □ Education □ General Microbiology and Sanitation

 □ Antimicrobials □ Pathogens

(10) Developing Scientist Awards Competition □ Yes Graduation date________________

 Major Professor/Department Head approval (signature and date)________________

(11) TYPE abstract, DOUBLE-SPACED, in the space provided or on a separate sheet of paper, using a 12-point font size. Use no more than 250 words.
Call for Entrants in the
Developing Scientist Awards Competitions

Supported by the International Association for Food Protection Foundation

The International Association for Food Protection is pleased to announce the continuation of its program to encourage and recognize the work of students and recent graduates in the field of food safety research. Qualified individuals may enter either the oral or poster competition.

Purpose
1. To encourage students and recent graduates to present their original research at the Annual Meeting.
2. To foster professionalism in students and recent graduates through contact with peers and professional Members of the Association.
3. To encourage participation by students and recent graduates in the Association and the Annual Meeting.

Presentation Format
Oral Competition - The Developing Scientist Oral Awards Competition is open to graduate students (enrolled or recent graduates) from M.S. or Ph.D. programs or undergraduate students at accredited universities or colleges. Presentations are limited to 15 minutes, which includes two to four minutes for discussion.

Poster Competition - The Developing Scientist Poster Awards Competition is open to students (enrolled or recent graduates) from undergraduate or graduate programs at accredited universities or colleges. The presenter must be present to answer questions for a specified time (approximately two hours) during the assigned session. Specific requirements for presentations will be provided at a later date.

General Information
1. Competition entrants cannot have graduated more than a year prior to the deadline for submitting abstracts.
2. Accredited universities or colleges must deal with environmental, food or dairy sanitation, protection or safety research.
3. The work must represent original research completed and presented by the entrant.
4. Entrants may enter only one paper in either the oral or poster competition.
5. All entrants must register for the Annual Meeting and assume responsibility for their own transportation, lodging, and registration fees.
6. Acceptance of your abstract for presentation is independent of acceptance as a competition finalist. Competition entrants who are chosen as finalists will be notified of their status by the chairperson by May 28, 2004.
7. All entrants with accepted abstracts will receive a complimentary, one-year Student Membership. This membership will entitle you to receive JFP Online.
8. In addition to adhering to the instruction in the “Call for Abstracts,” competition entrants must check the box to indicate if the paper is to be presented by a student in this competition. A signature and date is required from the major professor or department head.

Judging Criteria
A panel of judges will evaluate abstracts and presentations. Selection of up to five finalists for each competition will be based on evaluations of the abstracts and the scientific quality of the work. All entrants will be advised of the results by May 28, 2004. Only competition finalists will be judged at the Annual Meeting and will be eligible for the awards.

Judging criteria will be based on the following:
1. Abstract - clarity, comprehensiveness and conciseness.
2. Scientific Quality - Adequacy of experimental design (methodology, replication, controls), extent to which objectives were met, difficulty and thoroughness of research, validity of conclusions based upon data, technical merit and contribution to science.
3. Presentation - Organization (clarity of introduction, objectives, methods, results and conclusions), quality of visuals, quality and poise of presentation, answering questions, and knowledge of subject.

Finalists
Awards will be presented at the International Association for Food Protection Annual Meeting Awards Banquet to the top three presenters (first, second and third places) in both the oral and poster competitions. All finalists are expected to be present at the banquet where the awards winners will be announced and recognized.

Awards
First Place - $500 and an engraved plaque
Second Place - $300 and a framed certificate
Third Place - $100 and a framed certificate
Award winners will receive a complimentary, one-year Student Membership including Food Protection Trends, Journal of Food Protection, and JFP Online.
Policy on Commercialism
for Annual Meeting Presentations

1. INTRODUCTION

No printed media, technical sessions, symposia, posters, seminars, short courses, and/or other related types of forums and discussions offered under the auspices of the International Association for Food Protection (hereafter referred to as Association forums) are to be used as platforms for commercial sales or presentations by authors and/or presenters (hereafter referred to as authors) without the express permission of the staff or Executive Board. The Association enforces this policy in order to restrict commercialism in technical manuscripts, graphics, oral presentations, poster presentations, panel discussions, symposia papers, and all other type submissions and presentations (hereafter referred to as submissions and presentations), so that scientific merit is not diluted by proprietary secrecy. Excessive use of brand names, product names or logos, failure to substantiate performance claims, and failure to objectively discuss alternative methods, processes, and equipment are indicators of sales pitches. Restricting commercialism benefits both the authors and recipients of submissions and presentations.

This policy has been written to serve as the basis for identifying commercialism in submissions and presentations prepared for the Association forums.

2. TECHNICAL CONTENT OF SUBMISSIONS AND PRESENTATIONS

2.1 Original Work

The presentation of new technical information is to be encouraged. In addition to the commercialism evaluation, all submissions and presentations will be individually evaluated by the Program Committee chairperson, technical reviewers selected by the Program Committee chairperson, session convenor, and/or staff on the basis of originality before inclusion in the program.

2.2 Substantiating Data

Submissions and presentations should present technical conclusions derived from technical data. If products or services are described, all reported capabilities, features or benefits, and performance parameters must be substantiated by data or by an acceptable explanation as to why the data are unavailable (e.g., incomplete, not collected, etc.) and, if it will become available, when. The explanation for unavailable data will be considered by the Program Committee chairperson and/or technical reviewers selected by the Program Committee chairperson to ascertain if the presentation is acceptable without the data. Serious consideration should be given to withholding submissions and presentations until the data are available, as only those conclusions that might be reasonably drawn from the data may be presented. Claims of benefit and/or technical conclusions not supported by the presented data are prohibited.

2.3 Trade Names

Excessive use of brand names, product names, trade names, and/or trademarks is forbidden. A general guideline is to use proprietary names once and thereafter to use generic descriptors or neutral designations. Where this would make the submission or presentation significantly more difficult to understand, the Program Committee chairperson, technical reviewers selected by the Program Committee chairperson, session convenor, and/or staff, will judge whether the use of trade names, etc., is necessary and acceptable.

2.4 "Industry Practice" Statements

It may be useful to report the extent of application of technologies, products, or services; however, such statements should review the extent of application of all generically similar technologies, products, or services in the field. Specific commercial installations may be cited to the extent that their data are discussed in the submission or presentation.

2.5 Ranking

Although general comparisons of products and services are prohibited, specific generic comparisons that are substantiated by the reported data are allowed.

2.6 Proprietary Information (See also 2.2.)

Some information about products or services may not be publishable because it is proprietary to the author's agency or company or to the user. However, the scientific principles and validation of performance parameters must be described for such products or services. Conclusions and/or comparisons may be made only on the basis of reported data.

2.7 Capabilities

Discussion of corporate capabilities or experiences are prohibited unless they pertain to the specific presented data.
3. GRAPHICS

3.1 Purpose

Slides, photographs, videos, illustrations, art work, and any other type visual aids appearing with the printed text in submissions or used in presentations (hereafter referred to as graphics) should be included only to clarify technical points. Graphics which primarily promote a product or service will not be allowed. (See also 4.6.)

3.2 Source

Graphics should relate specifically to the technical presentation. General graphics regularly shown in, or intended for, sales presentations cannot be used.

3.3 Company Identification

Names or logos of agencies or companies supplying goods or services must not be the focal point of the slide. Names or logos may be shown on each slide so long as they are not distracting from the overall presentation.

3.4 Copies

Graphics that are not included in the preprint may be shown during the presentation only if they have been reviewed in advance by the Program Committee chairperson, session convenor, and/or staff, and have been determined to comply with this policy. Copies of these additional graphics must be available from the author on request by individual attendees. It is the responsibility of the session convenor to verify that all graphics to be shown have been cleared by Program Committee chairperson, session convenor, staff, or other reviewers designated by the Program Committee chairperson.

4. INTERPRETATION AND ENFORCEMENT

4.1 Distribution

This policy will be sent to all authors of submissions and presentations in the Association forums.

4.2 Assessment Process

Reviewers of submissions and presentations will accept only those that comply with this policy. Drafts of submissions and presentations will be reviewed for commercialism concurrently by both staff and technical reviewers selected by the Program Committee chairperson. All reviewer comments shall be sent to and coordinated by either the Program Committee chairperson or the designated staff. If any submissions are found to violate this policy, authors will be informed and invited to resubmit their materials in revised form before the designated deadline.

4.3 Author Awareness

In addition to receiving a printed copy of this policy, all authors presenting in a forum will be reminded of this policy by the Program Committee chairperson, their session convenor, or the staff, whichever is appropriate.

4.4 Monitoring

Session convenors are responsible for ensuring that presentations comply with this policy. If it is determined by the session convenor that a violation or violations have occurred or are occurring, he or she will publicly request that the author immediately discontinue any and all presentations (oral, visual, audio, etc.) and will notify the Program Committee chairperson and staff of the action taken.

4.5 Enforcement

While technical reviewers, session convenors, and/or staff may all check submissions and presentations for commercialism, ultimately it is the responsibility of the Program Committee chairperson to enforce this policy through the session convenors and staff.

4.6 Penalties

If the author of a submission or presentation violates this policy, the Program Committee chairperson will notify the author and the author’s agency or company of the violation in writing. If an additional violation or violations occur after a written warning has been issued to an author and his agency or company, the Association reserves the right to ban the author and the author’s agency or company from making presentations in the Association forums for a period of up to two (2) years following the violation or violations.
Thank you for your support of the Foundation Fund!

- Ulf Ahlin
- Jean E. Anderson
- Tom Angstadt
- Henry V. Atherton
- Kristina E. Barlow
- Michael B. Bayoud
- Harold Bengsch
- Reginald W. Bennett
- Dane Bernard
- Dawn M. Birt
- Barbara Blakistone
- Robert E. Brackett
- A. Richard Brazis
- Don M. Breiner
- Michael H. Brodsky
- Robert W. Brooks
- William L. Brown
- V. R. Carlson
- Ron Case
- Barbara Cassens
- Donna M. Christensen
- Warren S. Clark, Jr.
- Dean O. Oliver
- Larry Cohen
- Christina E. Collins
- Joe Cordray
- Randall Daggs
- J. De Smedt
- Ed Donnelly
- Joseph Donnell
- Warren Dorsa
- Michael P. Doyle
- Albert Espinoza
- Jeffrey M. Farber
- Wilbur S. Feagan
- Eugene Frey
- Joe Furuike
- Ryan Galasso
- Santos Garcia-Alvarado
- Donna M. Garren
- Kathleen A. Glass
- Leon G. M. Gorris
- Richard F. Graham
- Jack Guzewich
- Paul A. Hall
- Paul Ham
- Dan Hamill
- Linda J. Harris
- Alice A. Haverland
- Harry Haverland
- Brian K. Heldt
- Norma L. Heredia
- Manuela Hernandez-Herrero
- Virginia N. Hillers
- Archie Holliday
- Deborah L. Hoyt
- William T. Huntley
- Kenji Ishi
- LeeAnne Jackson
- Dong K. Jeong
- Sue Jewell
- Beth M. Johnson
- Pat Johnson
- Susan M. Jones
- Fumiko Kasuga
- Mary A. Kegel
- Patrick M. Killorin
- Melvin N. Kramer
- Glen Kurtz
- William LaGrange
- Anna M. Lammerding
- Dave Larson
- Loralyn Ledenbach
- Frank P. Leonardo
- Vickie Lewanski
- Ernst Luecker
- Ricardo Fabian Luna
- Elizabeth A. MacDougall
- Douglas L. Marshall
- Joan Maxwell
- Shelagh McDonagh
- Tom McMeekin
- Lynn McMullen
- Indaue G. Mello
- Lydia Mota De La Garza
- Gordon C. Mowat
- Steven C. Murphy
- Gail E. Murray
- Gabriela Najera-Sanchez
- David H. Nash
- Ranzell Nickelson II
- Jun Nishib
- Servé Notermans
- Kathleen O'Donnell
- David K. Park
- Anthony T. Pavel
- Gregory J. Phillips
- Helen M. Piotter
- Constantinos Pirollocs
- Howard O. Popoola
- Charles Price
- Gale Prince
- Kailash S. Purohit
- Vincent J. Radke
- K. T. Rajkowski
- Agustin M. Ramos Piza
- Joan C. Redder
- Fred Reimers
- Gerald P. Ruth
- Hidetoshi Sakai
- Robert L. Sanders
- Allen R. Sayler
- Thomas L. Schwarz
- Jenny Scott
- Gail C. Seed
- Shlomo Sela
- Peter J. Slade
- Robert W. Smith
- Joseph M. Smucker
- O. Peter Snyder
- Nikolaos D. Soultos
- Grace Steinke
- Richard F. Stier
- Katherine Swanson
- Gloria I. Swick-Brown
- Hong Liong Tan
- Nobumasa Tanaka
- David W. Tharp
- Donald W. Thayer
- Ewen Todd
- R. B. Tompkin
- Leon Townsend
- Fred Weber
- Richard C. Whiting
- Frank Yiannas
- Shan Young
- Palmer D. Zottola
- Florida Association for Food Protection
- Kraft Foods, Inc.

The above list represents individual contributors to the Association Foundation Fund during the period August 1, 2002 through August 31, 2003. In addition, a portion of the Sustaining Member dues are allocated to support this Fund. Your contribution is welcome. Call the Association office at 800.369.6337 or 515.276.3344 for more information on how you can support the Foundation.
NEW MEMBERS

CANADA
- **Emmannuelle Archambault**
 3M Canada
 London, Ontario

ISRAEL
- **Ronit Ben Avraham**
 Milouda Laboratories
 Mobile Industrial Area

MEXICO
- **Fausto Tejeda-Trujillo**
 B.U.A.P.
 Puebla, Puebla

SPAIN
- **Manuel Auiros Asensio**
 Universidad Complutence De Madrid
 Jose Antonio, Madrid

UNITED STATES
- **Arizona**
 - **Joyce E. McCluskey**
 La Paz County Health, Parker

- **California**
 - **Barbara Dunlap**
 CCI, Vernon
 - **Patricia L. White**
 USDA/FSIS
 Sacramento

- **Connecticut**
 - **Gladys R. Correa**
 Bratus Analytical
 Manchester

- **District of Columbia**
 - **Faye T. Bresler**
 USDA/FSIS
 Washington

- **Illinois**
 - **Armando Melendez**
 Nestlé
 Franklin Park
 - **Charles A. Kennett**
 Kraft Foods, Inc., Glenview

- **Iowa**
 - **Sam E. Beattie**
 Iowa State University, Ames

- **Minnesota**
 - **Scott Morrison**
 Provesta, Hutchinson

- **Missouri**
 - **Robert L. Brooks**
 Willow Brook Foods
 Springfield

New York
- **Howard J. VanBuren**
 Chr. Hansen, Inc.
 Canandaigua

North Carolina
- **Bryn Adams**
 University of North Carolina
 Charlotte

- **Bart Campbell**
 NC Dept. of Environment & Natural Resources
 Raleigh

- **Glenda G. Smith**
 The Wizard’s Cauldron
 Yanceyville

Ohio
- **Joe L. Evans**
 Richland County Health
 Mansfield

Pennsylvania
- **Kira J. Batorski**
 Berks Packing Co., Inc.
 Reading

Virginia
- **Stephen G. Campano**
 Protein Sales, Inc.
 Ashland

Washington
- **Joe Frazier**
 National Food Processors Association
 Seattle
3-A Sanitary Standards Announces New Director, Technical Affairs

3-A Sanitary Standards, Inc. announces the appointment of Mr. Nathaniel (Nate) Wall to serve as director, technical affairs for 3-A SSI. Nate will be responsible for overseeing the modernization of the 3-A Standards development process and managing the technical affairs of 3-A SSI.

In his new position, Nate will play a key role in managing the vital new services and programs of 3-A SSI. These activities include liaison to the 3-A SSI standards committees/task groups, supervision of the new Third Party Verification (TPV) program and related support for the 3-A symbol program. Nate will also maintain liaison with food industry regulatory agencies including USDA, FDA, state regulatory bodies and other standards development organizations.

Prior to joining 3-A SSI, Nate served as director, technical services for the Outdoor Power Equipment Institute (OPEI) in Alexandria, VA where he directed technical programs and safety standards development for the outdoor power equipment industry. He managed the ANSI Committees that develop outdoor power equipment safety standards using the ANSI canvass method and he managed member voting for the US position on draft ISO (international) standards. Nate also directed the publishing of technical documentation and reports, wrote technical articles for the newsletter, represented the association in public forums and at technical conferences, and developed technical conference programs and educational sessions.

Before joining OPEI, Nate was manager, technical programs, for the Environmental Industry Associations (EIA), the association for the waste and recycling industry. He managed development of ANSI equipment safety and design compatibility standards, published technical documentation and reports, wrote technical articles for the newsletter, developed industry consensus positions and comments on regulatory proceedings and developed budgets for the technical program.

Nate brings other broad, high quality experience in standards development under various ANSI processes, technology expertise, and a substantial background in the development of equipment standards to the mission of 3-A SSI. He holds a B.S. degree in operations research from George Mason University in Fairfax, VA.

Stone Elected IFT President-Elect

Herbert Stone, Ph.D., president of the food marketing research and consulting firm Tragon Corp., has been elected president-elect of the Institute of Food Technologists (IFT) as determined by a vote of its members.

Stone earned his bachelor's and master's degrees from University of Massachusetts and doctorate from the University of California at Davis. He has served as department chair of Stanford Research Institute and was co-founder and president of Etel Inc.

Joseph O'Donnell Named President of ADSA Board

Joseph O'Donnell, executive director of the California Dairy Research Foundation was elected president of the American Dairy Science Association’s (ADSA) board of directors at their annual meeting in Phoenix, AZ.

O'Donnell will serve as president for the 2003-04 term. He will work with the ADSA executive team of vice president, Mike Hutjens of the University of Illinois and past president Dave Beede of Michigan State University.

O'Donnell said his goals during his tenure include reaching out to non-traditional members and expanding the relevancy of the association to the industry.
Murano Announces Office of New Technology at Food Inspection Agency

U.S. Department of Agriculture Under Secretary for Food Safety Dr. Elsa Murano has announced the establishment of the New Technology Office to be based within the Food Safety and Inspection Service (FSIS). FSIS reviews new technologies that companies employ to ensure that their use is consistent with Agency regulations and that they will not adversely affect product safety, inspection procedures, or the safety of FSIS inspectors. Although companies are not required to submit new technologies for FSIS review, Murano said that companies would benefit from doing so because they can avoid delays to their operations.

Murano said that one of the reasons that the New Technology Office was created was to streamline the implementation of new technologies in a plant’s operations and reduce the amount of time it takes the agency to review safe new technologies. “The combination of science and new technologies offers endless possibilities for success in our fight against foodborne illness,” she said. The New Technology Office will place greater emphasis on encouraging the use of new technologies that can help reduce pathogens on meat and poultry products,” said Murano. The New Technology Office will incorporate the functions of FSIS’ Technology Program Development Staff. The New Technology Office will manage the review process for experimental protocols for studies conducted by industry, in addition to handling the assessments related to new uses of approved substances and labeling considerations for these technologies.

To increase the pool of new technology submissions, the New Technology Office will also work closely with academic researchers who are affiliated with USDA’s Cooperative State Research, Education and Extension Service. In Fiscal Year 2003, $500,000 was allocated in order to facilitate the adaptation of new technologies in small meat and poultry plants.

In addition, the New Technology Office will soon launch a Web site that will provide summaries of the new technologies under review along with their approval status and allow interested groups to learn more about how to have their products or ideas considered.

In the interim, FSIS has established an e-mail address, www.FSIS-Technology@fsis.usda.gov, to encourage the expanded use of new technologies by allowing interested parties to submit their information on-line. New technologies have resulted in significant improvements in the safety of meat and poultry in recent years. Steam vacuums, steam pasteurization and antimicrobials are all examples of advances in food safety technology that have occurred.

The document, which is available www.fsis.usda.gov, identifies several strategies to improve the safety of the US food supply including programs to improve workforce training, best management practices and risk analysis coordination as well as a comprehensive food safety research agenda.

Bray to Depart IAFIS; Board to Conduct Search for New President

The IAFIS Board of Directors is launching a search for a new association president in light of IAFIS President Charlie Bray’s recent announcement that he will leave the association on November 7 for another opportunity.

Bray, who will become the head of a new non-profit consulting arm at the business consulting firm of RSM McGladrey, says “I have enjoyed a marvelous six years at IAFIS and have had the privilege of working with some truly outstanding people. I have experienced success and challenge during my tenure here and have grown both personally and professionally as a result of it. For that, I am truly grateful. However, I leave now for an opportunity that uniquely fits my wants and needs at this stage in my career that, quite simply, is too good to pass up.”

During his six-year tenure, Bray oversaw a period of great change at IAFIS, including the implementation of the IAFIS Board of Directors’ 1997 strategic plan, which redirected the association’s efforts toward bringing food industry buyers and sellers together; the expansion of the Worldwide Food Expo trade show, including building relationships with key trade association partners and the recruitment of new partners to expand the show’s attendance base; and the successful formation and launch of 3-A Sanitary Standards, Inc., as an independent entity.

Lactoferrin Considered Safe to Fight E. coli

FDA has announced that aLF Ventures, Salt Lake City, UT, has consulted with the agency about aLF Ventures’ plans to market lactoferrin, a component of an antimicrobial spray. This spray can be applied to uncooked beef carcasses to fight E. coli O157:H7, an organism that can cause severe gastrointesti-
nal disease in humans. FDA informed aLF Ventures that it does not question their decision to market lactoferrin, an antimicrobial protein found in cow’s milk and beef.

Although aLF Ventures was not required to seek approval from FDA before it marketed lactoferrin, aLF Ventures provided FDA scientific data supporting the firm’s conclusion that lactoferrin is “generally recognized as safe” (GRAS) and safe for the general population as well as for individuals who are allergic to milk.

“Innovative technology is a critical building block in preserving the strong foundation of the US food supply,” said Dr. Lester Crawford, deputy commissioner of the Food and Drug Administration. “We must continue to encourage scientific research and new technology to maintain this nation’s safe food supply.”

A substance used in food can be GRAS if its safety has been established by generally available scientific data and information that lead qualified experts to conclude that the use of the ingredient is safe for its proposed use.

In its notice submitted to FDA, aLF Ventures noted that the amount of added lactoferrin that remains on the beef after spraying is comparable to the amount of lactoferrin that is naturally occurring in the beef. aLF Ventures also submitted data to the US Department of Agriculture (USDA) regarding the effectiveness of lactoferrin against E. coli O157:H7. USDA is the agency responsible for addressing labeling issues with lactoferrin-treated beef.

The Joy of Giving Food Safely

When the holidays roll around, people often enjoy sending home-prepared food gifts to loved ones and friends. Many time-crunched consumers opt for the convenience of mail order food items. Whichever is the case, the same rules apply for safely sending perishable food items through the mail. Whenever possible, send foods that do not require refrigeration, such as hard salami, hard cheese or country ham. When sending perishable foods, transit time and a cold source are key factors. The Food Safety Inspection Service (FSIS) offers the following guidelines for mailing perishable foods.

Make sure that perishable items, like meat or poultry, are sent cold or frozen and packed with a cold source, such as frozen gel packs. If dry ice is used, warn the recipient by writing “Contains Dry Ice” on the outside of the box. Both the item and the outer package should be labeled “Keep Refrigerated” to alert the recipient.

Items should be packed in a sturdy box, sealed with recommended packing tape and clearly labeled with a permanent marker, making sure the address is complete and correct.

It is best to specify overnight delivery and notify the recipient of its expected arrival. Do not send packages to business addresses or where there will not be adequate refrigerator storage.

Send packages early in the week, so they do not sit in the post office or mailing facility over the weekend. When receiving a perishable food item, open it immediately and check its temperature. The food should arrive frozen or partially frozen with ice crystals still visible. Even if a product is smoked, cured and/or fully cooked, it still is a perishable product and must be kept cold. If perishable food arrives warm, notify the company. Do not consume the food. Do not even taste suspect food.

A very useful chart that outlines the length of time perishable foods can safely be stored, based on the condition of the food item upon arrival, can be downloaded from the FSIS Web site.

Additionally, a consumer flyer with tips for safely mailing and receiving perishable food gifts is available online. One may contact the USDA Meat and Poultry Hotline at 800.535.4555 for questions regarding meat, poultry and egg products. The FDA Outreach and Information Center can be contacted at 888.723.3366 regarding any foods other than meat, poultry and egg products.

FSIS Pathogen Reduction and HACCP Programs

FSIS is providing training to reinforce the understanding of how to perform food safety duties. The training — Food Safety Regulatory Essentials Training (FSRE) — is based on the recently issued FSIS Directive 5000.1, Revision 1, Verifying an Establishment’s Food Safety System. The directive outlines the full range of inspection responsibilities in relation to the HACCP/Pathogen Reduction regulation. In addition, it incorporates all recent Agency issuances (Directives, notices) related to these topics.

Unlike the initial HACCP training, the FSRE training is tailored to an inspector’s assignment. All persons receiving the training get the foundation training and customized training. The foundation training covers the Rules of Practice; Sanitation Performance Standards; and Sanitation Standard Operating Procedures. The customized training covers HACCP verification; Pathogen Reduction; and food safety sampling. Inspectors assigned to establishments producing products...
An Outbreak of Campylobacter jejuni Infection among Conference Delegates

Campylobacter infection is one of the most commonly reported foodborne diseases in Australia and overseas. The majority of cases are reported to be sporadic, with outbreaks rarely detected. Factors contributing to the relative infrequency of Campylobacter outbreaks have been discussed elsewhere and include the nature of the organism and its epidemiology, lack of follow-up of Campylobacter infections and lack of detailed strain characterization. Reported outbreaks have been associated with a point source such as contaminated drinking water, raw milk and chicken. This article describes the epidemiological, microbiological and environmental investigation of an outbreak of Campylobacter jejuni among delegates attending an international meeting in South Australia during May 2001.

Spanish Listeria Video and Booklet Available

The Department of Food Science at Pennsylvania State University is pleased to announce the availability of a Spanish video and accompanying booklet entitled Control de Listeria monocytogenes en pequenas planta procesadoras de carnes y aves?

This 26-minute video and 24-page booklet address a variety of issues facing meat processors who must meet revised regulations concerning Listeria monocytogenes in ready-to-eat meats. The topics covered in the video and booklet include personal hygiene, sanitation, biofilms, cross contamination, in-plant sampling, and microbiological testing.

If you are an educator interested in purchasing the video, please contact Dr. Catherine Cutter directly (see information below). Meat processors should contact American Association of Meat Processors (www.aamp.com) for a copy of the materials.

For more information concerning the video or booklet, please contact: Dr. Catherine Cutter, Food Safety Extension Specialist–Muscle Foods, Department of Food Science, Penn State University, phone 814.865.8862; E-mail: cnc3@psu.edu.

Increase in Salmonella Enteritidis Outbreaks in England and Wales

Twenty two outbreaks of Salmonella Enteritidis in England and Wales have been reported to the Health Protection Agency’s Communicable Disease Surveillance Centre (CDSC) between June 1 and August 27, 2003, compared with 14 in the same period in 2002. A variety of S. Enteritidis phage types is involved: PT 1 resistant to nalidixic acid and low level susceptibility to ciprofloxacin (Nx, CpL) three outbreaks; PT 1e one outbreak; PT3 (Nx, CpL) one outbreak; PT4 three outbreaks; PT6 three outbreaks; PT6a one outbreak; PT6a (Nx, CpL) one outbreak; PT8 two outbreaks; PT12 one outbreak; PT14b one national outbreak including three local outbreaks; PT21 (Nx, CpL) one outbreak; PT24 resistant to tetracycline (T) one outbreak; PT53 one outbreak; PT56 one outbreak. In total 356 people are known to have been affected.

The largest outbreak is a national outbreak of S. Enteritidis PT 14b so far affecting 117 people and an analytical study is underway to identify a contaminated food vehicle(s). In seven outbreaks, microbiological evidence of contaminated food vehicles has been found. Twelve outbreaks have been linked to Chinese restaurants, three to bakeries, and one has occurred in a hospital. In response to the recent outbreaks and increased incidence of S. Enteritidis, food items such as raw shell eggs, raw chicken, raw duck should be considered for...
sampling as part of the local outbreak investigations. In addition, a public health investigation of eggs has been initiated.

Between September and December 2002, 23 outbreaks of S. Enteritidis were reported to CDSC, compared with 36 in the whole of 2001. In these outbreaks over 1,000 people were affected and 17 people infected with S. Enteritidis died, although most of the deaths were not attributed directly to Salmonella infection. Three outbreaks, affecting over 450 people, were national.

Based on the epidemiological evidence two investigations into eggs in use in the catering trade were initiated. As part of a public health investigation in late 2002, 8,501 shell eggs were sampled. Salmonella spp. was isolated from 5.1% of imported Spanish eggs used in catering premises, which compares unfavourably with Salmonella levels of 0.3% found in eggs (mostly produced in the United Kingdom) tested in a study of eggs 34,296 used in catering premises during April to May 2003.

Advice issued by the UK Food Standards Agency reiterating the need for proper cooking of raw shell eggs, especially for vulnerable groups, and suggesting that all importers and wholesalers heat treat eggs imported from Spain are still in force.

USDA Consumer Alert: Keeping Food Safe during an Emergency

The US Department of Agriculture has provided recommendations in advance of weather emergencies in an effort to help minimize the potential for food-borne illness.

Steps to follow to prepare for a possible weather emergency: Keep an appliance thermometer in the refrigerator and freezer. An appliance thermometer will indicate the temperature in the refrigerator and freezer in case of a power outage and help determine the safety of the food. Make sure the freezer is at or below 0°F and the refrigerator is at or below 40°F. Freeze containers of water for ice to help keep food cold in the freezer, refrigerator or coolers after the power is out.

Freeze refrigerated items such as leftovers, milk and fresh meat and poultry that you may not need immediately — this helps keep them at a safe temperature longer. Plan ahead and know where dry ice and block ice can be purchased. Store food on shelves that will be safely out of the way of contaminated water in case of flooding.

Have coolers on hand to keep refrigerator food cold if the power will be out for more than four hours. Purchase or make ice cubes and store in the freezer for use in the refrigerator or in a cooler. Freeze gel packs ahead of time for use in coolers.

Group food together in the freezer — this helps the food stay cold longer. Steps to follow after the weather emergency: Keep the refrigerator and freezer doors closed as much as possible to maintain the cold temperature. The refrigerator will keep food safely cold for about 4 hours if it is unopened. A full freezer will hold the temperature for approximately 48 hours (24 hours if it is half full and the door remains closed.) Food may be safely refrozen if it still contains ice crystals or is at 40°F or below. Never taste a food to determine its safety!

Obtain dry or block ice to keep your refrigerator and freezer as cold as possible if the power is going to be out for a prolonged period of time. Fifty pounds of dry ice should hold an 18-cubic-foot full freezer for 2 days. If the power has been out for several days, check the temperature of the freezer with an appliance thermometer or food thermometer. If the food still contains ice crystals or is at 40°F or below, the food is safe.

If a thermometer has not been kept in the freezer, check each package of food to determine its safety. If the food still contains ice crystals, the food is safe.

Discard refrigerated perishable food such as meat, poultry, fish, soft cheeses, milk, eggs, leftovers and deli items after 4 hours without power. Drink only bottled water if flooding has occurred. Discard all food that came in contact with flood waters including canned goods. Discard wooden cutting boards, plastic utensils, baby bottle nipples and pacifiers.

Thoroughly wash all metal pans, ceramic dishes and utensils that came in contact with flood water with hot soapy water and sanitize by boiling them in clean water or by immersing them for 15 minutes in a solution of 1 teaspoon of chlorine bleach per quart of water.

When in Doubt, Throw It Out! For additional information on food safety during an emergency, call the toll-free USDA Meat and Poultry Hotline at 888.MPHotline (888.674.6854); for the hearing-impaired (TTY) 800.256.7072. The Hotline is staffed by food safety experts weekdays from 10 a.m. to 4 p.m. Eastern time. Food safety recordings can be heard 24 hours a day using a touch-tone phone. The media may contact the USDA Meat and Poultry Hotline at 301.504.6258. Information is also available from the FSIS Web site: http://www.fsis.usda.gov.
Researchers Develop Faster, More Accurate Test for Mad Cow Disease

As US consumers seek reassurance that their hamburgers and steaks are free of deadly mad cow disease, researchers at the University of California-San Francisco say they may have found a promising solution. They've developed a faster, more reliable test for identifying the disease, possibly even in living cows. Current tests can only detect the disease after the cow dies.

The test was described at the 226th national meeting of the American Chemical Society, the world's largest scientific society. Critics argue that the standard immunoassay tests used to identify the infectious prion proteins that cause mad cow disease are inadequate for large scale screening of cattle. The tests can produce false readings and may take a week to yield results. A better test is needed, they say.

The new test, which has already undergone animal studies, seems to fit the bill. Called the conformation-dependent immunoassay (CDI), it can detect prion proteins with 100 percent accuracy at much smaller levels than conventional tests and only takes about five hours to produce results, according to the UCSF researchers.

Like conventional tests, the new test is designed for detecting prions in the brain tissue of cows only upon autopsy. Unlike other tests, however, the new test also shows promise for detecting the proteins in muscle tissue and even blood while the animal is still alive. If so, it could be used to identify precisely which animals are infected before they show symptoms and could help end the current practice of slaughtering whole herds, the scientists say.

“This represents a new generation of prion tests. It is the most promising test to date for accurately detecting prion proteins,” says project leader Dr. Jiri G. Safar, M.D., an associate adjunct professor at UCSF, a member of the school's Institute of Neurodegenerative Diseases. He says the test has been used in a field trial to check for signs of the disease in the brains of 11,000 slaughtered cows in Spain, the United Kingdom and Germany. Results were compared to those from standard immunoassays performed on the same animals. There were no discrepancies between the tests, he says. “We had a perfect score. There were no false positives and no false negatives. We can't afford incorrect conclusions, and we didn’t see that in our tests,” says Safar.

He says that the research group plans to use the test on an even larger scale among European cattle herds within the next year, checking them for signs of the disease upon autopsy. If further tests prove successful, he hopes it will eventually be used to evaluate dead cows in this country for mad cow disease, also known as bovine spongiform encephalopathy, or BSE.

Despite the fact that the CDI test is currently being done in dead cattle, Safar says the same test could eventually be used on live animals to determine the presence of prions. In lab tests, the researcher has used the CDI test to detect prions in the muscles of living mice. The live test could eventually be used to screen patients for the human form of mad cow disease, known as variant Creutzfeldt-Jakob disease, which is thought to be acquired from eating infected beef. A tissue or blood test for live animals could be available in a year, says Safar. “We're not quite there yet,” he adds. “We still need to validate the effectiveness of CDI in live farm animals.”

CDI has other advantages. It is automated, allowing larger numbers of animals to be screened in a short period. The test can detect up to eight different strains of prions, including those that cause scrapie in sheep and chronic wasting disease in deer.

With the recent detection of mad cow disease in neighboring Canada and the temporary ban on beef imported from that country, critics have stepped up their call for better testing. To date, there has never been a case of mad cow disease detected in the US. Given the flaws of current testing, however, some experts believe it could be just a matter of time. Safar’s coauthor in this study is Dr. Stanley Prusiner, M.D., a professor of neurology and biochemistry at the university and director of its Institute for Neurodegenerative Diseases. Prusiner was the first to discover that abnormal prion proteins can cause disease, an accomplishment that won him the 1997 Nobel Prize in Physiology or Medicine. CDI technology is now licensed to InPro Biotechnology, Inc., of San Francisco, a company founded by Prusiner.
PPT Vision’s New Low-cost Impact CL™, Vision Micro-System

PPT Vision, Inc. has introduced Impact CL™, a new extension to the Impact™ machine vision microsystem product line that provides connectivity to digital cameras from all major camera suppliers. Impact CL combines the power of PPT Vision’s machine vision micro-system technology with Camera Link™, the global standard for industrial camera communications, to eliminate the closed architecture and limited camera selection associated with smart cameras and self-contained vision systems.

"Previously, users of low-priced machine vision have been limited by systems that only support a few basic cameras. With Impact CL, vision system users can leverage the Camera Link open standard, and now have the flexibility to choose from a broad range of camera formats and vendors, including linescan, color, and high-resolution cameras," stated Joe Christenson, president of PPT Vision, Inc.

Camera Link is an open digital camera standard for machine vision applications, previously available only for high-cost, heavily-customized framegrabber-based applications. The Automated Imaging Association (AIA) sponsors the Camera Link certification program including the oversight Camera Link Committee and product registry. All major industrial camera suppliers have obtained certification for a range of digital Camera Link cameras. Impact CL is available for immediate shipment.

PPT Vision, Inc., Eden Prairie, MN

READER SERVICE NO. 314

BD Diagnostic Systems’ BBL™ CHROMagar™ Orientation Medium Identifies E. coli and Enterococcus

BD Diagnostic Systems has announced the release of BBL™ CHROMagar™ Orientation medium, a chromogenic medium with an enzymatic reaction that enables identification of E. coli and Enterococcus without additional confirmatory testing from urine specimens. This non-selective, nutritive medium isolates and identifies both gram-positive and gram-negative pathogens with a single plate BBL™.

CHROMagar™ Orientation medium can substantially increase laboratory efficiency by reducing the number of plates to label, inoculate, incubate and read. This allows the microbiology laboratory to more effectively utilize limited labor resources, reduce the costs associated with confirmatory identification procedures and report results earlier.

BD Diagnostic Systems, Sparks, MD

READER SERVICE NO. 315

Carmina Technologies Launches PestAssur™ Solution for Pest Management Industry

Carmina Technologies Inc. has launched PestAssur™, a performance monitoring solution for the pest management industry. PestAssur™ is the first in a family of monitoring solutions that brings an easy-to-use, established technology to industries and processes that still rely largely on manual data collection and management.

The PestAssur™ solution consists of readily available hand-held mobile computers and a multi-level bar-code system connected to centralized serv-
ers via a variety of wired and wireless technologies. By placing bar-codes on traps and in inspection areas, the hand-held unit identifies the services and protocols to be carried out at each location on the contracted premises. The hand-held units are able to monitor a variety of variables regarding each inspection item including time of inspection, duration of inspection and time between inspection points. In addition, the hand-held units halt inspections until specified services have been carried out or the reasons for incompletion have been documented.

According to John Alston, president and CEO of Carmina Technologies, “The PestAssur™ solution is the epitome of the Carmina model. Pest management is about the toughest service package to systemize and accommodate all its inherent variables. We look to partner with industry players to develop standards and protocols to embed into our solutions. But we also look to target industries and processes that typically have not utilized technology intensively and are ripe for technology adoption. We estimate there are some 3,000 significantly sized pest management companies in North America that can utilize PestAssur™.”

Alston said that Carmina will target the field of municipal health inspection with Assur-H&S™ and Food Quality Protection with AssurFQP™, which are scheduled for launch later this year. “These are large markets in their own right. However, with increasing concern over bioterrorism and homeland security, as well as a groundswell of demand for managed safety and quality systems, we believe the monitoring of inspections that influence public health and safety will assume a higher priority, and that the market for these services may experience exponential growth.”

Carmina Technologies, Calgary, Alberta, Canada

A-T Controls, Inc. New Direct-mount, Two-piece Flanged Ball Valve, Packaged with Actuator, Makes Automation “One Stop” Easy

Make valve automation easy with the new TRIAC Series D9 direct-mount 150# and 300# ANSI class flanged ball valves from A-T Controls. Available in pre-assembled valve/actuator packages, the high-performance D9 units feature two-piece investment cast bodies with direct-mount ISO5211 automation pad and choice of electric or pneumatic actuator. Unique “pyramid power” live-loaded packing system features a patented 45° pyramidal primary stem seal with Belleville washers and V ring packing, protecting against stem leaks experienced with ordinary ball valves. One-stop order capability simplifies valve/actuator selection and setup, especially for organizations with limited engineering staffs. The D9 ball valves come in nine sizes from 1/2” to 6” and 316SST or WCB body material. Extensive stocking inventories permit quick configuration and delivery.

Direct-mount construction provides a compact, robust assembly that is faster and simpler to install, while eliminating the hassles of sourcing, installing and aligning brackets and couplers. Full port design with fully machined bore provides smooth flow. Reinforced RTFE seats come standard, with other seat materials optionally available, including 50SS/50 TFE for higher temperature and difficult applications, such as steam. D9 units come standard with anti-static device and can be specified with traceable capability.

A-T Controls, Cincinnati OH

Columbus Instruments, Inc. New Universal Air Dryer

The Universal Dryer contains two main parts: the condenser and the dryer. Air first enters the condenser where the dew point of the sample gas is lowered well below ambient; this removes most of the moisture. Condensed water is immediately drawn off by a peristaltic pump, which minimizes sample gas contact with the condensate. Once the air has passed through the condenser, it reaches the tube dryer. The drying tube is constructed as one tube inside another. The gas sample travels through the inner tube made of hydrophilic Nafion (selectively absorbs water only); the outer air to create a moisture differential. The Nafion tube allows moisture to cross through the tube, in one direction only, into the dryer purge air. Sample gas leaves the dryer at a very low dew point temperature (-25°C) and never comes in contact with any chemical drying agents. Features a very low dead volume, digital temperature controller (condenser), and can handle a maximum flow rate of 2 LPM.

Columbus Instruments, Inc., Columbus, OH
Onset Computer Corp. Introduces Complete Solution for IAQ Monitoring

Onset Computer Corporation has introduced a complete Indoor Air Quality (IAQ) monitoring solution that combines the company’s HOBO® data loggers with the Telaire® 7001 Carbon Dioxide (CO₂) Monitor. Now, HVAC contractors, facilities managers, and others can measure and record CO₂, along with temperature and relative humidity in a broad range of IAQ applications. Examples include monitoring the performance of ventilation systems in office buildings, locating the presence of combustion byproducts in manufacturing plants, and identifying IAQ problems in schools.

Like HOBO data loggers, the Telaire 7001 monitor is an easy-to-use, battery-powered device that can be used in a broad range of commercial and residential environments. It measures and outputs CO₂ levels over the range of 0 to 2500 ppm with 10 ppm resolution to HOBO loggers, calculates and displays ventilation rates based on outside CO₂ concentrations, and provides stable, high-accuracy CO₂ readings.

The Telaire 7001 CO₂ monitor is available immediately, and can be used with a broad range of HOBO data loggers, including the company’s new high-resolution, direct-USB HOBO U12 family loggers.

Onset Computer Corporation, Bourne, MA

Labconco’s WaterPro® RO Station Features Fast Delivery and Timed Dispensing

Labconco Corporation offers the WaterPro RO Station for point of use production of laboratory grade reverse osmosis water. The WaterPro RO Station’s large capacity filters and membrane produce high-quality reverse osmosis (RO) purified water at a rate faster than any other laboratory system available. Water is produced on demand and may be dispensed at a typical rate of 1 liter per minute (at inlet water at 25°C). RO purified water is ideal for reagent preparation, basic science work, and glassware rinsing. Water may be dispensed manually from a valve or an optional gun. The timed dispense feature allows unattended operation. Set the timer up to 99.9 minutes, press the dispense button and the valve dispenses until set time expires.

The integral 17-liter tank and an outlet port for connection to Labconco’s SteamScrubber® or FlaskScrubber® Laboratory Glassware Washer holds ample volume to supply pure water for final rinse cycles. The WaterPro RO may also be used to produce laboratory grade feedwater for final purification by a polishing system such as the WaterPro PS Polishing Station and to allow dispensing of both RO-purified and Type I water.

Labconco Corporation, Kansas City, MO

Viking’s New Mag Drive® Magnum ™ Sealless Gear Pump Series Offers Short-term Run-dry Capability

Viking Pumps’ new line of Mag Drive® Magnum ™ sealless pumps features a thrust-controlled design that allows short-term run dry capabilities. This design all but eliminates damage resulting from priming and accidental empty tank situations. These cast iron, reversible-direction-of-flow pumps are ideal for hazardous or hard-to-seal liquids, or for applications where very low maintenance is a requirement. The adjustable rotor clearance enables high volumetric efficiency, whether pumping thin or viscous liquids.

Extended pump life is made possible thanks to Viking’s in-canister bushing and hollow shaft design; the pump’s construction allows for positive cooling flow that minimizes the potential for thermal product degradation. A patent pending barrier fluid option is also available. This feature allows a fluid flush or barrier fluid to remove heat and keep pumped fluid out of the canister.

Additional features of Viking’s Mag Drive Magnum series include a close-couple motor flange option and the ability to run at synchronous motor speeds. This series of pumps offers flow rates of up to 200 gpm, with pressures to 200 PSI and at temperatures ranging from -60° to 500°F (-51° to 260°C).

Viking Pump Inc., Cedar Falls, IA
Eriez Magnet Removes Metal Contaminants from Pneumatic Conveying Lines

Eriez’ RF (radial field) Cartridge Magnets remove contaminants from dry, free-flowing dry, granular products conveyed in pneumatic pipelines. Material enters the housing and is distributed by a solid stainless cone then passes in close proximity to the magnetic cartridge. Ferrous contamination is attracted and held by the magnet while the separated product continues past the housing. The ferrous contamination remains on the magnet until the cartridge is removed and cleaned.

The RF Cartridge Magnetic Separator contains high strength, permanent tapered-step magnetic elements. These independent magnetic elements have built-in handles for convenient removal and cleaning. Standard units are constructed of stainless steel, use typical pneumatic conveyor couplings for a positive seal and are designed for applications up to 25 psig (1.7 bar).

Eriez also offers models for high-pressure operations and with Super Strength Erium® 3000 Rare Earth magnet material for applications requiring the highest levels of product purity.

Eriez Magnetics, Erie, PA

Spiroflow Systems Handles Cohesive Powder

Spiroflow introduces a complete handling system ideal for cohesive powder such as titanium dioxide. Often, these powders will have difficult characteristics when used in conveyors or bulk containers such as Bulk Bags. These characteristics include bridging, ratholing or flushing. Bridging occurs when the powder compacts itself over the outlet and will not flow. Ratholing produces a small inner core of powder that will readily flow, leaving an immovable, larger outer core of powder resistant to discharge. The opposite of these actions is a total “flushing” of powder characterized by an uncontrollable discharging.

The Spiroflow Type 3 Bulk Bag Discharger, fitted with a Hogan Bin Discharger and Aero-Mechanical Conveyor, dramatically improves powder flow by incorporating flow aid technology. By using pneumatic massage paddles and a bag tensioning device, Spiroflow’s Type 3 improves material flow out of the Bulk Bag with no dramatic degradation.

The Hogan Bin Discharger, fitted between the Type 3 Discharger and Aero-Mechanical Conveyor, acts as a flow promoter by using a suspended series of blades controlled by a vibrator to gently vibrate the powder into the Aero-Mechanical Conveyor. The blades are free to rotate to 90 degrees from horizontal. Not only can the blades be vibrated for easier material discharging, but electric actuators can also be attached to the housing.

The Aero-Mechanical, also known as a “rope and disk” conveyor, uses a continuous rope and travels through a tube with a series of equally spaced disks secured to it. The unit creates a moving current of air in which the powder is conveyed, similar to the effect of a vacuum or pneumatic system. However, the Aero Mechanical Conveyor does not need a cyclone or filter to separate the product from the air. This type of conveyor is applicable to horizontal or vertical conveying up to 20-25 m.

Spiroflow, Inc., Monroe, NC

Balston® Steam Filters That Permit Direct Steam Contact with Food are Now Available from Parker Hannifin Corp.

Balston Steam Filters remove 98+% of 0.1 micron particles and 100% of all visible particles from steam. Liquid condensate is removed at the same efficiency as for solid particles. Models are available to handle flow rates of up to 3,000 lbs/hr.

Other benefits of Balston Steam Filters include: Reduction in steam condensate mixing with the food products when steam is used for agitating, mixing or cooking; significant reduction in carryover of boiler feedwater chemicals into the food product, causing taste and odor problems; greatly reduced maintenance requirements for valves, cookers, heat exchangers, and other equipment.

Balston Steam Filters are in full compliance with the requirements of the US Food, Drug and Cosmetic Act. They meet the regulations for Indirect Food Additives used as Basic Components for Repeated Use Food Contact Surfaces as specified in 21 CFR Part 177, and Current Good Manufacturing Practices, 21 CFR Part 110. Balston Steam Filters have also been accepted by the USDA for use in federally inspected meat and poultry plants. They are also in full compliance with the 3-A Accepted Practices (Number 609-00) for producing steam of culinary quality, and they are in full compliance with the requirements of the Health Protection Branch of Health and Welfare Canada.

Parker Hannifin Corporation, Tewksbury, MA
3-A® Sanitary Standards for Tubular Heat Exchangers, Number 12-07

Copyright © 3-A Sanitary Standards, Inc., McLean, VA

12-07

SCOPE

A1 These standards cover the sanitary aspects of tubular heat exchangers without gaskets. Tubular heat exchangers may have tube cross-sectional modifications or removable devices for promotion of desired flow characteristics. The standards do not cover high-velocity (more than 750 mph or 1,724 m/s) product pressure/tubular heat exchangers which require special tubing and/or fittings.

A2 In order to conform to these 3-A Sanitary Standards, tubular heat exchangers shall conform to the following design, material, and fabrication requirements.

B DEFINITIONS

B1 Product: Shall mean milk and milk products or other combustibles.

B2 Tubular Heat Exchangers: Shall mean heat exchangers having one continuous tube, two or more concentric tubes, or tubes in parallel flow.

B3 Surfaces

B3.1 Product Contact Surfaces: Shall mean all surfaces which are exposed to the product, and surfaces from which liquids may drain, drop, or come into the product.

B3.2 Nonproduct Contact Surfaces: Shall mean all other interior surfaces.

C MATERIALS

C1 Metals

C1.1 Product contact surfaces shall be of stainless steel of the American Iron and Steel Institute (AISI) 300 Series (except 301 and 302), or at least equal, corrosion and mechanical resistant materials used in equipment and machinery, fabricators, processors, regulatory agencies and by 3-A Sanitary Standards, Inc. to assure adequate public health protection for the design and normal intended use of the product.

C2 Nonmetallic Materials

C2.1 Rubber and rubber-like materials may be used for gaskets, seals, and parts having the same functional properties.

C2.2 Plastic materials may be used for gaskets, seals, and parts having the same functional properties.

C2.3 Plastic materials, which are used for the above specified applications, shall conform to the applicable provisions of the 3-A Sanitary Standards for Multiple Use Rubber and Rubber-like Materials, Number 18.

C2.4 The adhesion, if used, on bonded rubber and rubber-like materials and bonded plastic materials shall be sufficient.

C3 Nonproduct Contact Surfaces

C3.1 All nonproduct contact surfaces shall be corrosion-resistant material or material resistant to corrosive environment. If coated, the coated shall be smooth, continuous, and mechanically sound, so that a corrosion resistant environment is maintained. If stainless steel, the finish shall be 18-07.

C4 High Temperature Materials

C4.1 In a processing system to be sterilized by heat exposed at a temperature of 250°F (121°C) all materials having plastic (not food solids) in the construction of tubular exchangers and nonmetallic component parts shall be such that they can be (1) sterilized by steam or water under pressure (at least 5.5 psig or 104 kPa) at a temperature of at least 250°F (121°C) or (2) operated at 250°F (121°C) at the temperature required processing.

D FABRICATION

D1 Surface Treatment

D1.1 Product contact surfaces shall have a finish (smooth or glossy) and be free of imperfections such as pits, folds and creases in the final fabricated condition (See Appendix, Section F).

D2 Permanent Joints

D2.1 All permanent joints of metallic product contact surfaces shall be continuously welded. Where welding is not possible, it shall be continuously brazed or soldered in conformance to Section D1. Solder, brazing, and soldering shall conform to National Sanitation Foundation Schemes and Clasifications, No. 605.1

D3 Heat Exchanger Construction

D3.1 Heat exchangers shall be designed and constructed to be capable of being completely cleaned and inspected. The heat exchanger shall be designed so that all product contact surfaces can be readily removable, or they shall be readily removable, and washable when assembled or installed, and shall be readily accessible for inspection.

D4 Tubes shall be subjected in a manner that will prevent sagging.

D4.1 In a heat exchanger designed to be mechanically cleaned of the type that incorporates motors or conveyor systems, means shall be provided to keep the tubes equally spaced and shall not interfere with mechanical cleaning.

D4.2 Mechanical or Cleaning shall mean wash removal when the equipment is partially or totally disassembled. Soil removal is effected with chemical solutions and water under pressure with the assurance of one or a combination of broths, nonmetallic brushes and scrapers, high or low pressure broths, and/or agents which may be used with recirculating pumps, and with all cleaning contacts manipulated by hand.

D5 Bond: Shall mean the adhesive or cohesive forces binding materials together. This definition excludes price and shrink fits.

D6 Sanitizing: Shall mean the surface has the property to remove all or a combination of bacterial, chemical, and physical contaminants from the surface which under the conditions of their use are in contact with the equipment, including removal of soil or soil residues.

E.Foreword

E1.1 These 3-A Standards are intended for use by dairy manufacturers and users of dairy equipment in the United States Department of Agriculture, the United States Food and Drug Administration, State and local dairy officials, and their personnel.

E2.1 The standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.2 The standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.3 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.4 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.5 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.6 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.7 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.8 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.9 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.10 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.11 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.12 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.13 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.14 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.15 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.16 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.17 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.18 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.19 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.20 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.21 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.22 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.23 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.

E2.24 These standards are developed jointly by 3-A Sanitary Standards, Inc. and the United States Department of Agriculture, including the assistance of one or a combination of the Food and Drug Administration, State and local dairy officials, and their personnel.
D9.1.1 The radii in grooves in gaskets or gasket retaining... on Appendix G.

D9.1.2 Nonproduct contact surfaces shall have a relatively smooth finish, and be so designed that... the building structure.

D10. Threads

D10.1 There shall be no threads on product contact surfaces.

D11. Drawing

D11.1 Tubular heat exchangers including those with cross-sectional profile modifications, shall be dra... be used in tubular heat exchanger to its mounting shall be designed for sealing the... be considered as nonproduct contact surfaces of the equipment and are considered as part of the building structure.

D11.2 Supports

D11.2.1 If legs are used, they shall be smooth with rounded ends or with a flat, load-bearing face suitab... by the manufacturer, shall be designed for sealing to the wall or column. The design of tubular heat exchanger baffle mounting, if supplied by the manufacturer, shall be such that there will be at least 4 inches (101.6 mm) clearance between the outside of the tubular heat exchanger and the wall or column.

D11.2.2.1 When a tubular heat exchanger is snapped from a ceiling, the means of reattachment shall be smooth and... during the purging operation.

APENDIX

E STAINLESS-STEEL MATERIALS

E1 Stainless steel conforming to the applicable chemical composition range established by major... low carbon content of the stainless steel shall not exceed 0.08%.

F PRODUCT CONTACT SURFACE FINISH

F1 Surface finish equivalent to 150 grit or better, or equivalent as determined by Appendix G, shall be applied to the... the tubing of a tubular heat exchanger because of their location (See Table 2).

TABLE 2 - OPTIONAL METAL ALLOYS

<table>
<thead>
<tr>
<th>UNS</th>
<th>ASTM</th>
<th>UNS</th>
<th>ASTM</th>
<th>UNS</th>
<th>ASTM</th>
<th>UNS</th>
<th>ASTM</th>
<th>UNS</th>
<th>ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>A2M</td>
<td>A2</td>
<td>A2M</td>
<td>A2</td>
<td>A2M</td>
<td>A2</td>
<td>A2M</td>
<td>A2</td>
<td>A2M</td>
</tr>
<tr>
<td>A4</td>
<td>A4M</td>
<td>A4</td>
<td>A4M</td>
<td>A4</td>
<td>A4M</td>
<td>A4</td>
<td>A4M</td>
<td>A4</td>
<td>A4M</td>
</tr>
<tr>
<td>A5</td>
<td>A5M</td>
<td>A5</td>
<td>A5M</td>
<td>A5</td>
<td>A5M</td>
<td>A5</td>
<td>A5M</td>
<td>A5</td>
<td>A5M</td>
</tr>
<tr>
<td>A6</td>
<td>A6M</td>
<td>A6</td>
<td>A6M</td>
<td>A6</td>
<td>A6M</td>
<td>A6</td>
<td>A6M</td>
<td>A6</td>
<td>A6M</td>
</tr>
<tr>
<td>A7</td>
<td>A7M</td>
<td>A7</td>
<td>A7M</td>
<td>A7</td>
<td>A7M</td>
<td>A7</td>
<td>A7M</td>
<td>A7</td>
<td>A7M</td>
</tr>
</tbody>
</table>

E1. Metal alloys or melts other than those above may be constructed in accordance with 304 Series Stainless steel. This is... sulfuric acid at concentrations... corrosion rate of less than 10 mil per year. The test parameters such as the type of... corrosion-resistant as 300 Series Stainless Steel. The user is responsible for supplying to the manufacturer, and... implementation is subject to modifications, shall be drained ends or drainable ends or waste points provided... by the manufacturer, shall be designed for sealing the wall or column, the point of attachment of a tubular heat exchanger to its mounting shall be designed for sealing to the... to the floor, and have no exposed threads. Joints made of below stock shall be sealed. Joints shall provide a minimum clearance between the lower part of the base and the floor of not less than 1/2 inch (12.7 mm).

E2. When the tubular heat exchanger is removed from the ceiling, supports, means shall be provided to facilitate inspection and manual cleaning, if necessary.

ENGINEERING DESIGN AND TECHNICAL CONSTRUCTION FILE

F1. The following is an example of an engineering... and technical construction file (EDTCI) to be maintained by the fabricator as evidence of conformance to 3-A Sanitary Standards at 3-A Accepted Practices. (1) The file may contain more or less information as applicable to the equipment or system.

J1. PURPOSE

J1.1 To establish and document the material, fabrication, and welding (when appropriate) requirements for the engineering design and technical construction file (EDTCI) to be maintained by the fabricator, and to be considered as non... the tubing of a tubular heat exchanger because of their location (See Table 2).

J2. AIR PURGING

J2.1 When air is used for purging the tubular heat exchanger, the air shall be introduced as specified... to the condition for the tubular heat exchanger because of their location (See Table 2).

TABLE 3 - MINIMUM GROOVE RADIUS DIMENSIONS

<table>
<thead>
<tr>
<th>O-Ring</th>
<th>Cross</th>
<th>Nominal Minimum Groove Radii for Standard O-Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-Ring</td>
<td>Cross</td>
<td>Nominal Minimum Groove Radii for Standard O-Rings</td>
</tr>
<tr>
<td>O-Ring</td>
<td>Cross</td>
<td>Nominal Minimum Groove Radii for Standard O-Rings</td>
</tr>
<tr>
<td>O-Ring</td>
<td>Cross</td>
<td>Nominal Minimum Groove Radii for Standard O-Rings</td>
</tr>
<tr>
<td>O-Ring</td>
<td>Cross</td>
<td>Nominal Minimum Groove Radii for Standard O-Rings</td>
</tr>
</tbody>
</table>
3-A Sanitary Standards for Farm Milk Cooling and Holding Tanks, Number 13-10

SCOPE

Bridge: Shall mean a cover on an open top type tank which is a self-supporting member or is supported by supporting members and is capable of being installed, put into service and maintained in a manner which will be implemented to insure that the product will continue to be manufactured in conformance to the standards or practices of the 3-A Sanitary Standards or 3-A Accepted Practices.

Product Contact Surfaces: Shall mean all surfaces of the product, including the ends, sides, bottom, and top.

Nonproduct Contact Surfaces: Shall mean all other surfaces of the product excluding those surfaces which are exposed to the environment or to the product.

B: Definitions

B1: Product: Shall mean milk.

B2: Farm Milk Cooling and Holding Tank: Shall mean a stainless steel (70% chromium-nickel austenitic, or non-austenitic and/or other equally satisfactorily shaped tank specifically designed for this purpose.) enclosed, refrigerated vessel or jacketed vessel in which milk is cooled and/or held at a temperature of 0°F to 41°F, and from which milk is removed when the temperature of the tank liquid is 0°F to 41°F, and in which milk is held at a temperature of 0°F to 41°F.

B3: Bridge: Shall mean a cover on an open top type tank which is a self-supporting member or is supported by supporting members and is capable of being installed, put into service and maintained in a manner which will be implemented to insure that the product will continue to be manufactured in conformance to the standards or practices of the 3-A Sanitary Standards or 3-A Accepted Practices.

B4: Farm: Shall mean a device for preventing the vent of aerosol containing hazardous substances.

B5: Cleaning: Shall mean the application of mechanical and/or chemical energy to remove soil and other materials from the surfaces of farm milk cooling and holding tanks.

B6: Disinfections: Shall mean the application of heat or chemical energy to prevent the future occurrence of disease or spoilage of milk.

B8 Inspectable: Shall mean all product contact surfaces can be made available for close visual inspection.

B9 Simple Hand Tools: Shall mean implements normally used for cleaning and inspecting product contact surfaces.

B10 Sanitary Materials: Shall mean those substances which, when used in the normal process of fabrication, are in compliance with applicable requirements of the Food and Drug Administration.

B12 Corrosion Resistant: Shall mean the surface has the property to maintain its original surface environment of intended use, including expected conditions of maintenance, such as a screwdriver, wrench, or mallet contact with product and cleaning, sanitizing or decontaminating treatments.

B13 Plastic materials may be used for shut-offs, valves, seals, gaskets, and tipping-up type sanitary fittings used for sanitary process equipment applications shall be in conformance with the provisions of 3-A Sanitary Standards for Plastic Materials, Number 56-36.

C1 Malleables

C.1.1 Product contact surfaces shall be of seamless shell of the American Iron and Steel Institute AISI 300 Nonresistant Steels, except (304 and 316) on corrosion resistant test components. See Appendix C.1.2 (See Table 6) for listing which are considered corrosive resistant as defined of the foregoing types, and is corrosion resistant to sulfur. The insulted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.

C.1.2 Sanitary Tubing

C.1.3 Sanitary tubing shall be of seamless stainless steel of the American Iron and Steel Institute AISI 300 Nonresistant Steels, except (304 and 316) on corrosion resistant test components. See Appendix C.1.2 (See Table 6) for listing which are considered corrosive resistant as defined of the foregoing types, and is corrosion resistant to sulfur. The insulted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.

C.1.4 Sanitary Tubing

C.1.4.1 Sanitary Tubing in the final direction shall be of size (3/16 in. (4 mm) diameter min. and 3/32 in. (2.4 mm) max.) and shall not exceed 20 ft (6000 mm) in length.

D13 Covers

D.13.1 Main Covers for Open Top-Type Tanks

D.13.1.1 Main covers shall be of a type that can be opened and maintained on an open position. (2) shall be designed to be self-latching when closed. The opening and closing shall be done by manual means.

D.13.1.2 Nonremovable Covers for Open Top-Type Tanks

D.13.1.2.1 Nonremovable covers (1) shall be of a type that can be opened and maintained on an open position. (2) shall be designed to be self-latching when closed. The opening and closing shall be done by manual means.

D.13.1.3 Bridges and Fixed Covers for Open Top-Type Tanks

D.13.1.3.1 Bridges and fixed covers shall sit snugly against the open top and must be securely attached to the tank. The height of the fixed covers above the top of the tank shall be such that it can be easily inspected without entering the tank. Bridges shall meet or exceed 2.5 in. (63.5 mm) in height.

D.13.1.4 Nonproduct Contact Surfaces

D.13.1.4.1 Nonproduct contact surfaces shall be of any corrosion resistant material or construction that is corrosion resistant to sulfur. The gritted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.

D.13.1.4.2 Sanitary Tubing

D.13.1.4.2.1 Sanitary Tubing shall be of seamless stainless steel of the American Iron and Steel Institute AISI 300 Nonresistant Steels, except (304 and 316) on corrosion resistant test components. See Appendix C.1.2 (See Table 6) for listing which are considered corrosive resistant as defined of the foregoing types, and is corrosion resistant to sulfur. The insulted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.

D.13.1.4.3 Sanitary Tubing

D.13.1.4.3.1 Sanitary tubing shall be of seamless stainless steel of the American Iron and Steel Institute AISI 300 Nonresistant Steels, except (304 and 316) on corrosion resistant test components. See Appendix C.1.2 (See Table 6) for listing which are considered corrosive resistant as defined of the foregoing types, and is corrosion resistant to sulfur. The insulted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.

D.13.1.4.4 Sanitary Tubing

D.13.1.4.4.1 Sanitary tubing shall be of seamless stainless steel of the American Iron and Steel Institute AISI 300 Nonresistant Steels, except (304 and 316) on corrosion resistant test components. See Appendix C.1.2 (See Table 6) for listing which are considered corrosive resistant as defined of the foregoing types, and is corrosion resistant to sulfur. The insulted shell of the lining shall not be less than 0.14 in (3.5 mm) thick at any location.
D14 Outlet Valves/Includes Valves

Valves, unless provided, shall conform to D18. Acceptable containing D18 shall be provided for the outlet of the valve of water formed with tanks.

D15 Agitators

Means for mechanical or air agitation shall be provided that will result in a turbulence of milk in contact with the head of milk in the tank of no more than 15 rpm, as determined by an OACI 3000X Unit Test (2), which is filled to (100%) of its capacity with product and the agitator has been in operation for 10 minutes. The speed of the agitator shall be not more than 150 rpm (15.0 L) or not 300 rpm, if in 30°C in diameter, or slots not more than 0.794 mm (0.032 in) wide, woven wire mesh shall not be used for this purpose. Adjustable legs shall be of sufficient number and shall be securely connected to the bottom or floor of the tank designed for mechanical cleaning. The tank shall be so designed that parts are accessible for manual cleaning and inspection and shall be made of materials conforming to Section D. The cleaning chamber, cleaning solution and/or water supply shall be adequately supported. Legs shall be smooth with rounded ends and have no exposed threads.

Outlet Valves/Inlet Valves

If provided, outlet valves shall be sealed at the discharge connection and shall be of stainless steel conforming to the applicable provisions of the 3-A Sanitary Standards for Spray Devices to Remain in Place. The spray device shall be of stainless steel conforming to Section D. Spray devices shall be provided with means that will permit the flow of milk under pressure to the floor of not less than 6 in. (152 mm) within a horizontal distance from the opening in the lining as determined by the provisions of the National Board of Fire Underwriters Standard 44. A protective cap or cover of sanitary design, constructed of materials specified of C1 or C2 shall be provided to secure during mechanical cleaning and to enable manual cleaning and inspection of all parts of the tank. The spray device shall be capable of being disassembled for inspection and shall be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

D16 Tank Supports

The means of supporting a tank designed to be wholly within the milk house or milk room shall be ecomical, or shall be in accordance with the provisions of the ASME Boiler and Pressure Vessel Code, or Section IV and all nonremovable appurtenances thereto. Tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D. All piping mounted between the shell and the lining shall be self-draining. A means shall be provided to disconnect the cleaning chamber, cleaning solution and/or water supply when milk is in the tank. A protective cap or cover of sanitary design, constructed of materials specified of C1 or C2 shall be provided to secure during mechanical cleaning and to enable manual cleaning and inspection of all parts of the tank. The spray device shall be capable of being disassembled for inspection and shall be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

E. Cooling Information

The jacket shall have an identification or data plate permanently attached to it giving the following information:

1. The name, model, serial number, and date of manufacture of the tank.
2. The design pressure and design temperature of the jacket.
3. The minimum jacket thickness of the tank.
4. The rated capacity of the jacket in Btu per hour at the saturated steam temperature designated by the manufacturer.

E.2.2.2.3. The jacket shall be manufactured in accordance with ASME Section VIII, Division 1.

E.2.2.2.4. The jacket shall be capable of being disassembled in the field for inspection and cleaning.

E.2.2.2.5. The jacket shall be supported with stainless steel supports capable of supporting the jacket and the tank contents without exceeding the specified jacket thicknesses for the jacket at normal temperature and pressure.

E.3. Insulation

Insulation material to be non-toxic and to be in a material to withstand milk, water and lactose, and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

E.3.1.1. The insulation shall be of a type that has been determined by the manufacturer to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. Such material shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

F. Testing

F.1. The tank shall be tested for leakage and for proper seating of gaskets, for the duration of the test as determined by the manufacturer, in accordance with the applicable provisions of the National Board of Fire Underwriters Standard 44. A protective cap or cover of sanitary design, constructed of materials specified of C1 or C2 shall be provided to secure during mechanical cleaning and to enable manual cleaning and inspection of all parts of the tank. The spray device shall be capable of being disassembled for inspection and shall be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D. All piping mounted between the shell and the lining shall be self-draining. A means shall be provided to disconnect the cleaning chamber, cleaning solution and/or water supply when milk is in the tank. A protective cap or cover of sanitary design, constructed of materials specified of C1 or C2 shall be provided to secure during mechanical cleaning and to enable manual cleaning and inspection of all parts of the tank. The spray device shall be capable of being disassembled for inspection and shall be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

G. Electrical Connections

The electrical connections shall be of stainless steel or of equivalent material and shall be such that the proximity of the electrical connections to the tank will not interfere with the cleaning process. Electrical connections shall be made in compliance with the National Electrical Code.

H. Sampling Valve

A means for sanitary sampling shall be provided when a sample cannot be readily obtained from a port opening in the tank. It shall be of sanitary design and be type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The nozzle shall be of stainless steel and be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D. All piping mounted between the shell and the lining shall be self-draining. A means shall be provided to disconnect the cleaning chamber, cleaning solution and/or water supply when milk is in the tank. A protective cap or cover of sanitary design, constructed of materials specified of C1 or C2 shall be provided to secure during mechanical cleaning and to enable manual cleaning and inspection of all parts of the tank. The spray device shall be capable of being disassembled for inspection and shall be of a type that has been determined to be capable of sanitizing the product contact surfaces of the tank and all nonremovable appurtenances thereto. The tubing shall be of sanitary design and be constructed of materials conforming to Section C, or C2 shall be provided and shall be capable of being readily removed for inspection and shall be made of materials conforming to Section D.

TABLE 1

<table>
<thead>
<tr>
<th>UNS#</th>
<th>ASTM®</th>
<th>AIS®</th>
<th>Common Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>350630</td>
<td>A-592</td>
<td>304</td>
<td>304 Stainless Steel</td>
</tr>
<tr>
<td>350350</td>
<td>A-240</td>
<td>316</td>
<td>316 Stainless Steel</td>
</tr>
<tr>
<td>350350</td>
<td>A-276</td>
<td>316L</td>
<td>Low Carbon 316 Stainless Steel</td>
</tr>
<tr>
<td>350350</td>
<td>A-260</td>
<td>310</td>
<td>310 Stainless Steel</td>
</tr>
<tr>
<td>350350</td>
<td>A-267</td>
<td>316Ti</td>
<td>Type 316 Stainless Steel</td>
</tr>
</tbody>
</table>

Note: ^A =Annealed, ^B =Solution Heat Treated, ^C =Cold Rolled, ^D =Cold Drawn

TABLE 2

<table>
<thead>
<tr>
<th>APPENDIX A STAINLESS STEEL MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel: 304, 316, 316L, and 310</td>
</tr>
</tbody>
</table>

Note: ^A =Annealed, ^B =Solution Heat Treated, ^C =Cold Rolled, ^D =Cold Drawn
MANUAL CLEANING

If the inside height of a tank exceeds 36.6 in (900 mm), one means for washing the tank should be installed on each end of the tank to permit easy access to all parts of the tank interior. This means may consist of a removable platform at a height which will facilitate cleaning and inspection.

THERMOMETERS

Indicating Thermometers

The scale range should be from 5°F (−15°C) to 250°F (120°C) with greater than 5°F (−15°C) to 250°F (120°C) with increments of not less than 1°F (0.5°C) within the specified scale range.

The temperature range should be indicated on the thermometer face.

Thermometers should be provided with a means for securing the thermometer to the tank interior.

Determination of Capability

to determine the capability of a tank to meet the coating requirements specified at the maximum operating temperature at which milk can occur given in the information chart.

If water at 30°F (−1°C) is to be held in the tank, and the water is to be cooled to 40°F (4°C) by 1°F (0.5°C) and the last coating should be allowed to operate and meet that requirement.

RECORDING THERMOMETERS

Recording thermometers should be provided for all products handled in the tank. The temperature recording device shall have a scale span of not less than 0°F (−18°C) to 20°F (−7°C) with increments of not less than 1°F (0.5°C) within the specified scale range.

The temperature accuracy shall be within ±0.5°F (±0.3°C) for the temperature range of the thermometer.

The temperature sensor shall be protected from direct sunlight.

DETERMINATION OF CAPABILITY

to determine the capability of a tank to meet the coating requirements specified at the maximum operating temperature at which milk can occur given in the information chart.

If water at 30°F (−1°C) is to be held in the tank, and the water is to be cooled to 40°F (4°C) by 1°F (0.5°C) and the last coating should be allowed to operate and meet that requirement.

VENTS

DURING CONSTRUCTION

Venting requirements included in the EDGUIDE shall be provided in the mechanical design and the application of the data plates. The data plate shall indicate the venting design and the application of the data plates. The data plate shall indicate the venting design and the application of the data plates. The data plate shall indicate the venting design and the application of the data plates. The data plate shall indicate the venting design and the application of the data plates.
3-A Sanitary Standards for Pneumatic Conveyors for Dry Milk and Dry Milk Products - Standards, Number 39-01

SCOPE
A1. These standards cover the sanitary aspects of equipment used in systems solely for the pneumatic conveying of dry milk, dry milk products, or other dry commodities, either or both, by application of an air or gas stream to convey product. These standards are not intended to cover process or packaging equipment.

B. Equipment which meets these standards shall be acceptable for food contact.

DEFINITIONS
A1. Artificial Materials: Shall mean the dry milk, dry milk products, or other dry commodities which are conveyed pneumatically in this equipment.

B. Milk Receiving Conveyors: Shall mean equipment such as rotary, air, or conveyor type which removes and conveys product from the discharge or discharge area of equipment to storage, filling, or processing.

C. Materials: Shall mean the dry milk, dry milk products, or other dry commodities which are conveyed pneumatically in this equipment.

D. Product Contact Surfaces: Shall mean all contact surfaces of which product enters the conveyor and ends at the point where product is discharged from the equipment.

E. Solution Pipelines and Cleaning: Shall mean the dry milk, dry milk products, or other dry commodities which are conveyed pneumatically in this equipment.

F. Solution Contact Surfaces: Shall mean all surfaces of equipment exposed to the air or to the air in the conveyance system, which are not required to be products contact surfaces, as defined in this standard.

G. Solution Contact Surfaces: Shall mean all surfaces of which product enters the conveyor and ends at the point where product is discharged from the equipment.

H. Solution Contact Surfaces: Shall mean all surfaces of equipment exposed to the air or to the air in the conveyance system, which are not required to be products contact surfaces, as defined in this standard.

I. Solution Contact Surfaces: Shall mean all surfaces of equipment exposed to the air or to the air in the conveyance system, which are not required to be products contact surfaces, as defined in this standard.

J. Solution Contact Surfaces: Shall mean all surfaces of equipment exposed to the air or to the air in the conveyance system, which are not required to be products contact surfaces, as defined in this standard.
Nonproduct Contact Surfaces

4.1 Nonproduct contact surfaces shall be of corrosion resistant materials or made corrosion resistant. Lf coated, the coated material shall be readily removable, durable and maintainable. Nonproduct contact surfaces, including frame and other nonproduct surfaces, which are subject to product residues and splash from product contact surfaces, shall be made corrosion resistant by bonding plastic materials having good bonding characteristics. Surface textures shall be substantially smooth or shall be readily removable, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Fabrication

1.1 All product contact surfaces shall have a lesion at least as smooth as 320 grit or 0.36 μm finish or shall be made of materials and by processes that will render the contact surfaces substantially smooth and readily removable, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and maintenance. Design shall not cause any part of the finished fabric to remain inaccessible.

Surface Texture

3.1 Smoothness Bonding. Bonding shall be so selected that bond material is in good contact with the surface to be bonded. Bonding shall be so selected that the bond is not contaminated with dirt or other impurities, such as pits, folds, and crevices in the final fabricated form. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Permanent Joints

6.1 All permanent joints in product contact surfaces shall be continuously weldable.

Piping System Design

1.4.2 All permanent joints in product contact surfaces shall have a texture such as pits, folds, and crevices in the final fabricated form and be free of imperfections or mechanical damage. Such imperfections or mechanical damage in the final fabricated form shall be relatively nonabsorbent, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Cleaning and Interoperability

3.1.1.4 The following criteria shall apply only to those nonproduct contact surfaces, which are subject to product residues and splash from product contact surfaces, shall be made corrosion resistant by bonding plastic materials having good bonding characteristics. Surface textures shall be substantially smooth or shall be readily removable, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Instrument Connections

1.1 All instrument connections having product contact surfaces shall have a texture such as pits, folds, and crevices in the final fabricated form and be free of imperfections or mechanical damage. Such imperfections or mechanical damage in the final fabricated form shall be relatively nonabsorbent, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Personal Access Ports

1.1 Personal access ports may be provided as necessary. The mode dimensions of all personal access ports shall be less than 15.0 in. (381 mm) in diameter and be of such a shape that it shall drop and drain away from the opening. The doors or cover of an access port shall be of such a size that it shall not cover excepting where the end cover shall be pitched so that liquids cannot accumulate.

Bearings

3.1.2.2 The texture and the gasket of the gasket shall be such that the gasket is readily removable, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Sintered Fluidizers

1.1.3.1 The sintered metal of fluidizers shall be designed to be removable, durable and maintainable. Nonproduct contact surfaces shall be so designed and constructed that they are accessible for cleaning and inspection.

Flexible Connections

3.1.3.1.2 The flexible connection shall be selected to have minimum average efficiency as measured by the ASHRAE Air Spot Method when tested in accordance with the ASHRAE Standard, Number 39-01.
TABLE 3 OPTIONAL METAL ALLOYS

Optional metal alloys having the following compositions are examples considered in conformance to Section 3.10. (Percentages are maximum unless range is given.)

<table>
<thead>
<tr>
<th>UNS#</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>W500</td>
<td>304.1</td>
<td>Optional metal alloys having the following compositions are examples considered in conformance to Section 3.10. (Percentages are maximum unless range is given.)</td>
</tr>
</tbody>
</table>

8. PRODUCT CONTACT SURFACE FINISH

Surface finish equal to no less than 125 grit or better is obtained with silicon carbide, preferably applied on sanding belts. A sanding belt is considered in conformance to the requirements of Section 3.10.1 when passing the surface with a maximum R, of 37 microns when measured according to the recommendations in American National Standards Institute (ANSI) American Society of Mechanical Engineers (ASME) B46.1—1983. Surface Finish. Worn-out or worn to the limit measured equivalent to 3 or 4 grit belts.

TABLE 4—Minimum Groove Radii for Standard O-Rings

<table>
<thead>
<tr>
<th>O-Ring Section, Nominal (AS 568)</th>
<th>Minimum Groove Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 155 1/8, 200 1/8</td>
<td>0.010 in.</td>
</tr>
<tr>
<td>D 355 1/8, 500 1/8</td>
<td>0.015 in.</td>
</tr>
<tr>
<td>D 555 1/8, 700 1/8</td>
<td>0.020 in.</td>
</tr>
<tr>
<td>D 755 1/8, 900 1/8</td>
<td>0.025 in.</td>
</tr>
</tbody>
</table>

M 1. SEVERED ELBOWS HANDLING AND STORAGE

D1. In accordance with the essential requirements of the standards or practices, notes, test information, and other technical information from a competent laboratory may be considered when the product was tested in a laboratory and the laboratory was not in conformity with the essential requirements of the standards or practices, notes, test information, and other technical information from a competent laboratory.

D2. The file does not have to include detailed plans or any other specific information regarding the sub-assemblies, non-functional features, and laboratory procedures used for testing the product. The file may be used for testing the product and may include only general information regarding the essential requirements of the standards or practices, notes, test information, and other technical information from a competent laboratory.
3-A Sanitary Standards are available for purchase at www.3-A.org or by telephone at 800.699.9227. See the 3-A Sanitary Standards ad on page 996.
"MAXIMIZE RISK MANAGEMENT"
--Says Germ "Buster"

Tough to get a kid to clean up his mess...
What makes you think he's got clean hands while working in your kitchen?

Do Germs Need To Be This Big To Be Seen?

Implement Your Custom Food Safety Training Program

GLOGERM
www.glogerm.com

P. O. Box 189
Moab, UT 84532
1-800-842-6622
COMING EVENTS

DECEMBER

- 1–3, Microbiology and Engineering of Sterilization Processes Course, Valley Forge Scanticon Hotel and Conference Center, King of Prussia, PA. For more information, contact Ann Rath at 612.626.1278.
- 3–5, Basic HACCP, Ithaca, NY. For more information, call Food Processors Institute at 202.393.0890; E-mail: jepstein@npa-food.org.
- 4–5, ASI Food Safety Workshop, Las Vegas, NV. For more information, call Jeanette Huge at 800.477.0778 ext. 113 E-mail: jhuge@asifood.com.
- 9–12, Refrigeration and Deep Freeze, Triumph Pavilion, Rosstroy Expo in Moscow. For more information, contact Ken Cardelle at 203.357.1400; E-mail: KCardelle@iegexpo.com.

JANUARY

- 12–13, HACCP I: Documenting HACCP Prerequisites, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, contact Marlene Inglis at 519.821.1246; E-mail: minglis@gftc.ca.
- 14–16, HACCP II: Developing Your HACCP Plan, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, contact Marlene Inglis at 519.821.1246; E-mail: minglis@gftc.ca.
- 21–22, ServSafe® for the Food Industry and Food Service, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, contact Marlene Inglis at 519.821.1246; E-mail: minglis@gftc.ca.
- 22–23, ASI Principles of HACCP Workshop, Orlando, FL. For more information, call Jeanette Huge at 800.477.0778 ext. 113; E-mail: jhuge@asifood.com.
- 26–27, Quality Improvement Associate (ASQ), Part 1, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, contact Marlene Inglis at 519.821.1246; E-mail: minglis@gftc.ca.
- 28–30, International Poultry Exposition, Georgia World Congress Center, Atlanta, GA. For more information, contact Jackie Stewart at 770.493.9401; E-mail: jstewart@poultryegg.org

FEBRUARY

- 17–19, Kentucky Association of Milk, Food and Environmental Sanitarians, Hurstbourne Hotel, Louisville, KY. For more information, contact Sue Jewell at 859.371.2278.
- 19–20, ASI Principles of HACCP Workshop, Las Vegas, NV. For more information, call Jeanette Huge at 800.477.0778 ext. 113; E-mail: jhuge@asifood.com.

IAFP UPCOMING MEETINGS

AUGUST 8-11, 2004
Phoenix, Arizona

AUGUST 14-17, 2005
Baltimore, Maryland

AUGUST 13-16, 2006
Calgary, Alberta, Canada
Driscoll's
The Finest Berries in the World

Director of Food Safety

Driscoll Strawberry Associates, Inc., the #1 leader in the berry industry has an excellent opportunity for **Director of Food Safety**. Based in Watsonville, CA, this critical position has overall responsibility for the maintenance of the current Food Safety and Food Security Program. Master of Science degree in an Agricultural related field with emphasis on microbiology and plant science OR seven years experience in Agriculture with emphasis on microbiology and plant science may be substituted for education. Excellent verbal and written communication skills; knowledge of laws and regulations of agricultural chemicals; self-starter; strong computer skills; Bilingual English/Spanish a plus; and maintains a valid California driver’s license. Requires extensive travel.

Send, fax or e-mail resume to Driscoll Strawberry Associates, Inc., Job #434, PO Box 50045, Watsonville, CA 95077, fax 831-724-8055, e-mail: Resumes@Driscolls.com.

An Equal Opportunity Employer.

Director, Alabama Agricultural Experiment Station and Dean, College of Agriculture Auburn University

Auburn University invites applications and nominations for the position of Director, Alabama Agricultural Experiment Station (AAES) and Dean, College of Agriculture. The Director, along with four Associate Directors of the AAES, is responsible for development, implementation, and management of AAES research conducted in four colleges and one school at the Auburn University main campus and 13 outlying Research Centers and Units. The Dean is Chief Administrative Officer of the College of Agriculture and is responsible for development, implementation, and management of resident instruction, research, and extension/outreach in eight academic departments. WOMEN AND ETHNIC MINORITIES ARE ENCOURAGED TO APPLY. The candidate selected for this position must be able to meet eligibility requirements to work in the United States. For more information: www.ag.auburn.edu/aaes/ or www.ag.auburn.edu. Contact: Dean Richard W. Brinker, Search Committee Chair, School of Forestry & Wildlife Sciences, 108 M. White Smith Hall, Auburn University, AL 36849-5418, (334) 844-1004, brinkrw@auburn.edu. **Affirmative Action/Equal Opportunity Employer.**

IAFP Members

Did you know that you are eligible to place an advertisement if you are unemployed and looking for a new position? As a Member benefit, you may assist your search by running an advertisement touting your qualifications.
Director
National Center for Food Safety & Technology

The Center (NCFST), founded in 1988, at Illinois Institute of Technology is a unique consortium of food industry companies, the U.S. Food and Drug Administration and university based scientists.

Located in west suburban Chicago on IIT’s Moffett Campus, the Center staff includes scientists, and support staff, as well as FDA’s Division of Food Processing and Packaging. NCFST includes processing and packaging pilot plants, well-equipped laboratories, and a library/information center. A Level 3 Biosafety Laboratory and pilot plant is currently in the design and construction phase. Upon completion, the Center will apply for CDC licensing for select agent research.

Seeking a dynamic executive to provide leadership in the growth and development of the Center. Direct collaborative, multi-client and proprietary research as well as scientific and educational programs with industry, government and academic institutions. Develop marketing and public relations programs that foster an atmosphere of positive and dynamic interaction among Center members from governmental, industrial and academic venues. Design strategic and operational plans, assure that local, state and national requirements for safety and security are met and exercise general oversight of the physical campus.

Must possess demonstrated record of entrepreneurial leadership. Ability to direct diverse scientific and technical entities in a unified research program. Advanced degree preferred.

IIT is a private Ph.D. degree-granting university for science, engineering and the professions. Visit http://www.ncfst.iit.edu.

Respond with resume/curriculum vitae and names and addresses of three professional references to ncfst@iit.edu

Illinois Institute of Technology is an affirmative action, equal opportunity employer.
Search, Order, Download 3-A Sanitary Standards

To order by phone in the United States and Canada call 800.699.9277; outside US and Canada call 734.930.9277; or Fax: 734.930.9088.

Order online at www.3-a.org

ADVERTISING INDEX

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Microbiology</td>
<td>857</td>
</tr>
<tr>
<td>BD Diagnostic Systems</td>
<td>861, Inside Back Cover</td>
</tr>
<tr>
<td>DuPont Food Risk Assessment</td>
<td>Back Cover</td>
</tr>
<tr>
<td>Ecolab, Inc.</td>
<td>859</td>
</tr>
<tr>
<td>Food Processors Institute</td>
<td>887</td>
</tr>
<tr>
<td>GloGerm Company</td>
<td>992</td>
</tr>
<tr>
<td>Michelson Laboratories, Inc.</td>
<td>887</td>
</tr>
<tr>
<td>Qualicon</td>
<td>Inside Front Cover</td>
</tr>
<tr>
<td>West Agro</td>
<td>887</td>
</tr>
</tbody>
</table>

Statement of Ownership, Management, and Circulation

Statement of Ownership, Management, and Circulation

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Editor: (Name and complete mailing address)

Unites States Postal Service: 13. Publication Title 14. Issue Date for Circulation Data Below

Statement of Ownership, Management, and Circulation:

- **Full Names and Addresses of Publisher, Editor, and Manager:**
 - Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864
 - Editor: (Name and complete mailing address)
 - Manager: (Name and complete mailing address)

- **Complete Mailing Address of Headquarters or General Business Office of Publisher:**
 - 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

PS Form 3526, October 1990 (See instructions on Reverse)

Search, Order, Download ADVERTISING INDEX

Order online

Instructions to Publishers

1. Complete this form and mail a copy of this form with your postmark date by December 1 for the December issue and by February 1 for the February issue. The publisher must also provide complete contact information in the form of the name and address of the owner, editor, and manager of the publication.

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Manager: (Name and complete mailing address)

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Publication Title: Food Protection Trends

Publication Number:

- Monthly
 - 9220 - Sub.
 - 67,500

**International Association for Food Protection, 4300 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Complete Mailing Address of Headquarters or General Business Office of Publisher:

- 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Other Classes Mailed Through the USPS:

- 51) Other Classes Mailed Through the USPS

**International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publication Title: Food Protection Trends

Publication Number:

- Monthly
 - 9220 - Sub.
 - 67,500

**International Association for Food Protection, 4300 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Complete Mailing Address of Headquarters or General Business Office of Publisher:

- 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Other Classes Mailed Through the USPS:

- 51) Other Classes Mailed Through the USPS

**International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publication Title: Food Protection Trends

Publication Number:

- Monthly
 - 9220 - Sub.
 - 67,500

**International Association for Food Protection, 4300 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Complete Mailing Address of Headquarters or General Business Office of Publisher:

- 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Other Classes Mailed Through the USPS:

- 51) Other Classes Mailed Through the USPS

**International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Publisher: Food Protection Trends, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864

Owner and/or Manager:

- Dr. William S. LaGrange, 2800 Torrey Pines, Ames, IA 50014

Managing Editor: (Name and complete mailing address)

- Ms. Lisa K. Hovey, International Association for Food Protection, 6200 Aurora Ave., Ste. 200W, Des Moines, IA 50322-2864
The Table of Contents from the journal of Food Protection is being provided as a Member benefit. If you do not receive JFP, but would like to add it to your Membership contact the Association office.

Journal of Food Protection®

Vol. 66
November 2003
No. 11

Attraction of a Free-Living Nematode, Caenorhabditis elegans, to Foodborne Pathogenic Bacteria and Its Potential as a Vector of Salmonella Poison for Preharvest Contamination of Cantaloupe
Krishtan N. Caldwell, Gary L. Anderson, Philip L. Williams, and Larry R. Beuchat†
1964

Incidence, Duration, and Prevalence of Escherichia coli O157:H7 Fecal Shedding by Feedlot Cattle during the Finishing Period
M. L. Khatib, D. R. Smith,* J. A. Stoner, A. M. Parkhurst, S. Hintley, T. J. Koplanenstein, and R. A. Moxley
1972

Seasonal Prevalence of Shiga Toxin-Producing Escherichia coli, Including O157 Serotypes, and Salmonella in Commercial Beef Processing Plants
Genevieve A. Barkocy-Gallagher,* Terrance M. Arthur, Mildred Rivera-Betancourt, Xiangwu Nou, Steven D. Shackelford, Tommy L. Wheeler, and Mohammad Koorhmane
1978

Evaluation of Methods for Recovery of Salmonella from Dairy Cattle, Poultry, and Swine Farms
Phlipus Pangboli, Yobouet Dje, S. P. Oliver, A. Mathews, D. A. Golden, W. J. Taylor, and F. A. Draughon†
1987

1996

Effect of Calf Diet Protein Level on the Prevalence of Escherichia coli O157:H7 and the Levels of Aerobic Bacteria and Enterobacteriaceae on Carcasses in a Commercial Beef Processing Plant
Xiangwu Nou,† Mildred Rivera-Betancourt, Joseph M. Bevill, Tommy L. Wheeler, Steven D. Shackelford, Buddy L. Geawichy, James D. Renge, and Mohammad Koorhmane
2005

Influence of Inoculation Method, Spot Inoculation Site, and Inoculation Size on the Efficacy of Acid Electrolyzed Water against Pathogens on Lettuce
Shigenobu Koski,* Kyoichiro Yoshida, Yoshinori Kamitani, and Kazuhiko Itou
2010

Reduction of Salmonella enterica on Alfalfa Seeds with Acidic Electrolyzed Oxidizing Water and Enhanced Uptake of Acidic Electrolyzed Oxidizing Water into Seeds by Gas Exchange Silvia D. Stan and Mark A. Daeschel*
2017

Effect of Temperature on Viability of Campylobacter jejuni and Campylobacter jejuni To Monitor Cell Survival as a Function of Temperature, pH, and Sodium Chloride Linda C. Kelana and Mansel W. Griffiths*
2002

Bactericidal Effects of Lactobacilli against and Acid Lactobacilli on Escherichia coli O157:H7 in Refrigerated Ground Beef Parthan Muthukumarasamy, Jung H. Han, and Richard A. Holley†
2038

Induced Expression of the Heat Shock Protein Genes and During Starvation at Low Temperatures and Their Influence on Thermal Resistance of Escherichia coli O157:H7 Yi Zhang and Mansel W. Griffiths*
2045

Radiation (Gamma) Resistance and Postirradiation Growth of Listeria monocytogenes Suspended in Beef Broth: Containing Sodium Dicarbonate and Potassium Lactate Christopher Summers,* Xueting Fan, Brendan A. Namis, and Kimberly Sokora
2051

Postharvest Behavior of Listeria monocytogenes Strains Having Different BerH Polymorphisms Abdoulaye Tall, Thomas H. Shellhammer,* Ahmed E. Youssaf, and Grady W. Chism
2057

Persistent and Nonsusceptible Listeria monocytogenes Contamination in Meat and Poultry Processing Plants Janne M. Lundin,* Tina J. Jauko, A.-M. Sjøberg, and Hannu J. Korkeala
2062

Heat Resistance of Bacillus spores When Adhered to Stainless Steel and Its Relationship to Spore Hydrophobicity P. Simmonds, B. L. Mossel, T. Intaraphan, and H. C. Deeth*
2070

Protection of Bifidobacteria Encapsulated in Polyacrylaide-Protein Gel Beads against Gastric Juice and Bile Daniel Gudin, Jean-Christophe Vuillemard,* and Muriel Subirade
2076

Microbiological and Physicochemical Properties of Fresh Retail Cuts and Beef Packaged under an Advanced Vacuum Systen and Stored at 4°C Jorge Barroso-Velázquez,* Luis Carreira, Carlos Franco, Beatriz I. Vázquez, Cristina Fente, and Alberto Cejada
2085

2093

Performance of Antibiotic Screening Tests in Determining the Persistence of Penicillin Residues in Eggs' Milk M. I. Bergna, M. Yamaki, R. L. Attalas, M. P. Molina, and A. Molina* 2097

2103

Comparison of Fumonisin B1 Biosynthesis in Maize Germ and Degraded Kernels by Fusarium verticillioides Won-Bo Shim, Joseph E. Fraherty, and Charles P. Wolochuk*
2116

Genotoxicity Assessment of Five Tremorgenic Mycotoxins (Fumitremorgen B, Penitrem A, Verruculogen, and Verrucosidin) Produced by Molds Isolated from Fermented Meats Monica Sabater-Vilar,* Sandra Nijmeijer, and Johanna Fink-Gremmels.
2123

Identification of Atlantic Hake Species by a Simple PCR-Based Methodology Employing Microsatellite Loci Ana G. F. Castilho, José L. Martinez, and Eva Garcia-Vázquez*
2130

* Asterisk indicates author for correspondence.

The authors do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they assume any views or opinions offered by the authors of said articles and descriptions.
the use of the Audiovisual Library is a benefit for Association Members only. Limit your requests to five videos. Material from the Audiovisual Library can be checked out for 2 weeks only so that all Members can benefit from its use.

Member #
First Name
Job Title
Company
Mailing Address
City
Postal Code/Zip + 4
Telephone #
Fax #
E-Mail

Please specify: (Home , Work)

PLEASE CHECK BOX NEXT TO YOUR VIDEO CHOICE

DAIRY
D1180 10 Points to Dairy Quality
D1010 The Bulk Milk Hauler: Protocol & Procedures
D1200 Cold Hard Facts
D1290 Elaborate Extraction Method for Determination of Raw Milk
D1300 Frozen Dairy Products
D1370 The Gerber Bacteriological Test
D1380 High Temperature: Short Time Pasteurizer
D1390 Managing Milk Quality
D1100 Mastitis Prevention and Control
D1195 Milk Hauler Training
D1110 Milk Plant Sanitation: Chemical Solution
D1120 Milk Processing Plant Inspection Procedures
D1125 Ohio Bulk Milking
D1150 Pasteurizer - Design and Regulation
D1140 Pasteurizer - Operation
D1150 Processing Fluid Milk (slides)

ENVIRONMENTAL
E8010 The ABCs of Clean - A Handwashing & Cleanliness Program for Early Childhood Programs
E8620 Acceptable Risks?
E8930 Air Pollution: Indoor
E8951 Allergy Fear
E8800 Address Awareness
E9055 Effective Handwashing-Preventing Cross-Contamination in the Foodservice Industry
E9060 EPA Test Methods for Freshwater
E9070 EPA Test Methods for Freshwater
E9071 Test Methods for Freshwater
E9072 Test Methods for Freshwater
E9570 EPA, This is Superfund
E9800 Fit to Drink
E9110 Garbage: The Movie
E9120 Global Warming: Hot Times Ahead
E9130 Kentucky Public Swimming Pool & Bathing Facilities
E9140 Putting Aside Plasticides
E9150 Radon
E9160 RCRA - Hazardous Waste
E9161 The Kitchen Uncensored Online Sanitized E8M
E9170 The New Superfund: What it is & How it Works (21 Changes in the Removal Process: Removal & Additional Program Requirements
E9180 The New Superfund: What it is & How it Works (22 Changes in the Removal Process: Removal & Additional Program Requirements
E9190 The New Superfund: What it is & How it Works - (3) Enforcement and Federal Facilities
E9210 The New Superfund: What it is & How it Works - (3) Emergency Preparedness & Community Right-to-Know
E9220 The New Superfund: What it is & How it Works - (3) Underground Storage Tank Trust Fund & Response Program

FOOD
F220 100 Degrees of Doom: The Time & Temperature Guide to Food Safety
F250 A Guide to Making Safe Smoked Fish
F2505 A Lot on the Line
F2600 The Amazing World of Microorganisms
F2800 A Recipe for Food Safety Success
F2900 Basic Personnel Practices
F3000 Cleaning & Sanitizing in Vegetable Processing Plants: Do It Well, Do It Safe!
F3100 Close Encounters of the Bird Kind
F3130 Controlling Listeria: A Team Approach
F3140 Controlling Salmonella Strategies that Work
F3200 Cooking and Cooling of Meat and Poultry Products (2 Videos)
F3300 "Egg Games" Foodservice Egg Handling and Safety
F3350 Emerging Pathogens and Grinding and Cooking Comminuted Beef (2 Videos)
F3400 Fabrication and Curing of Meat and Poultry Products (2 Videos)
F3500 Fast Track Restaurant Video Kit
F3501 Tap 1: Food Safety Essentials
F3502 Tap 2: Recording and Storage
F3503 Tap 3: In-Process Production
F3504 Tap 5: Warewashing
F3505 Tap 6: Food for Thought - The GMP Quiz Show
F3400 Food Irradiation
F3405 Food Microbiological Control (6 Videos)
F3500 Food Safe: Food Safe - HACCP & In Application to the Food Industry Part 1 & Part 2
F3600 Food: Second Series (5 Videos)
F3605 Food Safe - Series III (4 Videos)
F3607 Food Safe - Series II (4 Videos)
F3900 Food Safety: You Make the Difference
F3130 Food: Time and Temperature Controls
F3140 Food Safety for Food Service - Series II
F3141 Food Safety for Food Service - Series II
F3142 Food Safety for Food Service - Series II
F3143 Food Safety for Food Service - Series II
F3144 Food Safety for Food Service - Series II
F3145 Food Safety for Food Service - Series II
F3146 Food Safety for Food Service - Series II
F3147 Food Safety for Food Service - Series II
F3148 Food Safety for Food Service - Series II
F3149 Food Safety for Food Service - Series II
F3150 Food Safety for Food Service - Series II
F3160 Food Safety for Food Service - Series II
F3170 Food Safety for Food Service - Series II
F3180 Food Safety: You Can Make a Difference
F3190 Food Irradiation
F3191 Food Irradiation
F3192 Food Irradiation
F3193 Food Irradiation
F3194 Food Irradiation
F3195 Food Irradiation
F3196 Food Irradiation
F3197 Food Irradiation
F3198 Food Irradiation
F3199 Food Irradiation
F3200 Food Irradiation
F3202 Food Irradiation
F3203 Food Irradiation
F3204 Food Irradiation
F3205 Food Irradiation
F3206 Food Irradiation
F3207 Food Irradiation
F3208 Food Irradiation
F3209 Food Irradiation
F3210 Food Irradiation
F3211 Food Irradiation
F3212 Food Irradiation
F3213 Food Irradiation
F3214 Food Irradiation
F3215 Food Irradiation
F3216 Food Irradiation
F3217 Food Irradiation
F3218 Food Irradiation
F3219 Food Irradiation
F3220 Food Irradiation
F3221 Food Irradiation
F3222 Food Irradiation
F3223 Food Irradiation
F3224 Food Irradiation
F3225 Food Irradiation
F3226 Food Irradiation
F3227 Food Irradiation
F3228 Food Irradiation
F3229 Food Irradiation
F3230 Food Irradiation
F3231 Food Irradiation
F3232 Food Irradiation
F3233 Food Irradiation
F3234 Food Irradiation
F3235 Food Irradiation
F3236 Food Irradiation
F3237 Food Irradiation
F3238 Food Irradiation
F3239 Food Irradiation
F3240 Food Irradiation
F3241 Food Irradiation
F3242 Food Irradiation
F3243 Food Irradiation
F3244 Food Irradiation

OTHER
M4010 Diet, Nutrition & Cancer
M4020 EatingDefensively: Food Safety Advice for Persons with AIDS
M4050 Ice: The Forgotten Food
M4050 Personal Hygiene & Sanitation
M4050 Personal Hygiene & Sanitation
M4050 Personal Hygiene & Sanitation
M4055 Psychiatric Aspects of Product Tampering

BOOKLET ORDER FORM

SHIP TO:
Member # ________________________________
First Name ____________________________ M.I. ___ Last Name ________________________________
Company ________________________________ Job Title ________________________________
Mailing Address ____________________________
Please specify: Home ☐ Work ☐
City ____________________________ State or Province ____________________________
Postal Code/Zip + 4 ____________________________ Country ____________________________
Telephone # ____________________________ Fax # ____________________________
E-Mail ____________________________

BOOKLET:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedures to Investigate Waterborne Illness—2nd Edition</td>
<td>$10.00</td>
<td>$20.00</td>
</tr>
<tr>
<td></td>
<td>Procedures to Investigate Foodborne Illness—5th Edition</td>
<td>$10.00</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — $3.00 (US) $5.00 (Outside US) Each additional booklet $1.50 Shipping/Handling

Multiple copies available at reduced prices.
Phone our office for pricing information on quantities of 25 or more.

OTHER PUBLICATIONS:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*International Food Safety Icons CD</td>
<td>$25.00</td>
<td>$25.00</td>
</tr>
<tr>
<td></td>
<td>Pocket Guide to Dairy Sanitation (minimum order of 10)</td>
<td>$6.00</td>
<td>$12.00</td>
</tr>
<tr>
<td></td>
<td>*Before Disaster Strikes...A Guide to Food Safety in the Home (minimum order of 10)</td>
<td>$.60</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>Food Safety at Temporary Events (minimum order of 10)</td>
<td>$.60</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>*Developing HACCP Plans—A Five-Part Series (as published in DFES)</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>*Surveillance of Foodborne Disease — A Four-Part Series (as published in JFP)</td>
<td>18.75</td>
<td>18.75</td>
</tr>
<tr>
<td></td>
<td>*Annual Meeting Abstract Book Supplement (year requested)</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>*IAFP History 1911-2000</td>
<td>25.00</td>
<td>25.00</td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — per 10 — $2.50 (US) $3.50 (Outside US) Shipping/Handling

*Includes shipping and handling

PAYMENT:

Payment must be enclosed for order to be processed • US FUNDS on US BANK

☐ Check or Money Order Enclosed ☐ Visa ☐ MasterCard ☐ American Express ☐ Discover

CREDIT CARD # ____________________________
EXP. DATE ____________________________
SIGNATURE ____________________________

TOTAL ORDER AMOUNT ____________________________

Prices effective through August 31, 2004

4 EASY WAYS TO ORDER

PHONE 800.369.6337; 515.276.3344
FAX 515.276.8655
MAIL 6200 Aurora Ave., Suite 200W
Des Moines, IA 50322-2864, USA
WEB SITE www.foodprotection.org

NOVEMBER 2003 | FOOD PROTECTION TRENDS 999
MEMBERSHIP APPLICATION

MEMBERSHIP DATA:
Prefix (Prof. Dr. Mr. Ms.)
First Name ___________________ M.I. ___________________ Last Name ___________________
Company ___________________ Job Title ___________________
Mailing Address ___________________
Please specify: □ Home □ Work
City ___________________ State or Province ___________________
Postal Code/Zip + 4 ___________________ Country ___________________
Telephone # ___________________ Fax # ___________________
E-Mail ___________________

IAFP occasionally provides Members' addresses (excluding phone and E-mail) to vendors supplying products and services for the food safety industry. If you prefer NOT to be included in these lists, please check the box.

MEMBERSHIP CATEGORIES:

Membership with JFP & FPT — BEST VALUE!
12 issues of the Journal of Food Protection
and Food Protection Trends (formerly DFES)
□ add JFP Online $36.00 $36.00 $36.00
Membership with FPT
12 issues of Food Protection Trends
□ add JFP Online $36.00 $36.00 $36.00
*Student Membership with JFP & FPT
$82.50 $117.50 $162.50
*Student Membership with FPT
$47.50 $62.50 $77.50
□ add JFP Online $36.00 $36.00 $36.00
*Must be a full-time student. Student verification must accompany this form.

SUSTAINING MEMBERSHIPS
Recognition for your organization and many other benefits. JFP Online included.
□ GOLD $5,000.00
□ SILVER $2,500.00
□ SUSTAINING $750.00

PAYMENT:
Payment must be enclosed for order to be processed. US FUNDS on US BANK

Check Enclosed □ □ □ □ CREDIT CARD # ________________
TOTAL MEMBERSHIP PAYMENT $ ________________
EXP. DATE ________________
SIGNATURE ___________________

4 EASY WAYS TO JOIN
PHONE 800.369.6337; 515.276.3344
FAX 515.276.8655
MAIL 6200 Aurora Ave., Suite 200W
WEB SITE www.foodprotection.org
Des Moines, IA 50322-2864, USA

1000 FOOD PROTECTION TRENDS | NOVEMBER 2003
E. coli 0157, Staph and Salmonella
Never Looked So Good!

See *Escherichia coli* 0157, *Staphylococcus aureus* and *Salmonella* in living color with BBL™ CHROMagar™ plated media products. Now you can enhance your food testing protocol for faster, more accurate and cost-effective testing of food pathogens. And it’s all done with advanced chromogenic media formulations that reveal colonies of food pathogens in distinctive, identifiable colors! The latest additions to the BD line of chromogenic media allow you to isolate and detect *E. coli*, *Staph aureus* and *Salmonella* in food products.

For more information, contact your local BD representative, or call 800.638.8663.

Reader Service No. 163
If there was an intruder in your plant putting the health of your business at risk, wouldn’t you want its fingerprints?

Call DuPont™ Food Risk Assessment™ to the scene to investigate your facility for molecular intruders.

Our Microbial Mapping offering can help you expose pathogens or spoilage organisms that may be lurking in your plant, contaminating your products and compromising their integrity.

Our team of experts can capture the genetic fingerprints of the microbial intruders, revealing their identity and tracing their movement—helping you to eliminate them.

Knowledge is power... know your enemy. Protect your brand and your bottom line with Microbial Mapping from DuPont™ Food Risk Assessment™.

Protect your brand... get a molecular detective working for you.
DuPont™ Food Risk Assessment™
1-800-387-2122

© 2003 DuPont Canada Inc. The DuPont Oval Logo, DuPont™ and The Miracles of Science™ are trademarks or registered trademarks of E.I. du Pont de Nemours and Company. DuPont Canada Inc. is a licensee. DuPont™ Food Risk Assessment™ is a trademark of DuPont Canada Inc.