Store raw meat, poultry and fish separately from prepared and ready-to-eat food. If these items can't be stored separately, store them below prepared or ready-to-eat food as shown.

Follow the first in, first out (FIFO) method of stock rotation when storing food. Shelve food based upon its use-by or expiration date. Store products with the earliest dates in front of products with later dates, so older food is used first.

Store foods at the proper temperature. Fresh meat, poultry and fish should be stored at an internal temperature of 41°F (5°C) or lower.

Check temperatures of stored food and storage areas regularly. Randomly sample the internal temperature of refrigerated food with a calibrated thermometer.

If prepared food will be used later, store immediately. Deliveries should be stored as soon as they are inspected.

National Food Safety Education Month
September 2003

For more information, visit the Web site at www.nraef.org/nfsem, or call 312.715.1010, ext. 712

Campaign Sponsors

Founding Sponsors

Store it. Don't ignore it.
Staph and Salmonella Never Looked So Good!

See Staphylococcus and Salmonella in living color with BBL™ CHROMagar™ plated media products. Now you can enhance your food testing protocol for faster, more accurate and cost-effective testing of food pathogens. And it’s all done with advanced chromogenic media formulations that reveal colonies of food pathogens in distinctive, identifiable colors! The latest additions to the BD line of chromogenic media allow you to isolate and detect Staphylococcus aureus and Salmonella in food products.

For information on BBL™ CHROMagar™ Staph aureus and BBL™ CHROMagar™ Salmonella, contact your local BD representative, or call 800.638.8663.
ABOUT THE COVER...

Photo courtesy of Photo Disc, The Painted Table Signature, Series 4.

Use of this photo does not imply endorsement of any product by the International Association for Food Protection.

VOLUME 23, NO. 9

ARTICLES

728 An Assessment of the Safety of Cooling Large Cooked Meats in the Catering Sector
Nissreen Abu-Ghannam and Padraic O'Brien

735 Comparative Survival of Staphylococcus epidermidis, Listeria monocytogenes, and Staphylococcus aureus on Hot-Smoked Fish
Steven C. Ingham and Maria M. Lau

ASSOCIATION NEWS

720 Sustaining Members
722 President's Perspective
724 Commentary from the Executive Director
752 New Members

DEPARTMENTS

756 Updates
757 News
762 Industry Products
767 Coming Events
769 Advertising Index

EXTRAS

726 Letter to the Editor
727 Response to Letter to the Editor
743 Call for Nominations IAFP 2004 Secretary
746 Call for 2004 Abstracts
771 Journal of Food Protection Table of Contents
774 Audiovisual Library Form
775 Booklet Order Form
776 Membership Application

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views offered by the authors of said articles and descriptions.
Dr. Harry Haverland
1926 – 2003

It is with sorrow that we report the death of Dr. Harry Haverland, long-time leader of the International Association for Food Protection and its predecessor, the International Association of Milk, Food and Environmental Sanitarians.

Dr. Haverland began his six-year term of service on the Board of Directors of this organization in 1978. He served as President from 1981 to 1982. Soon after he completed service on the Board in 1984 Harry was appointed to the Foundation Fund Committee and served as its Chair for many years until his death in June 2003. Under his leadership, the Ivan Parkin Lecture and the Developing Scientists Awards were established in 1986, and the Audiovisual Library was started in 1987. He was a strong supporter and contributor to the silent auctions held to increase the endowment of the Foundation Fund.

Harry’s education included a Master of Public Health from the University of Minnesota and a Ph.D. from the University of Cincinnati. His career included service in the US Navy during World War II, six years at a local health department in Hamilton, OH and 35 years as a commissioned officer in the US Public Health Service. He served the USFDA in Dallas, Boston, Washington, D.C. and Cincinnati. His several positions included being Director or Chief of State Training, Milk and Food Sanitation, Interstate Travel Sanitation, and Food Hazard Surveillance. The US Public Health Service recognized Dr. Haverland with its Medal of Commendation and its Distinguished Service Award.

After retirement, Harry consulted for the Food and Agriculture Organization of the United Nations from 1985 to 1993. It was in this role that he learned of the opportunity to ship excess copies of the Journal of Food Protection and Food Protection Trends to UN headquarters in Rome where they are forwarded by FAO to developing countries for use by persons who have no resources to obtain them. The Foundation Fund continues to support those mailings annually. IAFP recognized Harry in 1985 with its Sanitarian Award, in 1992 by granting Honorary Life Membership status and again in 1998 by inducting him into the first class of IAFP Fellows. In 1997, the Association honored Harry by naming the prestigious Citation Award in his name. The Award is now known as the Harry Haverland Citation Award. He cooperated in 2000 with Earl Wright in writing the history of IAFP. In his community he served on the Board of Health.

Chief among Harry Haverland’s attributes were his active love for Helen, his wife; Alice and Kathy, his daughters, and his two grandchildren. Each has attended most of the meetings of IAFP for many years. His life was a testimony to his strong faith in his Maker who he served in his church and especially through the St. Vincent de Paul Society that he assisted for 35 years in providing food and services to families in need.

The International Association for Food Protection dedicated the 2003 meeting in honor of this outstanding servant of the organization and of mankind.

Submitted by,
Robert T. Marshall
Masticating...Homogenizing...Blending

Do it all in a sterile

WHIRL-PAK® bag.

Call today for a free sample and catalog

Nasco

Visit us at WWFE #S8542.

Call 1-800-558-9595 or visit us online at www.eNASCO.com

Canada: 1-800-668-0600

Reader Service No. 111

Let Us Come to You!

FPI, the Food Processors Institute, is uniquely qualified to conduct company-specific workshops in:

- Better Process Control
- HACCP
 - Basic HACCP
 - Verification and Validation
 - Juice HACCP
- Thermal Processing
- Sanitation and GMPs
- Juice Pasteurization

These workshops are custom tailored to a company's needs and can be held on-site. To find out more about providing training for your entire HACCP team, supervisors, QA/QC, and line workers, contact FPI at 1-800/355-0985, 202/383-0890, or e-mail us at fpi@nfpa-food.org.

The education provider for National Food Processors Association

Reader Service No. 131
EXECUTIVE BOARD

PRESIDENT, Paul A. Hall, Ph.D., Kraft Foods, North America, 801 Waukegan Road, Glenview, IL 60025-4312, USA; Phone: 847.646.3678; E-mail: phall@kraft.com

PRESIDENT-ELECT, Kathleen A. Glass, University of Wisconsin-Madison, Food Research Institute, 1925 Willow Drive, Madison, WI 53706-1187, USA; Phone: 608.263.6935; E-mail: kglass@wisc.edu

VICE PRESIDENT, Jeffrey M. Farber, Ph.D., Health Canada, Tunney's Pasture, Banting Research Center, Postal Locator 2203G3, Ottawa, Ontario K1A OL2 Canada; Phone: 613.957.0880; E-mail: jeff_farber@hc-sc.gc.ca

SECRETARY, Frank Yiannas, Food Safety and Health, Walt Disney World, P.O. Box 10000, Lake Buena Vista, FL 32830-1000, USA; Phone: 407.397.6060; E-mail: frank.yiannas@disney.com

PAST PRESIDENT, Anna M. Lammerding, Health Canada, Population and Public Health Branch, 110 Stone Road W., Guelph, Ontario N1G 3W4 Canada; Phone: 519.822.3300 Ext. 247; E-mail: anna_lammerding@hc-sc.gc.ca

AFFILIATE COUNCIL CHAIRPERSON, Steven C. Murphy, Cornell University, Dept. of Food Science, 172 Stocking Hall, Ithaca, NY 14853-7201, USA; Phone: 607.255.2893; E-mail: scm4@cornell.edu

EXECUTIVE DIRECTOR

David W. Tharp, CAE, 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864, USA; Phone: 515.276.3344; E-mail: dtharp@foodprotection.org

SCIENTIFIC EDITOR

William LaGrange, Ph.D., Iowa State University, 2800 Torrey Pines, Ames, IA 50014-4547, USA; Phone: 515.292.4131; E-mail: lagrange@iastate.edu

SCIENTIFIC NEWS EDITOR

Doug Powell, Ph.D., University of Guelph, Guelph, Ontario N1G 2W1 Canada; Phone: 519.821.1799; E-mail: dpowell@uoguelph.ca

"The mission of the Association is to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply."
Sustaining Membership provides organizations and corporations the opportunity to ally themselves with the International Association for Food Protection in pursuit of Advancing Food Safety Worldwide. This partnership entitles companies to become Members of the leading food safety organization in the world while supporting various educational programs that might not otherwise be possible. Organizations who lead the way in new technology and development join IAFP as Sustaining Members.

GOLD

- **DuPont Qualicon**
 Wilmington, DE
 302.695.5300

- **Kraft Foods North America**
 Glenview, IL
 847.646.3678

SILVER

- **bioMérieux, Inc.**
 Hazelwood, MO
 800.638.4835

- **F & H Food Equipment Co.**
 Springfield, MO
 417.881.6114

- **MATRIX MicroScience, Inc.**
 Golden, CO
 303.277.9613

- **Orkin Commercial Services**
 Atlanta, GA
 404.888.2241

- **Quality Flow Inc.**
 Northbrook, IL
 847.291.7674

- **Silliker Inc.**
 Homewood, IL
 708.957.7878

- **Weber Scientific**
 Hamilton, NJ
 609.584.7677
SUSTAINING MEMBERS

3-A Symbol Council, Lawrenceville, GA; 770.554.8923

3M Microbiology Products, St. Paul, MN; 612.733.9558

ABC Research Corporation, Gainesville, FL; 352.372.0436

ASI Food Safety Consultants, Inc., St. Louis, MO; 800.477.0778

BD Diagnostic Systems, Sparks, MD; 410.316.4467

Bentley Instruments, Inc., Chaska, MN; 952.448.7600

BioControl Systems, Inc., Bellevue, WA; 425.603.1123

Biolog, Inc., Hayward, CA; 510.785.2564

Bio-Rad Laboratories, Hercules, CA; 510.741.5653

Birds Eye Foods, Inc., Green Bay, WI; 920.435.5301

Capitol Vial, Inc., Tucson, AZ; 800.688.9515

Capitol Wholesale Meats, Chicago, IL; 773.890.0600

DARDEN Restaurants, Inc., Orlando, FL; 407.245.5330

Decagon Devices, Inc., Pullman, WA; 509.332.2756

Deibel Laboratories, Inc., Lincolnwood, IL; 847.329.9900

DonLevy & Associates, Inc., Merrillville, IN; 219.736.0472

Dynal Biotech, Inc., Lafayette Hill, PA; 866.DYNALTT

DSM Food Specialties, Menomonee Falls, WI; 262.255.7955

DQCI Services, Inc., Mounds View, MN; 763.785.0484

EMD Chemicals Inc., Gibbstown, NJ; 856.423.6300

Ecolab, Inc., St. Paul, MN; 612.293.2364

Electrol Specialties Co., South Beloit, IL; 815.389.2359

Evergreen Packaging, Division of International Paper, Cedar Rapids, IA; 319.399.3236

FoodHandler, Inc., Westbury, NY; 800.338.4433

Food Processors Institute, Washington, D.C.; 800.355.0983

Food Safety Net Services, Ltd., San Antonio, TX; 210.384.3424

Foss North America, Inc., Eden Prairie, MN; 952.974.9892

Georgia-Pacific Technology Center, Palatka, FL; 386.312.1184

IBA, Inc., Millbury, MA; 508.865.6911

International BioProducts, Inc., Bothell, WA; 425.398.7993

International Fresh-cut Produce Association, Alexandria, VA; 703.299.6282

Iowa State University Food Microbiology Group, Ames, IA; 515.294.4733

JohnsonDiversey, Sharonville, OH; 513.956.4889

Michelson Laboratories, Inc., Commerce, CA; 562.928.0553

Medical Wire & Equipment Co., 44.1225.810361

Nasco International, Inc., Ft. Atkinson, WI; 920.568.5536

Nelson-Jameson, Inc., Marshfield, WI; 715.387.1151

Neogen Corporation, Lansing, MI; 517.372.9200

Nestlé USA, Inc., Glendale, CA; 818.549.5799

NSF International, Ann Arbor, MI; 734.769.8010

Oxoid, Inc., Nepean, Ontario, Canada; 800.267.6391

Penn State University, University Park, PA; 814.865.7535

The Procter & Gamble Co., Cincinnati, OH; 513.983.8349

Purification Research Technologies Inc., Guelph, Ontario, Canada, 519.766.4169

REMEL, Inc., Lenexa, KS; 800.255.6730

Rhodia Inc., Madison, WI; 800.356.9393

Ross Products, Columbus, OH; 614.624.7040

rtech laboratories, St. Paul, MN; 800.328.9687

Seiberling Associates, Inc., Dublin, OH; 614.764.2817

Strategic Diagnostics Inc., Newark, DE; 302.456.6789

United Fresh Fruit & Vegetable Association, Alexandria, VA; 703.836.3410

Warren Analytical Laboratory, Greeley, CO; 800.945.6669

West Agro, Inc., Kansas City, MO; 816.891.1558

WestFarm Foods, Seattle, WA; 206.286.6772

Zep Manufacturing Company, Atlanta, GA; 404.352.1680
This is my first column as President of your Association. Again, I want to thank you, the members of IAFP, for electing me to the Executive Board four years ago. It is an honor and privilege to serve you in this manner. I want to extend my appreciation to the other members of your Executive Board – Affiliate Council Chairperson – Gene Frey, Secretary – Frank Yiannis, Vice President – Jeff Farber, President-Elect – Kathy Glass and Past President – Anna Lammerding. I particularly want to thank Anna Lammerding for her leadership during the past year. Our Association continued to grow stronger during her term and I pledge to you I will do my best to build on her successes. You have put your trust and confidence in all members of the Executive Board and I know each of us on the Board willingly accepts that charge with reverence and honor.

I also want to express my gratitude and appreciation to the IAFP staff led by your Executive Director, David Tharp, for working with excellence every day to serve you with distinction. They are truly a great group of individuals who are professionals in the truest sense of the word. I am pleased to call them not only colleagues, but friends, as well.

The mission of our Association is “...to provide food safety professionals worldwide with a forum to exchange information on protecting the food supply.” While each of us have our own reasons for joining IAFP, we have a common bond and goal – protection of our consumers. I personally believe that as food safety professionals, we have a duty and obligation to protect the consumer. I believe that by choosing a career in the food safety profession, we have assumed a sacred responsibility that transcends just working for our companies or institutions. We have a sacred responsibility to do our utmost to assure that the food supply is safe for everyone. It is our sacred responsibility to make prudent decisions on behalf of our consumers and to help educate those food producers, preparers, and manufacturers around the world who lack the skills or knowledge to make sound food safety decisions. In my opinion, IAFP is the premier Association enabling food safety professionals to live up to this sacred responsibility. From the Annual Meeting to the IAFP Affiliates to the Professional Development Groups to the IAFP Foundation to the two premier food safety publications (Journal of Food Protection and Food Protection Trends) and much more, your Association endeavors to help you succeed in meeting this sacred duty.

The politicians in the United States like to say the US food supply is the safest in the world. While this may be true, we know that the burden of foodborne illness in the US, and indeed, around the world is too high. I believe that if each of us views our profession as a sacred responsibility rather than merely a job, we will ultimately reduce the burden of foodborne illness. It is up to you to take full advantage of your great Association. Become active in IAFP — join an Affiliate, volunteer for a Committee or PDG, attend the Annual Meeting, contribute to the Foundation Fund or ask a friend to join. Do something each day to fulfill your sacred responsibility. Do something each day to take full advantage of your Association to help you do the best you can do. Please e-mail me at Phall@kraft.com and let me know your thoughts. Until next month...
Store it. Don’t ignore it.

Store raw meat, poultry and fish separately from prepared and ready-to-eat food. If these items can’t be stored separately, store them below prepared or ready-to-eat food as shown.

Check temperatures of stored food and storage areas regularly. Randomly sample the internal temperature of refrigerated food with a calibrated thermometer.

Follow the first in, first out (FIFO) method of stock rotation when storing food. Shelve food based upon its use-by or expiration date. Store products with the earliest dates in front of products with later dates, so older food is used first.

If prepared food will be used later, store immediately. Deliveries should be stored as soon as they are inspected.

Store foods at the proper temperature. Fresh meat, poultry and fish should be stored at an internal temperature of 41°F (5°C) or lower.

National Food Safety Education Month
September 2003

For more information, visit the Web site at www.nraef.org/nfsem, or call 312.715.1010, ext. 712.
This month we welcome Paul Hall as President of the International Association for Food Protection. It is the beginning of Paul's fourth year on the Executive Board and his twentieth year as an IAFP Member! Anna Lammerding, now our Past President, had an excellent year as President and we now look forward to making further advances under Paul's direction.

Upon completion of our Annual Meeting, new Officers take their office and those completing their terms rotate off the Board. We want to thank Jim Dickson, our most recent Past President to rotate off the Executive Board, for his service to the Board and to the Association. In addition, our Affiliate Council Chair position on the Executive Board turns over annually. Gene Frey recently completed his service to the Board in this position. Thanks Gene for your dedication, direction and involvement.

Our current Executive Board is made up of Paul Hall, President; Kathy Glass, President-Elect; Jeff Farber, Vice President; Frank Yiannas, Secretary; Anna Lammerding, Past President; and Steve Murphy, Affiliate Council Chairperson. These six individuals have a combined length of Membership in IAFP of over 85 years! That is a lot of experience and knowledge to bring together in one room for the betterment of IAFP and we appreciate the commitment and contribution that each Board Member is making to the Association.

That brings us to how you can affect the direction of the Association through its leadership, the Executive Board. Currently, we are taking nominations for Members to stand for election to the office of Secretary for the year 2004 - 2005. A Member from the education sector will be elected early in 2004 to begin serving upon conclusion of IAFP 2004 (August 12, 2004). If you know of someone from the education sector who you think would be a qualified candidate, contact either Sam Palumbo (see page 743) or me and we will enter their name into the selection discussion to be held by the Nominating Committee. Self-nominations are also encouraged. Sam is the Chairperson of the Nominating Committee and would love to hear from you!

Each candidate for Secretary commits to the Association that they are willing to serve five years on the Executive Board. This involves a time commitment to attend four Board meetings annually including Board meetings at the Annual Meeting. Of course, communication between Board meetings takes place via E-mail and telephone. If you ask any of our Past Presidents, I believe they will tell you that the years they served on IAFP's Executive Board passed very quickly and those years were the most rewarding of their professional career! Again, we encourage your nominations for the office of Secretary; the nomination deadline is October 31 so please hurry.

As you can see, we are very proud of the leadership of IAFP. These are all individuals who are successful in their own positions who are willing to share their expertise to help guide the Association. We appreciate their willingness to serve and the hours they commit. There are many opportunities for involvement in IAFP and the Executive Board represents the cream-of-the-crop because you, our individual Members, elect them! Thanks to our current Board and to all past Board Members for your giving back to the International Association for Food Protection. You can certainly be proud of your accomplishments!
International Food Safety Icons

Available from International Association for Food Protection.

For additional information, go to our Web site: www.foodprotection.org
or contact the IAFP office at 800.369.6337; 515.276.3344;
E-mail: info@foodprotection.org
March 6, 2003

Dear Dr. LaGrange:

I read with some concern a comment made in the January 2003 edition of Food Protection Trends in the article by Mossel et al. On page 18 under the sub-heading “Improper Use of Antibiotics” there is a sentence that reads, “A similar problem originates from the addition of fluoroquinolones to pig and poultry feed (point 3 of Table 1).” This is a completely erroneous and misleading statement. Point 3 of Table 1 refers to phasing out of growth promoters and fluoroquinolones have never been used in feed growth promoters in pigs and poultry.

Such statements are inflammatory and do nothing to enhance the quality of your normally excellent publication. I would ask that a corrigendum be issued immediately to correct this serious error.

Yours sincerely,

Dr. Peter Silley
Research Director
Don Whitley Scientific Limited
14 Otley Road, Shipley
West Yorkshire, BD17 7SE, UK
July 18, 2003

Dear Dr. LaGrange:

Dr. Silley’s letter draws a reader’s attention to an inaccuracy in the first part of our review paper, arguing for a holistic postgraduate training course in Food Safety. He is correct in pointing out that fluoroquinolones have never been added as growth promoters to the feed of pigs and poultry. They may, however, be administered to populations of animals on the prescription of a veterinary surgeon. Hence, the error does not invalidate our argument that the potential abuse of chemotherapeutic agents and antibiotics in animal production may constitute a menace to the public. This could result from contributing to deprive the physician from an effective medication, because the target pathogens have acquired resistance to a particular antimicrobial medicine.

The authors thank Dr. Silley for pointing out their error, and the Scientific Editor of Food Protection Trends for allowing us the opportunity to make this correction.

Yours sincerely,

J. M. Cowden, G. P. Morris, D. A. A. Mossel, and Corry B. Struijk

Eijkman Foundation for Postgraduate Education and Research in Public Health Microbiology of Food and Drinking Water Utrecht University P.O. Box 6024, 3503 PA Utrecht, The Netherlands
An Assessment of the Safety of Cooling Large Cooked Meats in the Catering Sector

NISSREEN ABU-GHANNAM* and PADRAIC O'BRIEN

*Department of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland; ‡Western Health Board, Galway, Ireland

SUMMARY

Because of an increasing trend toward cooking large meat joints in advance of service, the process of cook-chill has become an integral part of the catering sector. However, there is concern that the cook-chill process is being adopted by many conventional catering establishments that are significantly lacking in the technology and management required for the process to be safe. Compliance and practices associated with the safety of the cook-chill process were examined in a range of 50 premises consisting of hotels, restaurants and take-aways. Significant malpractice was seen in the cooling of large cooked meats. None of the premises surveyed had rapid chillers, although 95% of them perform the cook-chill practice. Consequently, the cooling time required to reach the recommended 10°C extended for up to 9 h, in contrast to the specified maximum of 150 min, resulting in conditions appropriate for Clostridia growth. Approximately 50% of respondents were unaware of the relevant guidelines and opted to use guides that require less management control and financial investment. The cook-chill process in the catering sector lacks compulsory specifications, which may have misled caterers into concluding that their cooling practices are safe. Quantitative assessment of the cooling process through temperature monitoring provides a powerful tool for communicating to caterers the hazards associated with slow cooling of large cooked meats.

*Author for correspondence: Phone: 00.353.01.4027570; Fax: 00.353.01.8788721; E-mail: nissreen.abughannam@dit.ie
INTRODUCTION

In direct response to consumers’ demands for greater menu variety and speed of service, food service establishments, in particular those with limited staff and equipment resources, have changed their catering techniques. There is now a greater tendency to cook meat in advance, after which it is cooled and stored under refrigerated conditions performed until it is either reheated or served cold at a later time. When performed correctly, this process enables the caterer to produce a wide variety of products in a time-efficient manner; however, if the process, in particular the cooling stage, is neglected, the safety of the end product may be severely endangered. When there is a time lapse between cooking and serving, a hazard is present, and the cooling of cooked meats is a process that has been adopted to control this hazard.

In the Irish standards for good manufacturing practice, I.S.340 “Hygiene in the Catering Sector” (2) specifies that the minimum temperature that must be achieved during cooking is 74°C for not less than two minutes at the centre of any food. Using this standard as a benchmark for the practices in food service establishments, it follows that only pasteurization is achieved by temperatures and times used to cook and prepare food (8). It ensues that there is always the possibility that some microorganisms that produce spores, such as *Clostridium perfringens*, will not be killed in the cooking process. *C. perfringens* has been implicated in numerous foodborne disease outbreaks because of its ability to produce heat-resistant spores that can survive and germinate in cooked beef and poultry if the rate and extent of cooling is not sufficient (7). Although the temperature range for growth of *C. perfringens* is 6°C to 52.3°C, rapid growth occurs between 35°C and 48.9°C. The short generation time of the organism, 7.1 to 20 minutes during the rapid growth range, means that fast cooling of foods is essential after spores have germinated (6). Another hazard associated with cooking meat in advance of service concerns the potential for post-cooking microbiological contamination of the cooked product. In a study by Bryan (4), cooked roast beef joints were found to become re-contaminated with *Salmonella* from workers’ hands, equipment and utensil surfaces that had been in contact with raw products. In addition, Gaze et al. (5) stated that post-cooking contamination with *E. coli* O157, *Salmonella* spp. or *Listeria monocytogenes* has frequently been implicated as the cause of food poisoning incidents related to consumption of cooked meats.

Relevant legislation and guidelines

In Ireland, two guides to good manufacturing practices contain standards and criteria relevant to the safe cooling of cooked meats.

The first guide, I.S.340 “Hygiene in the Catering Sector” (2), is used by the vast majority of catering establishments as a benchmark for their practices. It identifies as far as practicable the specific requirements that caterers must meet to ensure that the food they serve is safe, sound and wholesome. The information relevant to the cooling of cooked meat reads:

(i) When cooling cooked food, the food shall be cooled by using a blast chiller, by placing it in a cool area, or other suitable means immediately after cooking.

(ii) Cooked food shall be placed under refrigerated conditions within 90 minutes after cooking, and shall reach a temperature of less than 10°C, within 150 minutes after cooking has commenced.

It is apparent that although the guide prescribes specific time-temperature requirements it is equivocal as to how these specifications are to be achieved; it places no distinct obligation on the caterer to use a blast chiller and overlooks important factors such as restraints on the size of the joints. Subsequently, allowing caterers the discretion to make such decisions is potentially hazardous.

The second guide, “Guide for Cook-Chill Systems in Hospitals and Catering Premises” (1) (hereafter called the Cook-Chill guideline), also contains information on how food cooked in advance of service should be processed and stored in order to avoid the aforementioned hazards. In contrast to I.S.340 (2), this second guide gives a comprehensive specification of the standards required both before and during the cooling of cooked meats. Principally, this guide stipulates that food must be chilled to 10°C in a blast chiller as soon as possible after cooking within 150 minutes of removal from the cooker. Although this time-temperature requirement is identical to that in I.S.340 (2), to achieve this rate of cooling and ensure the safety of the cooled product, the following additional stipulations are included:

(i) To facilitate cooling after cooking, the joints of meat should not exceed 2.5 kg in weight, and 150 mm in thickness or height.

(ii) In order to preserve the appearance, texture, flavor, nutritional quality and safety of the cooked product, chilling should commence as soon as possible after completion of cooking and in any event within 30 minutes of leaving the cooker.

(iii) Storage life for the cook-chilled product should not be greater than 5 days, including the day of production and the day of consumption.

It is apparent that the latter guide is more thorough than I.S. 340 in its instruction to the caterer with regard to the cooling of cooked meats. It could be argued that because it is
directed towards hospital catering establishments, and as a result of the immuno-suppressed nature of their population, the standards should be more stringent. However, both guides refer to the cooling of cooked meats subject to re-heating at a later date; therefore, there appears to be no justification for inconsistency in the standards. Moreover, the fact that the time-temperature requirement for a safe rate of cooling is identical in both guides further raises the question of why the latter guide requires that additional controls be implemented to achieve a safe process. Furthermore, as the vast majority of premises are using I.S.340 (2) as their guide to good manufacturing practice, it is possible that they are failing to fully control the hazards associated with this process. Despite the ability of meat to support microbial growth, because such premises do not cook all their food in advance, at present they are not classified as "cook-chill premises", and although they are operating a process that essentially incorporates the principles of cook-chill with their joints of meat, they are not required to meet the criteria contained in these guidelines.

In the cooling of large cooked meats, a food safety target is in place, i.e., cooling meat to a temperature of less than 10°C within 150 minutes after cooking has ended. However, the means of achieving this target are not fully clear for caterers, which has led a number of Environmental Health Boards to question the safety of the process. Subsequently, this study was initiated to:

- determine factors that compromise the safety of cooled large cooked meats such as pre-cooking and post-cooking practices, and determine whether attitudes to food safety systems are consistent with the relevant guidelines.
- quantify the extent of risk by means of temperature monitoring throughout the cooling process, a process that provides a suitable means of communicating potential food safety risks to those involved in the catering industry.

MATERIALS AND METHODS

Compliance and practices associated with the cook-chill process were examined through use of a survey covering a range of 50 premises, consisting of hotels, restaurants and take-out establishments. A questionnaire was designed to collect information from participants regarding the scale of their premises, practices employed and attitudes toward specialist cook-chill technology. During questionnaire item development, an attempt was made to use terminology in common, everyday use. The questionnaire consisted of three sections. Section one contained general questions relevant to every premise, regardless of the cooling method used; section two was comprised of questions specific to premises that did not have specialist technology; and section three consisted of questions specifically related to premises employing a specialist cooling system.

Temperature monitoring experiments were conducted in selected catering premises. A full temperature history of the cooked meat joint was measured from the moment the sample was deemed fully cooked and throughout the entire cooling process. For temperature measurement, a Testostor 175-1 temperature data logger was used. This apparatus consists of a 15 cm stainless steel probe connected by a short cable to an electronic data logger. Both the external probe and the data logger itself have a built-in sensor that can measure the temperature of their respective environments, within a fixed measurement interval. The data logger then records and stores both values separately. The number of required measurements and the measuring interval can be set by the user using the Testostor 175-1 software package. Once the external probe and data logger unit are activated, each begins measuring the temperature of its environment. When all set measurements are completed, the recorded data is uploaded to a computer using either the Testostor Software or Microsoft Excel. Some premises tested operated blast chillers during the cooling of cooked meat and others did not.
RESULTS
AND DISCUSSION

Survey results

Fifty-nine percent of caterers cooled their cooked meat directly after cooking, and 36% of the premises operated a catering system in which the cooked product was served immediately after cooking and any excess was cooled and stored under refrigerated conditions until a later date. Thus 95% of the sample population performed the process of cooling cooked meats at some stage in their catering system. This statistic highlights the widespread practice of cooling cooked meat in the catering sector and emphasises the need to establish whether the relevant personnel were acquainted with the guidelines regarding cooling times, temperatures and associated controls. The survey showed that approximately half of those cooling their cooked meats are unfamiliar with relevant guidelines, which is reflected in the fact that none of the premises surveyed have rapid chillers, necessary for achieving compliance with the Cook Chill guideline (1). Instead, 95% cooled their cooked meat in accordance with the stipulations in I.S.340 (2), by placing it under ambient conditions to cool prior to refrigerating it. The remaining premises (5%) cooled their cooked meat by placing it directly into a refrigerator immediately after cooking, despite a clear warning that this may excessively raise the temperature of the refrigerator, leading to temperature abuse of the products within.

In light of the proportion of premises cooling their cooked meat at ambient conditions, it was decided to investigate the location of this preliminary cooling step. The survey showed that 63% of catering establishments place cooked product on the preparation table to cool, indicating a significant potential for post-cooking contamination in the majority of catering premises.

With respect to the duration of preliminary cooling time, I.S.340 (2) specifies a maximum time of 90 minutes, after which the cooked product should be placed under refrigerated conditions, but it fails to specify a minimum time during which the product should be allowed to cool. This study indicates great variance in the duration of the preliminary cooling times used, as shown in Figure 1. Although all establishments were essentially complying with the guideline specification, 10% refrigerated the product within 60 minutes and a further 9% stated that the preliminary cooling lasted only 30 min, which may be insufficient to avoid excessive temperature increase within the refrigerator.

At the other extreme, 18% of the premises refrigerated the cooked meat within 120 minutes, 12% within 150 minutes and 10% after a time exceeding 150 minutes. Given that the guidelines specify cooling to 10°C within 90 min, the recorded cooling procedures in this study are grossly insubordinate.
The majority of the surveyed premises were satisfied with their cooling methods, as a substantial proportion (75%) rated their cooling system 8 to 9 out of 10 (where a score of 10 was considered excellent). This suggests that caterers are unaware that their cooling procedures are non-compliant. When asked why they did not acquire a blast chiller, 67% of respondents stated that it was too expensive, while the remaining 33% believe that adequate cooling can be achieved without use of a blast chiller.

Temperature monitoring and evaluation of the cooling rate

As a result of the large size of joints and the lack of rapid chill technology in cooling regimes, rates of cooling based on practices used in the catering sector were determined. Temperature sampling was carried out with a temperature probe datalogger that measured the temperature at the core of the sample at pre-set intervals of 5 minutes from the moment the sample was deemed cooked throughout the entire cooling process. Simultaneously, a second thermometer measured the temperature of the cooling environment. Figure 4 represents findings from temperature sampling in a hospital department catering for 600 patients and 7 staff every day, with a system indicative of a modern cook-chill facility. The process is stringently controlled based on the provisions specified in the cook-chill guidelines (1). The core temperature of a 2.5 kg roast was measured during cooling in a rapid chiller. Figure 4 shows that the core temperature of a 2.5 kg meat joint was approximately 91°C, immediately after cooking. The temperature of the rapid chiller was recorded at 1.19°C (standard deviation 1.19°C). A total of 145 minutes were required to bring the joint to 10°C. Therefore, the cooling rate was sufficient to meet the requirements of the guidelines.
Figure 5 is more representative of results obtained with the cooling process employed by the majority of premises in the catering sector. The premise is a hotel that caters for upwards of 300 covers daily. As in the majority of catering establishments, cooling is done without the use of rapid chillers, and there is little restriction on the size of the joints cooked. Consequently, the sample used for this experiment was a 7.5 kg (16.54 lb.) comminuted beef roll, cooled by placing it on a preparation table for 90 min, after which it was placed into a refrigerator to cool fully. Because of the large size of the sample, temperatures were recorded from two locations on the cooked meat: at the core and at the circumference, to determine whether the cooling rate varied between the two points. Since temperature measuring began immediately after cooking, Figure 5 also provides information on the final cooking temperature. The final temperature of the circumference reached 78.62°C, while the core temperature reached only 69.31°C, rather than 74°C, as is required by 18.S.340 (2) for destruction of vegetative cells of some pathogens. This therefore highlights the principal hazard with cooling large meats, as any bacteria present could proliferate if the internal temperature is not reduced quickly. Also, because the sample was of a comminuted nature, the risk that bacteria may be present is significantly greater. Figure 5 shows that it took nearly 8 h for the temperature of the circumference to cool to the required 10°C, while the core temperature took an additional 40 min to reach the same level. When these figures are compared to the guidelines, the cooling time exceeded the maximum time allowed by 6 hours. In recent findings by the U.S. Food Safety and Inspection Service (3), it was established that excessive time in the 55°C to 25°C range is especially hazardous, as this is the range of most growth for Clostridia. It was recommended that the products' internal temperature should not remain within this temperature range for more than 1.5 hours.

As a result of inconsistencies in the duration of the preliminary cooling and the tendency indicated in the survey to cool cooked meats in low capacity refrigerators, the effect of the cooked joint on the temperature environment of the refrigerator was investigated. As seen in Figure 6, the average temperature of the refrigerator prior to the cooling of a 2.5 kg cooked sample was 6.40°C. However, within 60 min after the cooked meat was placed in the refrigerator, the temperature rose to 7.78°C and it remained above 5°C for 4 h and 40 min. In total, the refrigerator temperature was affected for 14 h by the presence of the cooked product. Although it may be argued that the resulting temperature of 7.78°C is not extremely hazardous, considerations should be given to the fact that the initial temperature of the refrigerator was exceptionally low, and if a similar increase were to occur in a refrigerator operating at a higher temperature, a more serious temperature abuse would be expected. Furthermore, it must be recognized that the joint sample cooled as illustrated in Figure 6 is relatively small compared to some of the cooked meats used in the premises surveyed. Moreover, on this occasion the sample received a preliminary cooling period of 90 min prior to entering the refrigerator. Because some premises surveyed placed the cooked product directly into the refrigerator immediately after cooking, the expected effects on refrigerator temperature could be immense.

Having compiled information regarding cooling rates and practices during the production of cooked-chilled large meat joints, this study is currently investigating the microbial risks that could arise from both malpractice and inadequate cooling rates. In particular, the potential of Clostridium perfringens survival and spore germination during cooking and cooling and the possibility of Staphylococcus aureus contamination as an indicator of cross contamination are being investigated.
CONCLUSIONS

This study shows that cooling procedures of large cooked meat joints as applied in the catering sector fail to achieve a safe cooling rate as required by the relevant guidelines and consequently increase the potential risk of foodborne outbreaks. On practical levels, this study suggests the need for product size reduction and rapid chill technology to enhance the safety of the process. However, for these recommendations to be applied, this study was designed to emphasize the importance of communicating current risks to those who are involved directly in food processing and who use procedures and quantities over which they have control. As a result, the approach was directed towards quantifying temperatures during the different methods of cooling currently in use, alongside practices pre- and post-cooking procedures, in order to achieve appropriate levels of consumer protection. The outcome has been of substantial assistance for a number of catering premises that apply the cook-chill process.

It is critical that factors compromising food safety should be simplified in a manner that is both understandable and amenable for all those directly involved in the production of safe food.

REFERENCES

Comparative Survival of Staphylococcus epidermidis, Listeria monocytogenes, and Staphylococcus aureus on Hot-Smoked Fish

STEVEN C. INGHAM* and MARIA M. LAU
Department of Food Science, University of Wisconsin-Madison,
1605 Linden Drive, Madison, WI 53706-1565, USA

SUMMARY

Inappropriate hand-to-food contact may contaminate manually processed foods such as hot-smoked fish with Staphylococcus aureus and Listeria monocytogenes. Staphylococci, including the important skinborne species S. epidermidis, have been proposed as indicators of hand-to-food contact. This study examined the survival of S. epidermidis on various hot-smoked fish stored at 5 and 10°C and compared this survival to that of L. monocytogenes and S. aureus. Populations of S. epidermidis declined by 0.6 to 1.5 log units on the interior flesh and skin surfaces of hot-smoked chubs during 10 days at 5 and 10°C. On the interior flesh surface of hot-smoked lake trout, whitefish, and salmon, S. epidermidis numbers declined by 0.2 to 1.2 log units during 21 days at 5°C. Decreases of S. aureus (1.0 to 2.4 log units) were greater than those of S. epidermidis, while L. monocytogenes grew by 3.2 to 3.7 log units on hot-smoked chubs during 10 days at 10°C and 0.7 to 3.2 log units on hot-smoked lake trout, whitefish, and salmon stored for 21 days at 5°C. The results show that (1) L. monocytogenes can quickly grow to high numbers on hot-smoked fish at 5 and 10°C and thus post-smoking contamination should be prevented, and (2) if staphylococci numbers are to be used by quality control personnel as an indicator of post-smoking manual contamination, then testing must be early in the hot-smoked fish shelf life.

A peer-reviewed article

*Author for correspondence: Phone: 608.265.4801; Fax: 608.262.6872; E-mail: scingham@facstaff.wisc.edu
TABLE 1. Percent water-phase salt in hot-smoked fish used in experiments 1 and 2

<table>
<thead>
<tr>
<th>Species, size, format</th>
<th>Processors</th>
<th>% water-phase salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chub, medium, whole</td>
<td>A</td>
<td>3.3</td>
</tr>
<tr>
<td>Lake trout, 1.8 kg, whole</td>
<td>A</td>
<td>3.8, 4.4</td>
</tr>
<tr>
<td>Lake trout, 1.4 kg, whole</td>
<td>A</td>
<td>3.7, 4.8</td>
</tr>
<tr>
<td>Whitefish, steak chunks</td>
<td>B</td>
<td>3.8</td>
</tr>
<tr>
<td>Salmon, steak chunks</td>
<td>A</td>
<td>3.2</td>
</tr>
</tbody>
</table>

* Each value given is the result for one whole fish or chunk
* Whole eviscerated fish
* Minimum size of fish in batch
* Minimum size of fish in batch; fish did not exceed 1.8 kg

INTRODUCTION

Each year, there are an estimated 76 million cases of foodborne disease in the United States. Among these cases are an estimated 2,500 cases of infection caused by foodborne Listeria monocytogenes and an estimated 185,000 cases of intoxication resulting from Staphylococcus aureus production of heat-stable enterotoxin(s) in foods (75). For the latter pathogen, actual numbers of cases probably far exceed the numbers of reported cases (9). Typical heat treatments of foods, such as pasteurization of milk or cooking of meat, are likely to destroy expected numbers of both L. monocytogenes and S. aureus. As a result, ready-to-eat foods that have been contaminated after cooking are typically involved in outbreaks of foodborne listeriosis and staphylococcal intoxication. An important way in which L. monocytogenes and S. aureus may contaminate ready-to-eat foods is by contact with human hands. Staphylococcus aureus is a common part of the human skin microflora (10) and humans can be asymptomatic carriers of L. monocytogenes (18). Both of these pathogens may also be manually transferred from unclean surfaces to food.

The genus Staphylococcus, which includes the important skin resident S. epidermidis and several other species that may inhabit skin (13, 14), has been suggested as an indicator of post-smoking manual contamination of hot-smoked fish (16). The present study examined the survival of S. epidermidis on hot-smoked fish and compared S. epidermidis survival to that of L. monocytogenes and S. aureus, two pathogens that could potentially contaminate hot-smoked fish via manual contact.

In Wisconsin, several species of fish are commercially hot-smoked. Fish-smoking plants are typically small, and the processing involves several manual steps, before and after hot-smoking. Thus, there is ample opportunity for manual contamination of finished products. In an earlier study (16), hot-smoked fish, produced by six processors and representing four fish species, were found to be frequently contaminated (15 of 22 samples) with low levels of staphylococci (< 3 log CFU/fish). The staphylococcal species most commonly isolated from these samples was S. epidermidis. S. epidermidis isolates from these samples were found to survive poorly on refrigerated hot-smoked rainbow trout containing 4.9 to 6.1% water-phase salt, a level considerably higher than the Wisconsin legal minimum of 2.5% for hot-smoked fish packaged under air (19). In the present study, the survival of S. epidermidis was evaluated on several species of hot-smoked fish having salt levels closer to the Wisconsin legal minimum level. To ensure the safety of hot-smoked fish, particularly with respect to Clostridium botulinum toxin production, Wisconsin regulations also mandate a maximum storage temperature of 3.3°C (38°F); (19). Some retail and home refrigerators may not achieve this low temperature, so the present study evaluated S. epidermidis survival on hot-smoked fish at 5 and 10°C.

Numerous studies have found Listeria spp. and L. monocytogenes on hot-smoked and cold-smoked fish, although it is not clear whether hot-smoked fish are more likely to be contaminated than cold-smoked fish (2, 4–7, 12). Cold-smoked trout contaminated with L. monocytogenes were implicated as the cause of a listeriosis outbreak in Sweden (5), but no listeriosis outbreaks have been linked to contaminated hot-smoked fish. In the United States, there have been no reported listeriosis outbreaks linked to consumption of cold-smoked or hot-smoked fish. At refrigeration and slightly abusive temperatures, L. monocytogenes reportedly can grow well on hot-smoked fish (11), and it has been speculated that L. monocytogenes would grow more rapidly on hot-smoked fish than on cold-smoked fish because hot-smoking reduces numbers of competing microbes (12).

In our earlier study, S. aureus was found on 3 of 22 hot-smoked fish samples (16). Hot-smoking and high salt levels reduce potential microbial...
competition for S. aureus contaminating the fish after smoking. Thus, there is a theoretical possibility of staphylococcal enterotoxin production at highly abusive temperatures. However, it is unlikely that S. aureus will grow and produce enterotoxin on hot-smoked fish at 5 or 10°C. In addition to evaluating S. epidermidis growth on hot-smoked fish at 5 and 10°C, we concurrently evaluated the survival/growth of L. monocytogenes and S. aureus under the same conditions. These evaluations were done to determine if using staphylococci as a post-smoking hygiene indicator would provide misleading information about risks associated with manual contamination of hot-smoked fish with L. monocytogenes or S. aureus.

MATERIALS AND METHODS

The first experiment in this study involved concurrently inoculating the skin and interior (belly cavity and flesh) of hot-smoked chubs (Coregonus hoyi) with S. epidermidis, L. monocytogenes, and S. aureus, and storing the inoculated fish at 5 and 10°C. In the second experiment, each bacterial species was inoculated separately on only the interior flesh surface of hot-smoked lake trout (Salvelinus namaycush; two different sizes: ca. 1.4 and 1.8 kg per fish), whitefish (Coregonus clupeaformis), and salmon (Oncorhynchus kisutch), which were stored only at 5°C.

Hot-smoked chubs (eviscerated whole fish), lake trout (eviscerated, headed whole fish, two sizes), whitefish (steak chunks), and salmon (steak chunks), produced by two different processors (all but whitefish from processor A), were obtained from a local grocery store and transported immediately (< 15 minutes) to the laboratory. The hot-smoked fish were frozen at -20°C for up to 6 weeks. Prior to use in experiments, frozen fish were thawed at 5°C for 24 h. From each batch of fish studied, a single sample was frozen (-20°C) and later sent to a commercial laboratory for percent water and percent salt analyses. The methods used for these analyses were AOAC International methods 950.46Bb and 980.25 (1). Percent water-phase salt for each sample was calculated as (% salt/(% water + % salt)) × 100 and is shown in Table 1.

Three strains each of S. epidermidis, L. monocytogenes, and S. aureus were used. The strains of S. epidermidis (2-20-5CII, 2-6-3AI, and 2-6-4BI) were originally isolated from hot-smoked salmon, whitefish, and salmon, respectively (16). The strains of L. monocytogenes, H0222, F8027, and F8369, were obtained from the culture collection of Dr. Larry Beuchat at the University of Georgia Center for Food Safety and Quality Enhancement; the cultures were originally obtained from raw potato, celery, and corn, respectively. Staphylococcus aureus strains FRI 100 and FRI 1007 were obtained from Dr. Amy Wong of the University of Wisconsin-Madison Food Research Institute, and strain ATCC 12600 from the American Type Culture Collection (Manassas, VA). Frozen (-20°C) stock cultures of S. epidermidis and S. aureus in double-strength brain heart infusion (BHI; Difco, Becton Dickinson, Mansfield, MA) with 20% added glycerol (Sigma, St. Louis, MO) and of L. monocytogenes in BHI with 10% added glycerol were streaked on duplicate plates of BHI agar (Difco), which were then incubated for 48 h at 35°C. From each plate, a typical isolated colony was separately transferred to 5 ml BHI and incubated for 18 h at 35°C. These cultures were then centrifuged at 5,000 x g for 8 min and the supernatant decanted. Each culture was then resuspended in 5 ml of Butterfield's Phosphate Diluent (BPD; International BioProducts, Inc., Bothell, WA). In the first experiment, the head and tail of each hot-smoked chub was removed and the remaining fish placed on an 11.5 × 20 cm polystyrene deli-type tray (Harder Paper and Packaging, Madison, WI). In the second experiment, the heads and tails of hot-smoked lake trout were removed. Each remaining lake trout was then cut into 7.6 cm long steaks and each steak was placed on a single deli-type tray. Hot-smoked steaks of whitefish and salmon (7.6 and 6.3 cm long steaks, respectively) were purchased and each steak was placed on a tray.

In the first experiment, one re-suspended culture of each of the inoculum strains were combined; 0.05 ml of the resulting “cocktail” was pipetted onto the interior (belly cavity and flesh) surface and 0.05 ml was pipetted onto the upper skin surface of each hot-smoked chub. The inoculum was distributed over each surface by use of a sterile glass “hockey stick”. After allowing the inoculum to soak into the fish during 30 minutes in a bio-safety hood, each fish was inverted on its tray and the other skin side was inoculated as described for the first side. The inoculated fish were allowed to dry in the biosafety hood for an additional 30 minutes and then each fish, on its tray, was wrapped in a clear commercial deli-style plastic wrap (45.7 cm-wide Omnifilm, Pliant Corp., Uniontown, OH; oxygen transmission rate per ASTM D3985 of 1100 cm³/645 cm² per 24 h). This procedure was repeated for a second replicate of inoculum with the same lot of hot-smoked chubs. Using this procedure, initial levels of 10⁴ to 10⁸ log CFU per fish surface (both interior surfaces or both skin surfaces) were obtained. In the second experiment, separate cocktails were made in duplicate for each inoculum species. The interior surfaces of hot-smoked lake trout, whitefish, and salmon were inoculated as previously described except that separate fish pieces were used for each inoculum species. In this experiment, initial levels of 10⁴ to 10⁸ CFU per fish (both interior surfaces) were obtained.
After inoculation, wrapped trays of hot-smoked fish were stored at 5 and 10°C (first experiment) or 5°C (second experiment). In the first experiment, the skin surfaces and interior surfaces of three fish were separately analyzed for numbers of *S. epidermidis*, *L. monocytogenes*, and *S. aureus* at day 0, and similar analyses were done at day 10 for two fish each from 5°C and 10°C storage. An additional two fish from 10°C storage were analyzed at day 5. In the second experiment, for each inoculum species two fish each were analyzed microbiologically at days 0, 10, and 21.

No analysis of uninoculated fish was done. Thus any indigenous *S. epidermidis*, *L. monocytogenes*, or *S. aureus* present would potentially have been detected along with the inoculum organisms. To analyze the skin or interior surfaces of a fish in the first experiment, a 3.5 × 7.5 cm (pre-wetted dimensions) sponge from a beef/pork carcass sampling kit (Nelson Jameson, Marshfield, WI) was wetted with ca. 10 ml of BPD provided by the manufacturer. The wetted sponge was then rubbed 5 times (complete back and forth motion) across the entire inoculated surface (approximately 80 cm² and 95 cm², respectively, for interior and skin of chubs, 115 cm² for trout and whitefish steaks, and 95 cm² for salmon steaks). The sponge was then returned to the sample bag, the remaining ca. 15 ml BPD was added, and the bag was manually squeezed to remove as much diluent from the sponge as possible. Analysis for *S. epidermidis* was done by spread-plating the diluent (1.0 ml distributed among three plates) and serially diluting the diluent as necessary in BPD and spread-plating 0.1 ml of the appropriate dilution on a single plate of Baird-Parker agar base (Difco) with added egg yolk tellurite enrichment (Difco), denoted BP + MPRT, L. monocytogenes (grey colonies with black halo on PALCAM), and *S. aureus* (medium-sized glossy raised colonies surrounded by a clear zone on BP + MPRT), *L. monocytogenes* (grey colonies with black halo on PALCAM), and *S. aureus* (medium-sized glossy raised colonies surrounded by a clear zone on BP + ET) were counted and the CFU for the sampled surface was calculated. After the initial incubation, the PFRSA plates were incubated at 62°C for 1 to 4 h, after which a thermostable DNAse-reactive disc was placed between the upper and lower halves of each plate and incubated at 55°C for 1 to 3 hours. Pink zones were counted as confirmed *S. aureus*. For all but the PFRSA plates, one typical colony each for *S. epidermidis*, *L. monocytogenes*, and *S. aureus* for each sampling time was transferred to BHI agar and incubated for 24 h at 35°C. Isolated colonies were then subjected to confirmation tests as follows: Presumptive staphylococci were tested for Gram reaction, cell morphology, biochemical characteristics as determined by the API Staph method (bioMérieux, Hazelwood, MO); presumptive *L. monocytogenes* were tested for Gram reaction, cell morphology, beta-hemolysis, catalase production, oxidase production, and biochemical characteristics as determined by the API Listeria method (bioMérieux). In the second experiment, the same methods were used to enumerate inoculum species. Two presumptive colonies of each organism for each type of fish were transferred at each sampling time to BHI agar and identified as just described.

RESULTS AND DISCUSSION

All hot-smoked fish samples tested contained more than the regulatory minimum of 2.5% water-phase salt for hot-smoked fish stored under air (Table 1) (19). However, it appeared that there was considerable variation within batches of hot-smoked lake trout. All of the samples contained less water-phase salt than the 4.9 to 6.1% in hot-smoked rainbow trout used in an earlier study of *S. epidermidis* survival on hot-smoked fish (16). The samples also generally contained less salt (on a total weight basis) than a variety of Canadian smoked fish described in an earlier study (3).

The results of the first experiment clearly showed that *S. epidermidis* and *S. aureus* did not grow well on hot-smoked chubs at 10°C, while *L. monocytogenes* did (Table 2). Staphylococcal populations decreased slightly (an average of 0.4 to 1.1 log units/fish) on hot-smoked chubs during 10 days at 10°C. Numbers of *L. monocytogenes* increased an average of 3.7 and 3.2 log units/fish, respectively, on the skin and interior surfaces under the same conditions. Since 10°C is well above the mandated minimum commercial storage temperature for hot-smoked fish, fur-
TABLE 2. Survival/growth of Staphylococcus epidermidis, Listeria monocytogenes, and Staphylococcus aureus on the skin and interior surfaces of hot-smoked chubs during 10 days storage at 5 and 10°C

Presumptive S. epidermidis (log CFU/fish)

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Skin</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5°C</td>
<td>10°C</td>
</tr>
<tr>
<td>0°</td>
<td>4.2 (0.2)°</td>
<td>4.2 (0.2)</td>
</tr>
<tr>
<td>5</td>
<td>N/A°</td>
<td>3.9, 4.1°</td>
</tr>
<tr>
<td>10</td>
<td>4.0, 3.2°</td>
<td>3.2, 3.4°</td>
</tr>
</tbody>
</table>

Presumptive L. monocytogenes (log CFU/fish)

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Skin</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5°C</td>
<td>10°C</td>
</tr>
<tr>
<td>0°</td>
<td>4.3 (0.1)°</td>
<td>4.3 (0.1)</td>
</tr>
<tr>
<td>5</td>
<td>N/A°</td>
<td>5.7, 6.7°</td>
</tr>
<tr>
<td>10</td>
<td>4.8, 4.8°</td>
<td>7.1, 8.9°</td>
</tr>
</tbody>
</table>

Presumptive S. aureus (log CFU/fish)

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Skin</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5°C</td>
<td>10°C</td>
</tr>
<tr>
<td>0°</td>
<td>BP + ET*</td>
<td>4.9 (0.1)°</td>
</tr>
<tr>
<td></td>
<td>PFRSA</td>
<td>4.6 (0.3)°</td>
</tr>
<tr>
<td>5</td>
<td>BP + ET°</td>
<td>4.5, 4.7°</td>
</tr>
<tr>
<td></td>
<td>PFRSA</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>BP + ET°</td>
<td>4.1, 4.0°</td>
</tr>
<tr>
<td></td>
<td>PFRSA</td>
<td>3.8, 3.6°</td>
</tr>
</tbody>
</table>

* Same data used at day 0 for 5°C and 10°C; n=3
* Mean of 3 samples (standard deviation in parentheses)
* Not analyzed
* Two samples analyzed, both results given
* BP + ET = Baird-Parker agar with egg yolk tellurite enrichment; PFRSA = Petrifilm Rapid S. aureus count plate

ther experiments at this temperature were not done.

At 5°C, numbers of both staphylococcal species decreased at least as much during 10 days at 5°C as they did during 10 days at 10°C (Table 2). Average decreases of 0.6 and 1.5 log units/fish (S. epidermidis) and 0.8 to 0.9 and 0.9 to 1.0 log CFU/g (S. aureus) occurred for skin and interior surfaces, respectively. In an earlier study using hot-smoked rainbow trout with water-phase salt levels of 4.9 to 6.1%, it was found that S. epidermidis numbers decreased by an average of 3.0 and 3.2 log units/fish during 10 days at 4 and 10°C, respectively (16). The greater decreases observed in the earlier study probably reflect the higher salt content of the hot-smoked rainbow trout.
TABLE 3. Survival/growth of *Staphylococcus*, *Listeria monocytogenes*, and *Staphylococcus aureus* on the interior surfaces of hot-smoked fish during storage at 5°C. Each value given is for a single sample analysis.

<table>
<thead>
<tr>
<th>Presumptive counts (log CFU/fish) on 1.8 kg lake trout</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (days)</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>5.4, 5.5</td>
</tr>
<tr>
<td>10</td>
<td>4.7, 4.9</td>
</tr>
<tr>
<td>21</td>
<td>4.7, 4.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presumptive counts (log CFU/fish) on 1.4 kg lake trout</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (days)</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>5.2, 5.5</td>
</tr>
<tr>
<td>10</td>
<td>4.9, 5.2</td>
</tr>
<tr>
<td>21</td>
<td>4.7, 5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presumptive counts (log CFU/fish) on whitefish</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (days)</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>5.3, 5.2</td>
</tr>
<tr>
<td>10</td>
<td>4.4, 4.5</td>
</tr>
<tr>
<td>21</td>
<td>4.0, 4.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presumptive counts (log CFU/fish) on salmon</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (days)</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>5.1, 5.1</td>
</tr>
<tr>
<td>10</td>
<td>4.7, 4.6</td>
</tr>
<tr>
<td>21</td>
<td>4.5, 4.5</td>
</tr>
</tbody>
</table>

*BP + ET = Baird-Parker agar with egg yolk tellurite enrichment; PFRSA = Petrifilm Rapid S. aureus count plate

In the present study, there was considerably less growth of *L. monocytogenes* over 10 days at 5°C than at 10°C (Table 2). At 5°C, numbers of *L. monocytogenes* increased by 0.5 and 0.6 log units/fish for the skin and interior surfaces, respectively. All presumptive *L. monocytogenes* isolates (8 of 8) were confirmed by further testing. There was no apparent difference between the skin and interior surface of the chubs in terms of the growth/survival of any inoculum species. Since the skin is not eaten, only the interior surface was inoculated in the second experiment. Of the two methods for enumeration of *S. aureus*, the PFRSA method yielded slightly lower numbers (≤ 0.5 log units CFU/fish) than the BP + ET method. As reported elsewhere (17), this difference may be the result of greater selectivity of the PFRSA method. Of 8 presumptive *S. aureus* isolates from BP + ET plates, 7 (87.5%) were confirmed as *S. aureus*. The unconfirmed isolate was identified as *S. epidermidis*. Isolates from PFRSA plates could not be tested because cells were inactivated during the testing for...
thermostable DNAse. All 8 presumptive S. epidermidis isolates from the BP + MPRT were confirmed.

In the second experiment, which involved three different species of hot-smoked fish, all presumptive isolates of S. epidermidis, L. monocytogenes, and S. aureus (24 isolates per species) were confirmed. The trends seen in the first experiment were again apparent. The survival of S. epidermidis on the hot-smoked fish was poor, with average decreases of 1.0, 0.2, 1.2, and 0.6 log units/fish on 1.8 kg lake trout, 1.4 kg lake trout, whitefish, and salmon, respectively (Table 3). These decreases were considerably smaller than those observed on hot-smoked chubs in the first experiments or those observed previously on hot-smoked rainbow trout (16). It is possible that greater decreases may occur in saltier hot-smoked fish or those that have had heavier applications of smoke.

On average, L. monocytogenes numbers increased during 21 days at 5°C by 3.2, 3.2, 0.7, and 0.8 log units/fish for 1.8 kg lake trout, 1.4 kg lake trout, whitefish, and salmon, respectively. Differences in L. monocytogenes growth between fish species may reflect differences in smoke component levels on the fish (18) or other compositional or processing differences. The observed growth of L. monocytogenes clearly points out the importance of preventing post-smoking L. monocytogenes contamination. The hazard associated with the presence of this pathogen may increase, by multiplication, during storage at 5 to 10°C, temperatures that may occur during distribution, despite being higher than the legal maximum. Other studies have shown that L. monocytogenes can multiply rapidly on cold-smoked fish (8) and hot-smoked fish (11) under refrigeration and moderately abusive conditions. Thus, smoked fish in general, regardless of the temperature of smoking, should be regarded as a potentially good growth substrate for this pathogen.

Numbers of S. aureus fell on all types of hot-smoked fish with average decreases of 2.4, 1.0, 1.0, and 1.0 log units/fish as measured using BP-ET agar for 1.8 kg lake trout, 1.4 kg lake trout, whitefish, and salmon, respectively. Corresponding average decreases measured using the PFRSA method were 2.0, 0.6, 1.0, and 1.6 log units/fish. Comparison of the two methods for each fish analyzed again suggested that the PFRSA method detected slightly lower numbers of S. aureus, although this difference was not apparent in the average values for each type of fish. Compared to the danger posed by L. monocytogenes contamination, the danger associated with contamination of hot-smoked fish by S. aureus appears low. This mesophilic pathogen did not grow under any of the conditions in either experiment and thus enterotoxin production would not occur. The temperatures in the two experiments were near or below the minimum growth temperature for S. aureus (10). Thus, unless the hot-smoked fish were stored at considerably higher temperatures, enterotoxin production would not be expected to occur.

Collectively, the decreases in numbers of S. epidermidis and S. aureus suggest that use of staphylococci as an indicator of hand-to-food contact must be done early in the shelf life of hot-smoked fish to maximize the likelihood of detection. There is some risk that results of staphylococci enumerations on hot-smoked fish late in its shelf life could incorrectly suggest that hand-to-food contact had not occurred. Since survival of S. aureus was even poorer than that of S. epidermidis, detecting few or no staphylococci from stored hot-smoked fish plated on BP + MPRT would provide an accurate assessment of the risk of S. aureus growth. However, it would be possible for few or no staphylococci to be detected on stored hot-smoked fish containing high numbers of L. monocytogenes that originated via manual contamination. Care must be taken to not assume that absence of staphylococci on freshly-made hot-smoked fish indicates the absence of L. monocytogenes. This pathogen may contaminate food via many non-manual sources, such as equipment and aerosols.

In summary, typical commercially hot-smoked fish do not appear to support the survival of S. epidermidis and S. aureus at 5 and 10°C, but L. monocytogenes will grow on these products at these temperatures. Thus, use of staphylococci as an indication of post-smoking hand-to-food contact must be done early in the shelf life of hot-smoked fish, before staphylococci die. Additional monitoring would be necessary to evaluate microbial contamination of hot-smoked fish via non-manual sources such as equipment surfaces.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the laboratory assistance of Thomas J. Nack and Nicholas P. Schoellier.

REFERENCES

and cold smoked seafood products.

ENHANCE™ your cleaning cycle, reduce your cleaning time, and improve your cleaning program!

CLEANING TIME REDUCTION TECHNIQUES

Michelson Laboratories, Inc.
6280 Chalet Drive, Commerce, CA 90040
(562) 928-0553 • (888) 941-5050
FAX (562) 927-6625

COMPLETE LABORATORY TESTING

SPECIALIZING IN
- ISO 25 Accredited Through A2LA
- Nutritional Labeling Programs
- Recognized Lab For FDA Blocklisted Items
- Extraneous Material Identification
- Decomposition
- Chemical Analysis
- Microbiological Analyses
- Water/Wastewater Analyses
- Quality Assurance Programs
- Consulting
- FDA Recognized
- USDA Certified
- Approved By The Japanese Ministry

Our Experience Is Your Protection

Reader Service No. 106
Reader Service No. 148

742 FOOD PROTECTION TRENDS | SEPTEMBER 2003
Call for Nominations
2004 Secretary

A representative from education will be elected in March of 2004 to serve as IAFP Secretary for the year 2004-2005.

Send letters of nomination along with a biographical sketch to the Nominations Chairperson:

Samuel A. Palumbo
826 Havenshire Road
Naperville, Illinois 60565-6187
Phone: 708.563.8287
Fax: 708.563.1873
E-mail: palumbo@iit.edu

The Secretary-Elect is determined by a majority of votes cast through a mail vote taken in March of 2004. Official Secretary duties begin at the conclusion of IAFP 2004. The elected Secretary serves as a Member of the Executive Board for a total of five years, succeeding to President, then serving as Past President.

For information regarding requirements of the position, contact David Tharp, Executive Director, at 800.369.6337 or 515.276.3344; Fax: 515.276.8655; E-mail: dtharp@foodprotection.org.

Nominations close October 31, 2003.
The International Association for Food Protection welcomes your nominations for our Association Awards. Nominate your colleagues for one of the Awards listed below. You do not have to be an IAFP Member to nominate a deserving professional. To request nomination criteria, contact:

International Association for Food Protection
6200 Aurora Ave., Suite 200W
Des Moines, Iowa 50322-2864
Phone: 800.369.6337; 515.276.3344
Fax: 515.276.8655
Web site: www.foodprotection.org
E-mail: info@foodprotection.org

Nominations deadline is March 15, 2004. You may make multiple nominations. All nominations must be received at the IAFP office by March 15, 2004.

♦ Persons nominated for individual awards must be current IAFP Members. Black Pearl Award nominees must be companies employing current IAFP Members. NFPA Food Safety Award nominees do not have to be IAFP Members.

♦ Previous award winners are not eligible for the same award.

♦ Executive Board Members and Awards Committee Members are not eligible for nomination.

♦ Presentation of awards will be during the Awards Banquet at IAFP 2004 – the Association’s 91st Annual Meeting in Phoenix, Arizona on August 11, 2004.
Nominations will be accepted for the following Awards:

Black Pearl Award — Award Showcasing the Black Pearl

Presented in recognition of a company's outstanding achievement in corporate excellence in food safety and quality.

Sponsored by Wilbur Feagan and F&H Food Equipment Company

Fellow Award — Distinguished Plaque

Presented to Member(s) who have contributed to IAFP and its Affiliates with quiet distinction over an extended period of time.

Honorary Life Membership Award — Plaque and Lifetime Membership in IAFP

Presented to Member(s) for their devotion to the high ideals and objectives of IAFP and for their service to the Association.

Harry Haverland Citation Award — Plaque and $1,000 Honorarium

Presented to an individual for years of devotion to the ideals and objectives of IAFP.

Sponsored by Silliker Inc.

Harold Barnum Industry Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the food industry.

Sponsored by NASCO International, Inc.

Educator Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the arena of education in food safety and food protection.

Sponsored by Nelson-Jameson, Inc.

Sanitarian Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding service to the public, IAFP and the profession of the Sanitarian.

Sponsored by Ecolab, Inc., Food and Beverage Division

Maurice Weber Laboratorian Award — Plaque and $1,000 Honorarium

Presented to an individual for outstanding contributions in the laboratory, recognizing a commitment to the development of innovative and practical analytical approaches in support of food safety.

Sponsored by Weber Scientific

International Leadership Award — Plaque, $1,000 Honorarium and Reimbursement to attend IAFP 2004

Presented to an individual for dedication to the high ideals and objectives of IAFP and for promotion of the mission of the Association in countries outside of the United States and Canada.

Sponsored by Unilever

NFPA Food Safety Award — Plaque and $3,000 Honorarium

This Award alternates between individuals and groups or organizations. In 2004, the award will be presented to a group or organization in recognition of a long history of outstanding contributions to food safety research and education.

Sponsored by National Food Processors Association
Call for Abstracts

IAFP 2004
The Association’s 91st Annual Meeting
August 8-11, 2004
Phoenix, Arizona

General Information

1. Complete the Abstract Submission Form.
2. All presenters must register for the Annual Meeting and assume responsibility for their own transportation, lodging, and registration fees.
3. There is no limit on the number of abstracts registrants may submit. However, presenters must present their presentations.
4. Accepted abstracts will be published in the Program and Abstract Book. Editorial changes will be made to accepted abstracts at the discretion of the Program Committee.
5. Photocopies of the abstract form may be used.
6. Membership in the Association is not required for presenting a paper at IAfp 2004.

Presentation Format

1. Technical — Oral presentations will be scheduled with a maximum of 15 minutes, including a two to four minute discussion. LCD projectors will be available.
2. Poster — Freestanding boards will be provided for presenting posters. Poster presentation surface area is 4’ high by 8’ wide. Handouts may be used, but audiovisual equipment will not be available. The presenter will be responsible for bringing pins and velcro.

Note: The Program Committee will make the final decision on presentation format.

Instructions for Preparing Abstracts

1. Title — The title should be short but descriptive. The first letter in each word in the title and proper nouns should be capitalized.
2. Authors — List all authors using the following style: first name followed by the surname.
3. Presenter Name & Title — List the full name and title of the person who will present the paper.
4. Presenter Address — List the name of the department, institution and full postal address (including zip/postal code and country).
5. Phone Number — List the phone number, including area, country, and city codes of the presenter.
6. Fax Number — List the fax number, including area, country, and city codes of the presenter.
7. E-mail — List the E-mail address for the presenter.
8. Format preferred — Check the box to indicate oral or poster format. The Program Committee makes the final decision on the format of the abstract.
9. Category — Check the box to indicate which category best fits the subject of the abstract.
10. Developing Scientist Awards Competitions — Check the box to indicate if the paper is to be presented by a student in this competition. A signature and date is required from the major professor or department head. See “Call for Entrants in the Developing Scientist Awards Competitions.”
11. Abstract — Type abstract, double-spaced, in the space provided or on a separate sheet of paper, using a 12-point font size. Use no more than 250 words.
Abstract Submission

Abstracts submitted for IAFP 2004 will be evaluated for acceptance by the Program Committee. Please be sure to follow the format instructions above carefully; failure to do so may result in rejection. Information in the abstract data must not have been previously published in a copyrighted journal.

Abstracts must be received no later than January 5, 2004. Return the completed abstract form through one of the following methods:

1. Online: Use the online abstract submission form located at www.foodprotection.org. You will receive an E-mail confirming receipt of your submission.
2. E-mail: Submit via E-mail as an attached text or MS Word document to abstracts@foodprotection.org.

Selection Criteria

1. Abstracts must accurately and briefly describe:
 (a) the problem studied and/or objectives;
 (b) methodology;
 (c) essential results; and
 (d) conclusions and/or significant implications.
2. Abstracts must report the results of original research pertinent to the subject matter. Papers should report the results of applied research on: food, dairy and environmental sanitation; foodborne pathogens; food and dairy microbiology; food and dairy engineering; food and dairy chemistry; food additives and residues; food and dairy technology; food service and food administration; quality assurance/control; mastitis; environmental health; waste management and water quality. Papers may also report subject matter of an educational and/or nontechnical nature.
3. Research must be based on accepted scientific practices.
4. Research should not have been previously presented nor intended for presentation at another scientific meeting. Papers should not appear in print prior to the Annual Meeting.
5. Results should be summarized. Do not use tables or graphs.

Rejection Reasons

1. Abstract was not prepared according to the “Instructions for Preparing Abstracts.”
2. Abstract does not contain essential elements as described in “Selection Criteria.”
3. Abstract reports inappropriate or unacceptable subject matter or is not based on accepted scientific practices, or the quality of the research or scientific approach is inadequate.
4. Work reported appears to be incomplete and/or data are not presented. Indication that data will be presented is not acceptable.
5. Abstract was poorly written or prepared. This includes spelling and grammatical errors.
6. Results have been presented/published previously.
7. Abstract was received after the deadline for submission.
8. Abstract contains information that is in violation of the International Association for Food Protection Policy on Commercialism.

Projected Deadlines/Notification

Contact Information

Questions regarding abstract submission can be directed to Bev Corron, 515.276.3344 or 800.369.6337; E-mail: bcorron@foodprotection.org.

Program Chairperson

Gary Acuff
Texas A & M University
Department of Animal Science
2471 TAMU
College Station, TX 77843-2471
Phone: 979.845.4402
Fax: 979.845.9354
E-mail: gacuff@tamu.edu
(1) Title of Paper

(2) Authors

(3) Full Name and Title of Presenter

(4) Institution and Address of Presenter

(5) Phone Number

(6) Fax Number

(7) E-mail

(8) Format preferred: □ Oral □ Poster □ No Preference

The Program Committee will make the final decision on presentation format.

(9) Category: □ Produce □ Foods of Animal Origin □ Seafood □ Other Food Commodities □ Risk Assessment □ Education □ General Microbiology and Sanitation □ Antimicrobials □ Pathogens

(10) Developing Scientist Awards Competition □ Yes Graduation date

Major Professor/Department Head approval (signature and date)

(11) TYPE abstract, DOUBLE-SPACED, in the space provided or on a separate sheet of paper, using a 12-point font size. Use no more than 250 words.
Call for Entrants in the
Developing Scientist Awards Competitions
Supported by the International Association for Food Protection Foundation

The International Association for Food Protection is pleased to announce the continuation of its program to encourage and recognize the work of students and recent graduates in the field of food safety research. Qualified individuals may enter either the oral or poster competition.

Purpose

1. To encourage students and recent graduates to present their original research at the Annual Meeting.
2. To foster professionalism in students and recent graduates through contact with peers and professional Members of the Association.
3. To encourage participation by students and recent graduates in the Association and the Annual Meeting.

Presentation Format

Oral Competition — The Developing Scientist Oral Awards Competition is open to graduate students (enrolled or recent graduates) from M.S. or Ph.D. programs or undergraduate students at accredited universities or colleges. Presentations are limited to 15 minutes, which includes two to four minutes for discussion.

Poster Competition — The Developing Scientist Poster Awards Competition is open to students (enrolled or recent graduates) from undergraduate or graduate programs at accredited universities or colleges. The presenter must be present to answer questions for a specified time (approximately two hours) during the assigned session. Specific requirements for presentations will be provided at a later date.

General Information

1. Competition entrants cannot have graduated more than a year prior to the deadline for submitting abstracts.
2. Accredited universities or colleges must deal with environmental, food or dairy sanitation, protection or safety research.
3. The work must represent original research completed and presented by the entrant.
4. Entrants may enter only one paper in either the oral or poster competition.
5. All entrants must register for the Annual Meeting and assume responsibility for their own transportation, lodging, and registration fees.
6. Acceptance of your abstract for presentation is independent of acceptance as a competition finalist. Competition entrants who are chosen as finalists will be notified of their status by the chairperson by May 28, 2004.
7. All entrants with accepted abstracts will receive a complimentary, one-year Student Membership. This membership will entitle you to receive JFP Online.
8. In addition to adhering to the instruction in the “Call for Abstracts,” competition entrants must check the box to indicate if the paper is to be presented by a student in this competition. A signature and date is required from the major professor or department head.

Judging Criteria

A panel of judges will evaluate abstracts and presentations. Selection of up to five finalists for each competition will be based on evaluations of the abstracts and the scientific quality of the work. All entrants will be advised of the results by May 28, 2004. Only competition finalists will be judged at the Annual Meeting and will be eligible for the awards.

Judging criteria will be based on the following:

1. Abstract - clarity, comprehensiveness and conciseness.
2. Scientific Quality - Adequacy of experimental design (methodology, replication, controls), extent to which objectives were met, difficulty and thoroughness of research, validity of conclusions based upon data, technical merit and contribution to science.
3. Presentation - Organization (clarity of introduction, objectives, methods, results and conclusions), quality of visuals, quality and poise of presentation, answering questions, and knowledge of subject.

Finalists

Awards will be presented at the International Association for Food Protection Annual Meeting Awards Banquet to the top three presenters (first, second and third places) in both the oral and poster competitions. All finalists are expected to be present at the banquet where the awards winners will be announced and recognized.

Awards

- First Place - $500 and an engraved plaque
- Second Place - $300 and a framed certificate
- Third Place - $100 and a framed certificate

Award winners will receive a complimentary, one-year Student Membership including Food Protection Trends, Journal of Food Protection, and JFP Online.
Policy on Commercialism
for Annual Meeting Presentations

1. INTRODUCTION

No printed media, technical sessions, symposia, posters, seminars, short courses, and/or other related types of forums and discussions offered under the auspices of the International Association for Food Protection (hereafter referred to as to Association forums) are to be used as platforms for commercial sales or presentations by authors and/or presenters (hereafter referred to as authors) without the express permission of the staff or Executive Board. The Association enforces this policy in order to restrict commercialism in technical manuscripts, graphics, oral presentations, poster presentations, panel discussions, symposia papers, and all other type submissions and presentations (hereafter referred to as submissions and presentations), so that scientific merit is not diluted by proprietary secrecy.

Excessive use of brand names, product names or logos, failure to substantiate performance claims, and failure to objectively discuss alternative methods, processes, and equipment are indicators of sales pitches. Restricting commercialism benefits both the authors and recipients of submissions and presentations.

This policy has been written to serve as the basis for identifying commercialism in submissions and presentations prepared for the Association forums.

2. TECHNICAL CONTENT OF SUBMISSIONS AND PRESENTATIONS

2.1 Original Work

The presentation of new technical information is to be encouraged. In addition to the commercialism evaluation, all submissions and presentations will be individually evaluated by the Program Committee chairperson, technical reviewers selected by the Program Committee chairperson, session convenor, and/or staff on the basis of originality before inclusion in the program.

2.2 Substantiating Data

Submissions and presentations should present technical conclusions derived from technical data. If products or services are described, all reported capabilities, features or benefits, and performance parameters must be substantiated by data or by an acceptable explanation as to why the data are unavailable (e.g., incomplete, not collected, etc.) and, if it will become available, when. The explanation for unavailable data will be considered by the Program Committee chairperson and/or technical reviewers selected by the Program Committee chairperson to ascertain if the presentation is acceptable without the data. Serious consideration should be given to withholding submissions and presentations until the data are available, as only those conclusions that might be reasonably drawn from the data may be presented. Claims of benefit and/or technical conclusions not supported by the presented data are prohibited.

2.3 Trade Names

Excessive use of brand names, product names, trade names, and/or trademarks is forbidden. A general guideline is to use proprietary names once and thereafter to use generic descriptors or neutral designations. Where this would make the submission or presentation significantly more difficult to understand, the Program Committee chairperson, technical reviewers selected by the Program Committee chairperson, session convenor, and/or staff, will judge whether the use of trade names, etc., is necessary and acceptable.

2.4 “Industry Practice” Statements

It may be useful to report the extent of application of technologies, products, or services; however, such statements should review the extent of application of all generically similar technologies, products, or services in the field. Specific commercial installations may be cited to the extent that their data are discussed in the submission or presentation.

2.5 Ranking

Although general comparisons of products and services are prohibited, specific generic comparisons that are substantiated by the reported data are allowed.

2.6 Proprietary Information (See also 2.2.)

Some information about products or services may not be publishable because it is proprietary to the author’s agency or company or to the user. However, the scientific principles and validation of performance parameters must be described for such products or services. Conclusions and/or comparisons may be made only on the basis of reported data.

2.7 Capabilities

Discussion of corporate capabilities or experiences are prohibited unless they pertain to the specific presented data.
Clear-Cut Test Results for Our Most Valuable Resource

BD introduces three NEW Chromogenic Water Testing Media:

- MI Agar
- Modified mTEC Agar
- mEl Agar

- Low false-positive and false-negative rates
- Final results in 24 hours or less
- Single membrane technique — no membrane filter transfers required
- All formulations conform to USEPA approved methods

Reader Service No. 162
NEW MEMBERS

BARBADOS
Edward B. Massiah
Hipac Ltd., Bridgetown

CANADA
Anas A. Al-Nabulsi
University of Manitoba
Winnipeg, Manitoba
Paul F. Baxter
Schneider Foods
Kitchener, Ontario
Irene M. Mentis
Canadian Food Inspection Agency
Scarborough, Ontario
Mario Ouellon
Bariatrix International Inc.
Lachine, Quebec
Gloria L. Pennycook
DuPont Canada, Inc.
Mississauga, Ontario
George A. Rice
Fraser Health Authority
Hope, British Columbia
Trevor States
Costco Wholesale
Ottawa, Ontario
Jerome Woynarski
BC Hot House Foods, Inc.
Surrey, British Columbia

FRANCE
Stéfano Colombo
Silliker bioMérieux
Paris

GREECE
Panagiotis Skandamis
Agricultural University of Athens
Kallithea, Athens

ISRAEL
David Rosenblatt
The Standards Institute of Israel
Tel-Aviv

MEXICO
Maria Del Carmen Rabiela
ESDAI Universidad Panamericana
Mexico City
Covadonga Torre
ESDAI Universidad Panamericana
Mexico City

SOUTH KOREA
Sang-Do Ha
Chung-Ang University
Ansung-Si, Gyeonggi-Do
Zheng-you Yang
Gyeongang National University
Chinju, Gyeongnam
Kwang-Ro Yoon
Chung-Ang University
Ansung-Si, Gyeonggi-Do

THAILAND
Prachak Poomvises
Chakmartin Intervirontech Ltd.
Bangkok

UNITED KINGDOM
John L. Basset
Unilever
Bedford, Bedfordshire
Leanne Ellis
University of Wales Institute-Cardiff
Cardiff, South Wales
Richard C. Hayes
University of Wolverhampton
Wolverhampton
David Wareing
Dynam Biotech, Inc.
Preston

UNITED STATES
ALABAMA
Jordan W. Bowers
Auburn University
Auburn
Debra L. Byrd
Alabama A&M University
Huntsville
Wendy Lang
Alabama A&M University
Normal

ARKANSAS
Chris W. Coleman
Safe Foods Corporation
North Little Rock

CALIFORNIA
Michael B. Cooley
USDA/ARS, Albany
Lon Doty
FOODSAFE Systems, Inc.
South San Francisco
NEW MEMBERS

Denise M. Foley
Chapman University
Orange

Prakash R. Patil
Central Valley Cheese
Turlock

Nela J. Romo
El Pollo Loco, West Covina

COLORADO
Jessica M. Cannon
Boulder Co. Health Dept.
Boulder

CONNECTICUT
Hector M. Haas
Dept. of the Army
Groton

DELAWARE
Doris T. Hicks
University of Delaware
Lewes

DISTRICT OF COLUMBIA
Shari L. Rolando
Association of Public Health Laboratories, Washington

Florida
Daniel Coto
EHA Consulting Group, Inc.
Tampa

Robert M. Hammond
Florida Dept. of Health
Tallahassee

Frank Hatcher
Environmental Health Testing
Orlando

Kathy Henry
Environmental Health Testing
Orlando

Yuelian Shen
Florida Dept. of Agriculture
& Consumer Svcs, Tallahassee

GEORGIA
David S. Gottfried
Georgia Tech Research Institute
Atlanta

HAWAII
Stacy M. Yamamoto
CENPAC Dvc
Fort Shafter

ILLINOIS
Jayne A. Nosari
Illinois Dept. of Public Health
Springfield

Catherine J. Reynolds
Silliker, Inc., Homewood

Gillaume Touvet
Chiappetti Wholesale Meat Co.
Chicago

INDIANA
Paul M. Druley
Holy Cross College
South Bend

Daniel M. Khali
Purdue University
West Lafayette

Steven H. Sassaman
Pri-Pak Inc., Lawrenceburg

W. E. Spindler
Wayne Chemical Co.
Fort Wayne

IOWA
James W. Stevens
Maytag Dairy Farms
Newton

KANSAS
Lisa A. Borgmann
USDA/FSIS
Perry

Buffy A. Stohs
Kansas State University
Manhattan

MAINE
Darrell W. Donahue
University of Maine
Orono

MARYLAND
Melanie Bjork
Applebee's International
Overland Park

Yaguang Luo
USDA
Beltville

Irish E. Valentin-Bon
FDA/CFSAN
College Park

Massachusetts
Emmanouil Apostolidis
University of Massachusetts
Amherst

William K. Shaw, Jr.
University of Massachusetts
Amherst
NEW MEMBERS

MICHIGAN
Arzu Cagri
Michigan State University
Lansing

Nancy Culotta
NSF International
Ann Arbor

Joseph M. Madden
Neogen Corporation
Lansing

MINNESOTA
Sophia C. Czechowicz
3M Microbiology
St. Paul

Cynthia D. Zook
3M Microbiology
St. Paul

MISSISSIPPI
Farid M. Balaa
USDA, Mississippi State

Chonthida Kaewplang
Mississippi State University
Starkville

John M. McGillivray
Mississippi State University
Mississippi State

Chad B. Robertson
Mississippi State University
Mississippi State

Juan L. Silva
Mississippi State University
Mississippi State

Jelena Stojanovic
Mississippi State University
Mississippi State

JOHN BOSLAND
bioMérieux, Inc.
Hazelwood

RANDY CASEY
bioMérieux, Inc.
Hazelwood

CHRIS CRAWFORD
bioMérieux, Inc.
Hazelwood

DENNIS D’ALFONSO
bioMérieux, Inc.
Hazelwood

MARY ANN GORIS
Schnuck Markets, Inc.
St. Louis

JOHN MOLLER
bioMérieux, Inc.
Hazelwood

TERRI PONTIOUS
bioMérieux, Inc.
Hazelwood

CHERI SMITH
Jefferson Co. Health Dept.
Hillsboro

NEW YORK
Carolyn M. Mayerhauser
Pepsi Cola Co.
Valhalla

Daniel A. Seigerman
Cornell University
Roslyn

NORTH CAROLINA
Yolanda M. Harrison
Avendra
Charlotte

Hong Yang
North Carolina State University
Raleigh

OHIO
Hussein M. Mohamed
Ohio State University
Columbus

Michael J. Warden
Cargill Inc.
Sidney

OKLAHOMA
Margo E. Kendall
BioCheck Corporation
Oklahoma City

Ross C. Walker
Oklahoma State University
Oklahoma City

NEW HAMPSHIRE
Kimberly J. Onett
Sushi Mari Hanna SM
Plaistow

NEBRASKA
Robert E. Peterson
University of Nebraska-Lincoln
Lincoln

John H. Rupnow
University of Nebraska-Lincoln
Lincoln

NEVADA

PENDS YL V ANIA
Pyong U. Roh
Fort Washington

Joan M. Skillin
Sussex Co. Dept. of Health
Dingmans Ferry
NEW MEMBERS

Fay B. Strickler
Penn State Cooperative Extension
Leesport

Morgan Wallace
UDA/ARS
Wyndmoor

PUERTO RICO
Stella Andino
Hershey Puerto Rico, Inc.
Las Piedras

SOUTH CAROLINA
Randy A. Cable
The BOC Group
Mount Pleasant

Terry C. Williams
DHEC
Irmo

TENNESSEE
Joy D. Haller
Cracker Barrel Old Country Store
Lebanon

Virginia E. Hoban
Level Valley Creamery, Inc.
Gainesboro

Min Huang
The University of Tennessee
Knoxville

Jacob H. Stevens
The University of Tennessee
Knoxville

TENNESSEE

Jose Gabriel Rodriguez
Texas A&M University
Houston

Sasi Vadlamudi
Texas A&M University
College Station

VIRGINIA
Tatiana A. Lorca
Virginia Tech
Blacksburg

WASHINGTON
Suzanne Schreck
Marler Clark LLP, PS
Seattle

Patti Waller
Marler Clark LLP, PS
Seattle

WISCONSIN
Amy S. Fox
AgeAdvantAge, Inc.
Madison
Thomas J. Gruetzmacher Named Vice President for Land O'Lakes

Thomas Gruetzmacher has been named vice president of dairy foods research and development for Land O'Lakes. Gruetzmacher has over 25 years of experience in dairy research, including executive positions at Dean Foods Company. Most recently, he served as commercial technology director for Kerry, Inc. Gruetzmacher has held leadership roles with the Associated Illinois Milk, Food and Environmental Sanitarains, IFT, and ADSA.

New Chief Executive for Food Safety Authority of Ireland

The Food Safety Authority of Ireland has announced that Ann Westby has been appointed chief executive of the Food Safety Authority of Ireland and will take up office in early October. Ms. Westby is currently technical and corporate affairs manager with Nestlé Ireland. She has over 30 years experience in the food industry having held a number of technical and managerial positions in Nestlé Ireland.

Ms. Westby is a member of a number of food science professional bodies including the Institute of Food Science and Technology UK, past president and fellow of the Institute of Food Science and Technology of Ireland, and past chairman and honorary fellow of the Irish Society of Food Hygiene Technology.

In addition, Ms. Westby is currently involved in a range of professional activities, including her role as chairman of the Regulatory and Technical Group in IBEC, and membership of Teagasc Industry Group on Training. She is also a member of the working group with the Department of Agriculture & Food dealing with the Food Institutional Research Measure (FIRM), this measure provides a framework for research in generic technologies supporting innovation and development in the Irish food industry.

Organic Valley Appoints Four New Sales Managers

Mark Zurek has joined the Organic Valley sales management team as the regional manager for the New York Metro, Philadelphia and Washington, D.C. markets.

In the food broker business for 22 years, Zurek most recently served as senior account manager of Paul G. Nester & Son Company. Prior to that post, he was a senior account executive with the Joseph W. Riley Company that became a part of Crossmark in 2000.

Jack Lee will be the regional manager for the Northwestern United States. A 25-year veteran of the organic and natural food business, Lee most recently served as vice president of the Natural Foods Division of Advantage Sales and Marketing. Prior to that post, he was co-owner and retail sales manager of Northwest Specialties, an organic and natural foods brokerage that became a part of Advantage in 1999. His previous positions were in sales for ID Wares, a food service operation, Port Townsend Baking Company, a whole grains bakery, and Community Produce, a cooperative that eventually became part of Mountain Peoples Warehouse.

Douglas Hanson has been promoted to division sales manager. Douglas is an industry all star with more than 20 years experience in food sales, including positions with brokerage companies, distributors and manufacturers. Hanson will be responsible for executing Organic Valley's national sales plan within the western United States for both the mass market and natural foods classes of trade. He also oversees the sales activities in the division's four regions. This includes the development of annual sales and expenses budgets, promotional activity, new product launches and overall distribution gains.

John Morrissey has been promoted to Eastern division sales manager. Morrissey served previously as Organic Valley's Northeast regional sales manager. John will be responsible for expanding divisional sales and distribution of the Organic Valley branded products including organic milk, juices, eggs, butter, cheese and meats. He manages four regional sales managers who cover New England, New York, Washington, D.C., and the Southeast and the Midwest.
Web Site Offers Information, Insight on Foodborne Illnesses

Whether it's potato salad left out in the sun, hamburger that has seen better days, or a steak that wasn't cooked enough, a long holiday weekend can create some gastrointestinal problems if you're not careful.

If you find yourself suffering from what you think is a foodborne illness, there's a Web site that can not only offer you some help, but also help health officials determine if there is a public health problem to consider.

Developed by the Michigan State University National Food Safety and Toxicology Center (NFSTC), the Web site is at www.RUSick2.msu.edu. People who are experiencing sudden vomiting and diarrhea — strong symptoms of food poisoning — can go to the Web site to see if others have reported eating the same foods or are experiencing the same symptoms.

"This brings food poisoning victims together and lets them compare notes," said Holly Wethington, an MSU graduate student who is managing the project. Believed to be the first of its kind in the nation, the Web site allows users to fill out an online survey to determine how many other forum users with the same symptoms ate the same foods from the same source at the same time.

The survey has been adapted to take as long as the visitor wishes — he or she can enter just symptoms, or continue and enter a food history, and maybe even food sources, if time permits.

"Before, no one knew if they were part of a cluster," said Paul Bartlett, a professor in the NFSTC who developed the site. "Many people automatically blame their last restaurant. In most instances, the forum will help convince people who are ill that they are not part of a foodborne outbreak cluster."

Originally launched in November 2002, the Web site was designed to detect clusters of suspected food poisoning cases in Michigan's Ingham, Eaton and Clinton counties. Since then, the site has expanded its scope.

"Since visitors were coming in from all over Michigan, it made sense to expand the efforts of the project," Wethington said. "Advertising on Google began in April and now the forum is getting visitors from all over the country."

The RUSick2 project is funded by a $600,000 grant from the Michigan Life Sciences Corridor. Also involved in the project are epidemiologists from the Michigan Department of Community Health, Michigan Department of Agriculture, the University of Michigan and several local health departments.

Symptoms of foodborne illness can include nausea, diarrhea and abdominal cramps. Stomach and abdominal pain, cramps and spasms are the number one reason people go to a hospital emergency room or urgent care clinic.

In 2001, Michigan had 192 outbreaks of foodborne illnesses, affecting more than 1,700 people.

There are an estimated 76 million foodborne illnesses and as many as 5,000 deaths every year in the United States, according to the Centers for Disease Control and Prevention.

Former Secretary of State James Baker III to Open Worldwide Food Expo ’03

Mr. Baker served as US Secretary of State from 1989 to 1992 under President George H. W. Bush; and as White House Chief of Staff, and later as US Secretary of the Treasury, during the Reagan Administration. As Treasury Secretary he served as chairman of the President’s Economic Policy Council.

ARS Scientists May Bring Relief to Peanut Allergy Sufferers

Americans reach for peanuts at baseball games, picnics and in between meals. Savory and satisfying, peanuts pack a nutritional punch in the form of protein, fiber, vitamin E, niacin and folic acid. But not everyone can enjoy the popular legumes, for peanuts induce an allergic reaction in 1.5 million Americans.

Now Agricultural Research Service scientists are bringing hope to peanut-sensitive consumers in...
the form of a hypoallergenic peanut. Soheila J. Maleki and her colleagues at the agency's Southern Regional Research Center (SRRC) in New Orleans, LA, have found a peanut variety lacking one of the major peanut allergens. If their search turns up another allergen-free variety, researchers can cross-breed them to produce a safer nut.

Maleki's peanut allergy work is being presented at a news conference, by phone, hosted by the American Academy of Allergy, Asthma and Immunology.

To find a friendlier nut, scientists needed a diverse supply of peanut plants to screen. So, SRRC researchers obtained 300 peanut varieties from a collection at North Carolina State University. Maleki and her colleagues then developed antibodies against the three main peanut allergens to determine if any of the varieties were missing the allergy-causing components. Using the ARS antibodies, they found what they had hoped for: a peanut variety lacking a key allergen.

Varieties showing lower levels of allergens can be used in traditional cross-breeding experiments to produce a hypoallergenic peanut plant. Along with new peanut processing methods and vaccine development in the works, a cultivar with reduced allergens could be the answer peanut allergy sufferers have long been awaiting.

New Database Helps Control Food Pathogens

The scientific field of Predictive Microbiology focuses on the development of mathematical models to predict the behavior of microbes in various environments. Underlying these models are vast quantities of laboratory data that describe microbial growth, persistence and death under diverse environmental conditions, such as those encountered in the production, processing, and handling of food.

Although much data about microbial behavior are available in various formats, such as in the published literature, in private reports and in laboratory notebooks, they must be systematically collected and organized to efficiently search and retrieve data for the development of predictive models. Currently containing more than 20,000 data sets, ComBase meets this challenge.

Additional information about ComBase is available from the U.K. Institute of Food Research at http://www.ifr.ac.uk/combased.

On-farm Food Safety Videos on the Web

A series of practical, on-farm food safety videos featuring Farmer Jeff Wilson and a bevy of surprise guests is available from the Food Safety Network.

For example, in the first, short video Farmer Jeff describes the hidden complexities behind maintaining a good crop of strawberries, as well as what measures are implemented to ensure the he delivers safe food to the consuming public.

In episode 4 Farmer Jeff gets a visit from Amber Luedtke of AIMS (Agricultural Integrated Management Services). She collects some lettuce to test for microbiological hazards, and also talks about what steps are taken at Birkbank Farms to ensure safe food, including the training Farmer Jeff's workers receive.

New videos concerning various aspects of food safety and agricultural technology are posted weekly until the end of the growing season.

For more information, visit http://www.foodsafety-network.ca/bt-sweet-corn/bt-index.htm.

Federal Regulations Amended to Enhance BSE Controls

The Government of Canada took another major step in further protecting Canada's food supply and reducing the risk of Canadians becoming exposed to the agent that may transmit BSE. The Government of Canada has amended the Food and Drug Regulations and the Health of Animals Regulations to prevent specified risk material (SRM) from entering the human food supply. This follows a July 18th announcement by Health Minister Anne McLellan and Agriculture and Agri-Food Minister Lyle Vanclief of the additional measures the federal government is taking to enhance bovine spongiform encephalopathy (BSE) controls. In BSE-infected cattle, the infective agent is concentrated in tissues such as the brain and spinal cord. Studies have indicated a potential link between the consumption of certain tissues containing abnormal prion proteins from infected cattle and the incidence of variant Creutzfeldt-Jakob Disease (vCJD), the human equivalent of BSE.

These regulations establish a definition for SRM and prohibit the sale or import for sale of food products containing SRM under the Food and Drug Regulations from...
Animals Regulations will require the countries that are not BSE-free. The amendments to the Health of Animals Regulations will require the removal of SRM from carcasses and prohibit the export and use of SRM in food for human consumption. SRM are defined as the skull, brain, trigeminal ganglia (nerves attached to the brain), eyes, tonsils, spinal cord and dorsal root ganglia (nerves attached to the spinal cord) of cattle aged 30 months or older (scientific research has shown that these tissues, in cattle younger than 30 months, do not contain the infective agent); and the distal ileum (portion of the small intestine) of cattle of all ages.

The effective date for these regulations is August 23, 2003. However, in federally-registered establishments, a CFIA directive will require SRM removal immediately.

These regulations reflect the Government of Canada's commitment to strengthening Canada's BSE measures and to protecting the health of Canadians and consumers of Canadian beef.

Cross Talk between Bacteria, Host Leads to E. coli Infection

A strain of E. coli that causes severe, sometimes deadly, intestinal problems relies on signals from beneficial human bacteria and a stress hormone to infect human cells, a researcher at UT Southwestern Medical Center at Dallas has discovered.

"The finding, which will appear online in Proceedings of the National Academy of Sciences, could lead to the development of beta blockers as a therapy to impede this cellular signaling system, causing the harmful bacteria to pass blindly through the digestive tract," said Dr. Vanessa Sperandio, lead author of the study.

"You're not really attacking the bacteria per se," said Dr. Sperandio, assistant professor of microbiology at UT Southwestern. "You are just rendering it blind. The bacteria won't activate the virulent genes unless it knows where it is. If it can't activate the things it needs to bind to the intestine, it will be washed away."

In the past, beta blockers have been used to treat migraines, high blood pressure, glaucoma and tremors but not to impede infection. Developing new therapies for infection with this strain of E. coli — known as enterohemorrhagic Escherichia coli, or EHEC — is important because treatment with conventional antibiotics can cause the release of more toxins and may worsen the disease outcome.

Dr. Sperandio found that when a person ingests EHEC, the bacteria travel blindly through the digestive tract until reaching the intestine, where friendly bacterial flora in the intestine and the human hormone epinephrine, or adrenaline, send cellular signals alerting the bacteria to its location.

This cellular cross talk leads to a cascade of genetic activations in which the EHEC colonizes the intestine and translocates toxins into human cells, altering the makeup of the cells and robbing the body of nutrients. "The bacteria gets what it wants — nourishment — and the person ends up getting diarrhea," Dr. Sperandio said.

EHEC is responsible for outbreaks throughout the world of bloody diarrhea and hemolytic uremic syndrome — a condition that can lead to renal failure and death. Severe symptoms are most common in children, the elderly and immune-suppressed people.

EHEC is commonly transmitted through contaminated food or water. Foods known to have caused human infections include raw meat and unwashed vegetables.

The Centers for Disease Control and Prevention report 73,000 cases of EHEC infection annually in the United States, resulting in 61 deaths. Bloody diarrhea typically lasts about a week after infection with E. coli.

One week after the condition resolves, some patients may develop hemolytic uremic syndrome, which is characterized by gastrointestinal bleeding, reduced urine production and anemia.

"Treating EHEC infection with conventional antibiotics has shown to increase the chances that a patient will develop hemolytic uremic syndrome," Dr. Sperandio said. In 2000, an EHEC outbreak in Scotland affected thousands of people. Half of those infected received antibiotics, and half received no therapy. Of those treated with antibiotics, 18 percent developed the syndrome; of those receiving no treatment, only 5 percent developed the syndrome.

USDA Announces Initiatives to Improve Food Safety

Dr. Elsa Murano has released a food safety vision document that will guide continuing efforts to improve the safety of US meat, poultry and egg products and protect public health. Titled, "Enhancing Public Health: Strategies for the Future," the document outlines accomplishments to date as well as challenges that must be overcome in order to further reduce the incidence of foodborne illness.

"Americans enjoy one of the safest food supplies in the world..."
and it is getting safer,” Murano said. “However, in spite of recent positive trends in reductions in foodborne illness, we also recognize the need to intensify our efforts to reduce illnesses even further. This document will help guide us as we focus on risks and science-based solutions to meet future challenges.”

In March 2003, Agriculture Secretary Ann M. Veneman called for creative and effective ways to modernize the Food Safety and Inspection Service’s ability to continue to improve the safety of US meat, poultry and egg products to better protect public health. The document identifies goals and strategies to be pursued by FSIS.

The document identifies many key steps taken in the past year to further protect public health. Most recently, FSIS announced a new rule requiring plants that produce ready-to-eat products to have effective programs in place to better control Listeria monocytogenes. In addition to testing, plants are required to share data and other relevant information with FSIS.

Food Safety: A Right for All People, Top UN Official Tells Meeting on Food Standards

Food safety is not a luxury of the rich, but a right of all people, a top UN official told representatives from 169 countries gathered in Rome, Italy, to consider the adoption of new standards to safeguard the health of consumers worldwide, while improving global agricultural trade opportunities.

UN Food and Agriculture Organization (FAO) director-General Jacques Diouf, in remarks delivered by his deputy, David Harcharik, at the opening of the 26th session of the Codex Alimentarius Commission, said the increase in volume and variety of foods inevitably creates a demand for standards that ensure fair trade practices across all countries and regions of the world.

“Increased foreign investment in food manufacturing industries and food distribution and retail industries also creates situations where harmonized food standards are desired among the regions in the world,” General Jacques Diouf added.

FAO and the UN World Health Organization (WHO) established the Commission in 1962 to set safety standards and ensure fair practices in food trade.

“We have to recognize that food can never be defined as completely safe,” WHO director-general Gro Brundtland said in video-taped remarks to the meeting. “The risks can be reduced through routine food safety work that must be carried out every day. This means countless men and women working diligently to protect human health throughout the food chain.”

During the session – running until July 7 – the Commission is expected to adopt standards for levels of radiation that may be used in food irradiation, guidelines for assessing the food safety risks associated with foods derived from biotechnology among other things. In addition to food safety issues, Codex will consider the adoption of new standards that will clearly define many food items.

NFPA Applauds Announcement That FDA Has Received $5 Million for Food Security Research

Responding to an announcement made by Secretary of Health and Human Services Tommy Thompson and Food and Drug Administration Commissioner Dr. Mark McClellan that FDA has received $5 million for research on food security, John R. Cady, president and CEO of the National Food Processors Association (NFPA), made the following comments: “NFPA applauds the announcement that the Bush Administration has provided FDA with an additional $5 million in supplemental funding for food security research. NFPA strongly supports funding and targeted resources to help ensure the continued security of the food supply.”

Both Secretary Thompson and FDA Commissioner McClellan emphasized that the focus of this new food security research will be on ways to prevent the intentional contamination of food. Research targeting risk management and prevention is highly appropriate, and our industry looks forward to working closely with FDA, as the nation’s leading agency on food security, on this important new research.

The US has a long history of dealing with threats to food safety, from foodborne disease outbreaks and inadvertent contaminations to isolated incidents of product tampering. The research FDA will undertake should assess ways to build on the solid record of success.
we have in this country on food security, and to make food security programs even more effective. Secretary Thompson and FDA Commissioner McClellan also noted that food import inspections have increased five-fold in the past two years. Ensuring the security of food imports through targeted, risk-based inspection activities is an important function of FDA, and helps to enhance our nation's food security.

NFPA strongly supports a rigorous US food security system, and we supported the Bioterrorism Act signed into law last year. Today, Secretary Thompson and FDA Commissioner McClellan also addressed new regulations that FDA has proposed to implement the Bioterrorism Act. NFPA has provided extensive comments to FDA on these proposed regulations. We believe that such regulations must be both effective and efficient, and should not impose unreasonable requirements on the food industry.

As proposed, FDA's regulations go well beyond Congressional intent. NFPA will continue to work with FDA to see that the final regulations are truly effective in enhancing food security. We were pleased that both Secretary Thompson and FDA Commissioner McClellan noted that FDA is continuing to consider comments from the food industry and other stakeholders on these proposed regulations, and that they expect that further changes will be made to the proposals.

Irradiation Food Safety
Consumers Foodborne Illness Ground Beef

Sound studies conducted by experts in the field support the use of irradiation as a safe and effective method to reduce contamination in ground beef without risk to consumer health or satisfaction, contrary to unsubstantiated claims by groups critical of its use.

Exhaustive, sound studies conducted and reviewed by experts in the field of food science support the use of irradiation as a safe and effective method to reduce pathogen contamination in ground beef without risk to consumer health or satisfaction, contrary to unsubstantiated claims by groups critical of its use. Scientists who are expert in the field are opposed to efforts intent on spreading misinformation about the processing technique.

A recent review of irradiation published by Consumers' Union is an example of misleading information, say irradiation advocates. "Trying to manipulate opinion against an effective and safe method to kill bacteria that lead to foodborne illness is no benefit to consumers or to their health and safety," says Mark McLellan, an expert on irradiation as director of the Institute of Food Science and Engineering at Texas A&M University and president of the scientific society Institute of Food Technologists which is holding its annual meeting and food exposition in Chicago. "Fueling consumer uncertainty with baseless accusations contrary to scientific fact is irresponsible."

"Pasteurization of milk and seat belts for automobiles were controversial for a time, but we know conclusively they both save lives," said irradiation expert Christine Bruhn, who studies irradiation and consumer perspectives as director of the Center for Consumer Research at University of California at Davis. "The same will be true of irradiation, and those of us familiar with the technology have an obligation to share the safety benefits of irradiated foods with the public."

The Food and Agriculture Organization of the United Nations, International Atomic Energy Agency, the World Health Organization and IFT have concluded on the basis of knowledge derived from over 50 years of research that irradiated foods are safe and wholesome.

A summary of the exhaustive scientific studies examining public health benefits of irradiation is accessible at IFT's Web site, www.ift.org. The wealth of evidence clearly shows that the vitamin and mineral content of irradiated meats are not significantly affected by this process, nor is taste. Likewise, irradiation and food safety experts alike promote the use of irradiation as a helpful component to comprehensive food safety procedures that include cleanliness during the processing and handling of foods, and thorough cooking.
WRH Industries’ Tunnel Washers Feature Jam-Proof Construction

A full line of modular tunnel washers for trays, tote boxes, pallets, and pallet containers that can be designed to meet 3-A Sanitary Standards is being introduced by WRH Industries, Ltd.

WRH/Mafo Tunnel Washers feature a proprietary polymer guidance system with a heavy-duty dual chain drive mechanism to assure proper alignment of the items being washed and prevent jamming. Designed for efficient and economical cleaning, they operate based upon a large volume of water contacting the product rather than high water pressure, and have an air knife system which can achieve 95% dryness without heat, depending upon part geometry.

Available in a wide range of in-line and stand-alone configurations to match specific customer requirements, WRH/Mafo Tunnel Washers incorporate high-efficiency motors, clog-proof nozzles, and all 304 stainless steel tunnels. Options include automatic stackers, self-cleaning rotating drum filters, vapor extraction and recovery systems, and variable speed motors.

Applications include food, seafood, pharmaceutical, and similar processing.

WRH Industries, Ltd., Fall River, MA

GFTC’s Patent Approved for Innovative Package Testing Technology

The Guelph Food Technology Centre (GFTC) is pleased to announce a patent has now been approved around GFTC’s innovative proprietary Oxygen Sensitive Indicator (OSI) technology. OSI was developed by Dr. Lindsay Mulholland and his team at GFTC.

“This is a great day for GFTC,” said Terry Maurice, GFTC’s president and CEO. “We are proud to be able to offer this technology to help the food industry and related sector in evaluating the various packaging options available to them, to extend their products’ shelf life by choosing the best barriers for their needs.”

The most important job a food package performs is that of protecting the food it contains from oxygen. The more oxygen reaching the food, the faster the food will spoil, the shorter its shelf life, and the smaller the number of potential consumers the food product can reach. This makes the selection of the right packaging vital to the success of a food product. GFTC’s OSI system provides color change to indicate how much oxygen is getting in, and where. The OSI liquid system shows how much oxygen is getting into the whole package, and the OSI gelled system shows where the weaknesses are in the package by turning blue first in those locations.

“This is a very exciting technology because it accurately indicates how oxygen sensitive food will react in the package. Advantages over other existing methods of measuring oxygen ingress include non-destructive testing of multiple samples under various environmental conditions,” explains Carol Zweep, GFTC’s senior research scientist. “Optimizing packaging requirements to suit unique needs translates to savings for our clients.”

Guelph Food Technology Centre, Guelph, Ontario, Canada

Protect Your Brand with EcoShieldTM from Ecolab

Ecolab Inc., a provider of critical environment sanitation products and systems, announces the introduction of a new integrated systems and operational productivity program called EcoShield. EcoShield is the only comprehensive food protection program that combines integrated intervention systems with complete operational productivity services for meat, food, poultry, dairy and beverage processors.

“We consistently strive to provide our customers with superior systems and products, and the creation of the EcoShield program showcases this commitment to our customers,” said Tom Arata, vice president of ...
marketing, Ecolab Food & Beverage Division. “EcoShield is a program that is tailored to the unique needs of each of the customer segments we serve, combining all of the tools Ecolab has to offer, to help improve product quality and operating efficiency.”

The pairing of integrated intervention systems and operational productivity services helps assure optimum product quality, shelf life and safety, improved efficiencies in plant operations.

EcoShield helps reduce the risk of contamination by providing a system that covers every critical point in the operation — from the moment raw materials enter the facility to the time the product is shipped to its final destination.

EcoShield provides complete diagnostics of customers’ sanitation programs conducted by Ecolab specialists. The comprehensive evaluation includes detailed analysis of labor, water, energy and other key utilizations as well as on-site audits designed to pinpoint critical areas where processing efficiencies can be improved.

Ecolab Inc., St. Paul, MN

Matrix MicroScience Has Launched the Fastest Commercially Available Method for the Detection of E. coli O157 in Food Samples

For a composite 375 g sample, the test can be completed in 6 3/4 hours from start to finish. Another version, which tests a 25 g sample, can be completed in just 5 1/4 hours.

The new test combines two of Matrix’s proprietary technologies, Pathatrix and Colortrix. The Pathatrix system is designed for the rapid capture and concentration of pathogens, while Colortrix is a colorimetric detection method which provides presence/absence results within 15 minutes.

“The Pathatrix/Colortrix method, which is capable of detecting a single CFU in a 25 g or a 375 g sample, is proving particularly popular with the beef market, where accurate, rapid testing can significantly enhance productivity and is critical for QA,” said Dr. Adrian Patron, managing director of Matrix MicroScience.

To undertake the test, a 375 g food sample is homogenized with 1 liter of growth media in a stomacher and incubated for 5 1/4 hours. Pathatrix capture reagent, which consists of E. coli specific, antibody coated magnetic beads, is then added directly to the sample. The sample is loaded onto the Pathatrix workstation, where it is circulated many times over the capture beads.

Once loaded, Pathatrix is programmed to run for 1 hour and on completion, the E. coli (if present) are bound onto the beads by the antibody. Residual debris and non-specific binding are removed during a single wash step.

The captured pathogen/bead complex is then concentrated into a small volume, i.e., 200 μL using a magnetic rack.

To perform the detection step, Colortrix antibody/enzyme is then added to the concentrate for 5 minutes before being diluted with 5 ml of wash buffer. After a further two washes, half the concentrate is removed and added to a second reagent. The sample is then left for 5 minutes to develop color.

A blue color indicates a “presumptive positive,” while a clear sample is recorded as a “presumptive negative.” Should a positive result be recorded, the sample remaining in the wash vessel is plated on the appropriate agar media, while a negative indicates that no further action is required. Additionally, presumptive positives can be confirmed a rapid molecular method, e.g. PCR.

Matrix MicroScience Inc., Golden, CO

Thern, Inc. Announces New TA2 Air Winches

Thern’s new TA2 air winches have been developed in response to marketplace demand for rapid delivery of rugged, reliable air winches backed by a responsive customer service program. Designed with extensive customer input and testing, these winches feature reliable radial piston air motors and heavy-duty construction for long service life. The compact design with planetary reducer inside of the drum allows the TA2 winches to be used in tight locations.

Other standard features on the TA2 winches include welded steel frame and drum, minimum D:d ratio of 18:1, motor-mounted control valve and manual band brake rated at 150% of winch capacity. The TA2 winches are available with either a 16-inch or 24-inch wide drum with 1/2 inch wire rope capacity up to 990 or 1,490 feet.
INDUSTRY PRODUCTS

Options include special drum diameters and lengths, grooved drums, speed changes and special finishes. Line pull for TA2 winches ranges from 4,400 lbs to 7,200 lbs.

Tern, Inc., Winona, MN

3M Introduces Homogenizer Bags

3M™ Homogenizer Bags, the latest additions to the 3M Microbiology line of products, are designed with the quality and reliability that laboratory technicians expect.

The Homogenizer Bag is an essential product in most food microbiology laboratories. Although it is a simple item, using a poor quality bag in your homogenizing machine can not only cause a cleaning nightmare if it breaks, but the integrity of the test you are running could be compromised if you are using bags that are not properly treated to prevent outside contamination.

3M Homogenizer Bags are manufactured with proven experience and uncompromising quality, and are designed to meet stringent laboratory testing needs. They are made of high quality 3 mil polyethylene for toughness and contain an additional additive for increased elasticity. These two features combined give them the strength needed to endure the sample preparation process. They provide high-impact strength even at low temperatures. The extra-wide 4 mm heat seal is designed to prevent leaking.

3M Homogenizer Bags are available in both standard and filtered styles and are sized to fit any 400 mL machine. Both styles are easy to open, and feature a write-on panel for labeling samples. You can simply write on or bar code the bag for test identification.

The filtered-style homogenizer bag allows for the separation of the liquid extract from sample solids, thereby preventing pipettor blockage. The filter section of this bag is made of durable, perforated polyethelene film. It is designed with strength in mind; the longer filter length gives extra reinforcement and support during the blending process. The filter and its solid contents can be easily removed if desired.

Both the standard and filtered 3M Homogenizer Bags come in slide trays for easy access, are gamma irradiated, and are backed by 3M's quality reputation.

3M Microbiology, St. Paul, MN

Spectronics Corp.

Ultraviolet Light Detects Aflatoxin Contamination in Stored Agricultural Commodities

Every year, aflatoxin — a carcinogenic mold — contaminates huge amounts of agricultural commodities, including corn, peanuts, sorghum, copra, and cottonseed. Early detection...
of infected crops at storage facilities allows the aflatoxin to be isolated and helps prevent its spread.

A simple method to detect aflatoxin in farm products is to inspect them with a long wave UV lamp. The Spectroline® BIB-150P lamp is ideal for screening large quantities of food material quickly and with high sensitivity. The mold glows with a bright greenish-gold fluorescence when exposed to the UV light.

The BIB-150P delivers super-high UV intensity at an affordable price. Its 150-watt Built-in-Ballast™ bulb eliminates the need for a bulky external transformer. The lamp weighs only 3 1/4 pounds (1.5 kg) and is ergonomically designed with a contoured handle for comfortable use over long periods.

Spectronics Corporation, Westbury, NY

READER SERVICE NO. 299

NSW Scrubbing Wipes are Ready for Front Line Food Service

NSW, LLC has introduced a new line of advanced scrubbing wipes with many significant benefits for the food industry. The patented NSW Scrubbing Wipes’ design features a durable polyethylene mesh net, laminated to an absorbent nonwoven fabric.

Soft and strong, the non-allergenic NSW wipes have the wet strength to stand up to the toughest cleaning jobs. The NSW Scrubbing Wipes’ highly absorbent nonwoven fabric will soak up excess juices, grease and oils. The NSW Wipes’ non-marking polyethylene net laminate can scrub nearly any surface without scratching, including polished stainless, painted and plated surfaces, glass and other sensitive surfaces.

NSW Scrubbing Wipes are solvent resistant and can be used with water and commercial cleansers. The NSW Wipes are a more durable and effective cleaning material than paper or cloth towels. NSW Scrubbing Wipes won’t shed lint or other debris that could clog drains and processing equipment, or compromise sanitation.

Highly durable and offered at value pricing, the NSW Scrubbing Wipes are also a cost-effective cleaning material alternative. The NSW Wipes will hold up longer in use and they can be washed and reused time and again.

NSW, LLC, Roanoke, VA

READER SERVICE NO. 300

SKF Introduces New Performance Class of Bearings for Pump Applications

A new performance class of bearings that enables pump designers and manufacturers to add value to their products by way of increased service life and reduced warranty claims is now available from SKF®. The new bearings, called SKF Explorer Angular Contact Ball Bearings (ACBB), are specifically designed to withstand the toughest pump-operating conditions. Under extensive laboratory testing, the bearings exhibited up to three times longer service life than conventional angular contact bearings.

The increase in bearing performance offers pump designers and manufacturers vital new design options, including those for downsizing or extending mean time between failure (MTBF). Pump users can expect greater reliability and smoother operation of the pump system.

Drawing upon the latest advances in materials research and manufacturing precision, engineers developed SKF Explorer ACBB bearings to maximize the effects of lubrication while minimizing the effects of friction, wear and contamination on bearing and pump service life. Their unmatched level of performance increases the options open to pump designers and manufacturers. For example, using SKF Explorer ACBB bearings in place of conventional bearings in existing designs can increase a designer’s options for using different impellers within the same basic pump size and also provide increased ability to handle cavitation. If there is no need for increasing output, speed or load, using SKF Explorer bearings of equal size in existing designs can extend a pump’s MTBF through prolonged seal life, reduced operating temperatures and lower vibration levels.

By specifying SKF Explorer bearings in new designs, pump designers can use physically smaller bearings in smaller pumps to achieve the same output as a larger pump using conventional bearings. Such a reduction in overall dimensions translates into lighter, more energy efficient designs, providing for lower operating temperatures and increased speeds. Then, too, designers can use lower profile SKF Explorer bearings with the same outside diameter as conventional bearings to develop “stiffer” new designs with larger shafts but capable of operating at the same or higher speeds.

SKF Explorer ACBBs are available in single or double row configurations. Single-row SKF Explorer ACBB are typically used in pumps designed for operational reliability in applications requiring moderate to high speeds and heavy axial and radial loads. Double-row SKF Explorer ACBB, due to their excellent load and speed capabilities and their ease of mounting, are used extensively in ANSI and other medium-duty pumps. The double-row models have a 30-degree contact angle...
to accommodate heavy thrust loads and shock loads caused by cavitation. Both single and double-rows come with ABMA ABEC3 precision levels as standard.

SKF Explorer ACBB adds value to pump users as well by providing more consistent, reliable operation. Because of the design and manufacturing improvements, these pump bearings will be less sensitive to overloads, poor operating conditions, and based on testing will run cooler and quieter. A modified, more robust retainer or cage in double-row bearings is especially suited for use in ANSI style pumps.

SKF Service Division, Kulpsville, PA

Easy-to-Use TempLine™ Cable Reduces Cost Associated with Multiple Point Temperature Monitoring from Apprise Technologies

Apprise Technologies, Inc. announces TempLine, a single cable temperature measurement array for deployment in a wide range of in-situ and process control applications.

The affordable and easy-to-deploy and use TempLine product is manufactured to the customer’s specifications. The customer can determine the cable length, number of sensors and sensor spacing. Data is transferred via RS-232 or SDI-12 allowing for plug-and-play data transfer to numerous third party data acquisition and control systems like SCADA and PLCs as well as telemetry systems. TempLine’s lightweight and compact design reduces time and labor costs associated with multiple point temperature data collection by allowing one person to easily deploy and operate the device. In many applications, a substantial amount of manpower has been needed to acquire the same amount of data available by using TempLine.

“Having a product which can be manufactured to meet the specifications of the customer application at an affordable price is generating a lot of attention,” said Cindy Martins, Apprise marketing director. “We are selling the TempLine to a broad base of customers, from power generators monitoring discharge temperature, to oceanographic research labs with limited manpower, to the US Army of Engineers for continuous monitoring of thermo discharge in dam management. The common denominator between TempLine customers is the desire to reduce the cost of multiple point temperature monitoring while maintaining high quality, reliable data,” adds Martins.

TempLine has a broad temperature range from -18 to 85°C (-1 to 185°F) with a swift response time. TempLine’s semiconductor temperature technology is easy to calibrate to an accuracy of ± 0.1°C (± 0.2°F), with the calibration coefficients residing in flash memory on the controller. The output signal from the TempLine cable is processed using an embedded micro controller and is transferred via RS-232 or SDI-12 communication protocol.

TempLine has a maximum cable length of 600 meters with up to 300 sensors. Internal data logger memory of 2MB holds up to 3400 time-stamped readings of 300 sensors. TempLine calibration is NIST traceable. Standard AA batteries power the system. Optional long-term (up to 12-month deployment) battery packs are also available.

Apprise Technologies, Inc., Duluth, MN
COMING EVENTS

SEPTEMBER

- 30-Oct. 2, Washington Association for Food Protection Annual Meeting, Campbells Resort, Chelan, WA. For more information, contact Bill Brewer at 206.363.5411.

OCTOBER

- 1-4, The 5th International Symposium on the Epidemiology and Control of Foodborne Pathogens in Pork, Creta Maris Hotel, Heraklion, Crete, Greece. For more information, call 30.210.749.93.00; Email: congress@triaentours.gr.

- 2, American Association of Cereal Chemists 88th Annual Meeting, Portland, OR. For more information, contact Kathryn Aro at 651.928.5348.

- 3-6, Food Security Coordinator Workshop, Toronto, Canada. For more information, call AIB at 785.537.4750.

- 15-16, Food Allergens: Issues and Solutions for the Food Product Manufacturer, Hotel Sofitel, O’Hare, Chicago, IL. For more information, contact Pauline Galloway at 402.472.9751; Email: pgalloway2@unl.edu.

- 19-22, University of Wisconsin-River Falls 23rd Annual Food Microbiology Symposium, Current Concepts in Foodborne Pathogens and Rapid and Automated Methods in Food Microbiology, University of Wisconsin-River Falls. For more information, contact the University of Wisconsin-River Falls Animal and Food Science Dept. at 715.425.3704; Email: foodmicro@uwrf.edu.

- 20-22, Thermal Process Development, Dublin, CA. For more information, call Food Processors Institute at 202.393.0890.

- 21-22, Cal Poly Dairy Cleaning and Sanitation Short Course, Davis, CA. For more information, contact Laurie Jacobson at 805.756.6097; Email: ljacobso@calpoly.edu.

- 22, Metropolitan Association for Food Protection Annual Fall Meeting, Rutgers, Cook College, New Brunswick, NJ. For more information, contact Carol Schwarz at 908.689.6693.

- 27-28, HACCP IV: Validation and Verification of Your HACCP Plan, GFTC, Guelph, Ontario, Canada. For more information, call 519.821.1246; Email: gftc@gftc.ca.

- 29-30, HACCP V: Effective Auditing of Your HACCP Plan, GFTC, Guelph, Ontario, Canada. For more information, call 519.821.1246; Email: gftc@gftc.ca.

- 29-30, Iowa Association for Food Protection Annual Fall Meeting, Ames, IA. For more information, contact Phyllis Borer at 712.754.2511, ext. 33.

- 29-31, HACCP for Juice Processors, Miami, FL. For more information, call Food Processors Institute at 202.393.0890.

- 29-Nov. 1, Worldwide Food Expo, McCormick Place, Chicago, IL. For general information, contact Pamela Morrison at 202.220.3532 or go to www.wwfe@idfa.org.

NOVEMBER

- 4-6, Food Security Coordinator Workshop, Sacramento, CA. For more information, call AIB at 785.537.4750.

- 5, HACCP: A Management Summary, Guelph, Ontario, Canada. For more information, call Guelph Food Technology Centre at 519.821.1246; Email: gftc@gftc.ca.

- 6-7, Advanced HACCP, Davis, CA. For more information, call Food Processors Institute at 202.393.0890; Email: jeppstein@nfpa-food.org.

- 8-9, Mexico Association for Food Protection Annual Fall Meeting, Mission Carlton Hotel, Guadalajara, Jal., Mexico. For more information, contact Alex Castillo at 979.845.3565.

IAFP UPCOMING MEETINGS

AUGUST 8-11, 2004
Phoenix, Arizona

AUGUST 14-17, 2005
Baltimore, Maryland

AUGUST 13-16, 2006
Calgary, Alberta, Canada
COMING EVENTS

- **9-13**, 6th OIE Seminar on Biotechnology and 11th International Symposium of the World Association of Veterinary Laboratory Diagnosticians, Bangkok, Thailand. For more information, call OIE at 33.1.44.15.18.88.
- **10-11**, American Dairy Product Institute Lactose Utilization Seminar, in conjunction with Germany's Institute for Dairy Innovation and Marketing, Atlanta, GA. For more information, call 630.530.8700; E-mail: info@adpi.org.
- **11-12**, Food Plant Sanitation, Guelph, Ontario, Canada. For more information, call Guelph Food Technology Centre at 519.821.1246; E-mail: gftc@gftc.ca.
- **17-21**, Brazil Association for Food Protection Annual Meeting, Centro-Sul Convention Center, Florianopolis, Santa Catarina State, Brazil. For more information, contact Maria Teresa Destro at 55.11.3091.2199.
- **19**, Alabama Association for Food Protection Annual Fall Meeting, Holiday Inn, Homewood, AL. For more information, contact G. M. Gallaspy at 334.206.5375.
- **20**, Ontario Food Protection Association Annual Fall Meeting, Mississauga Convention Centre, Mississauga, Ontario, Canada. For more information, contact Glenna Haller at 519.823.8015.
- **21-29**, SQF 1000/2000 Systems Training, GFTC, Guelph, Ontario, Canada. For more information, call 519.821.1246; E-mail: gftc@gftc.ca.

DECEMBER

- **3-5**, Basic HACCP, Ithaca, NY. For more information, call Food Processors Institute at 202.393.0890; E-mail: jepstein@npfa-food.org.
- **9-12**, Refrigeration and Deep-Freeze, Triumph Pavilion, Rosstrov Expo in Moscow. For more information, contact Ken Cardelle at 203.357.1400; E-mail: KCardelle@iegexpo.com.
September is National Food Safety Month

Search, Order, Download 3-A Sanitary Standards

To order by phone in the United States and Canada call 800.699.9277; outside US and Canada call 734.930.9277; or Fax: 734.930.9088.

Order online at www.3-A.org

Request for Preproposals for Research Support

The International Life Sciences Institute (ILSI) North America Technical Committee on Food Microbiology is accepting preproposals for financial support for research in these areas: 1) ecology of foodborne pathogens (resistance to traditional or novel processing and preservation methods, microbial survival and persistence in food and food environments, and characterization of survival and persistence of viral foodborne pathogens in foods and food processing environments); 2) sampling techniques and concentration; and 3) non-primate animal models to assess E. sakazakii virulence and pathogenicity. The deadline for submission of preproposals is October 20, 2003. Copies of the Request for Preproposals can be obtained from the ILSI office or electronically from the ILSI website (www.ilsi.org). FOR MORE INFORMATION, CONTACT: Catherine Nnoka, ILSI North America, One Thomas Circle, NW, Ninth floor, Washington, DC, 20005, USA, Tel: 202-659-0074, Fax: 202-659-3859, Email: cnnoka@ilsi.org.

ADVERTISING INDEX

BD Diagnostic Systems 713, 751
DuPont Food Risk Assessment Inside Front Cover
Food Processors Institute 717
Michelson Laboratories, Inc. 742
Nasco .. 717
West Agro .. 742
Thanks for making IAFP 2003 a success!

Abstract Supplement to the Journal of Food Protection
IAFP 2003 Abstracts

<table>
<thead>
<tr>
<th>Name</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Title</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State or Province</td>
</tr>
<tr>
<td>Country</td>
<td>Postal/Zip Code</td>
</tr>
<tr>
<td>Telephone #</td>
<td>Email</td>
</tr>
</tbody>
</table>

Quantity @ $25.00 each (includes shipping and handling)
Total Payment

US FUNDS on US BANK

METHOD OF PAYMENT
- CHECK OR MONEY ORDER ENCLOSED
- MASTERCARD VISA AMERICAN EXPRESS

EXP. DATE
SIGNATURE
The Table of Contents from the *Journal of Food Protection* is being provided as a Member benefit. If you do not receive *JFP*, but would like to add it to your Membership contact the Association office.

Journal of Food Protection

ISSN: 0362-028X
Official Publication
International Association for Food Protection.

Vol. 66 September 2003 No. 9

Letter to the Editor

- Erratum

Articles

- Enumeration of Campylobacter spp. in Broiler Feces and in Corresponding Processed Carcasses N. J. Stern and M. C. Ribeck 1557
- Molecular Characterization of Escherichia coli O157 Contamination Routes in a Cattle Slaughterhouse Ann V. Tutorial, Denis Pierard, Jan Van Hoof, and Leen De Zutter 1564
- Occurrence of Nercyctosolin-Producing Escherichia coli in Dairy and Meat Processing Environments Rosemary McKeie 1576
- Microbiological Quality of Open Ready-to-Eat Salad Vegetables: Effectiveness of Food Hygiene Training of Management R. S. Sagoo, C. L. Lills, and R. T. Mitchell 1581
- Survival and Persistence of Campylobacter and Salmonella Species Under Various Organic Loads on Food Contact Surfaces Alessandra Di Cesare, Brian W. Sheldon, Katie S. Smith, and Lee-An Jaykus 1587
- Influence of NaCl Content and Cooling Rate on Outgrowth of Clostridium perfringens Spores in Cooked Ham and Beef Laura L. Zelik 1599
- Thermal Inactivation, Growth, and Survival Studies of Listeria monocytogenes Strains Belonging to Three Distinct Geographic Regions A. Capiricio, G. Crespo, and Richard C. Whiting 1611
- Thermal Inactivation of Listeria monocytogenes on Ready-to-Eat Turkey Breast Meat Products during Postcook in-Package Pasteurization with Hot Water R. Y. Murphy, K. D. Duncan, J. A. Maney, and B. L. Beaud 1618
- Prepackage Surface Pasteurization of Ready-to-Eat Meats with a Radiant Heat Tunnel for Reduction of Listeria monocytogenes Nonotde Garde and Peter Muriana 1623
- Synergy between Nisin and Select Lactates against Listeria monocytogenes in Due to the Metal Cations Jennifer Cleveland MEntine, Thomas J. Montville, and Michael L. Chikindas 1631
- Application of Ultrasonic-Assisted Thermal Processing for Preservation and Quality Retention of Liquid Foods Ill Zelenski, V. Merkel, and D. Kroon 1642
- Effect of Organic Acids and Hydrogen Peroxide on Cryptosporidium parvum Viability in Fruit Juices Kalmia E. Krnel 1650
- Increased Sensitivity in PCR Detection of Infection with Human Parvovirus B19 and Other Parvoviruses from Blood Products and Clinical Specimens David M. Pybus, Andrew Whitehead, and David J. Walmsley 1670
- Detection of Hepatitis A Virus in Shellfish (Mytilus galloprovincialis) with RT-PCR A. D. Pretto, V. T. Forte, G. M. Tantillo, V. De Leo, and C. Buonavoglia 1681
- Angiotensin I Converting Enzyme-Inhibitory Activity of Bovine, Orinve, and Caprine C-Casem Micropeptides and Their Tripeptide Hydrolases M. A. Manos and R. Lopez-Fandino 1686

* Asterisk indicates author for correspondence.

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.

Research Notes

- Enterotoxin Production by Steptococcus aureus Isolated from Mastic Cows B. T. Cao, G. S. B. Karam, P. V. Rosato, R. A. Morgante, and J. E. Cuiller 1693
- Effects of Different Disinfection Treatments on the Natural Microbiota of Lettuce M. S. Nasrnotino, N. Silva, M. P. L. M. Calanzano, and K. C. Silva 1697
- Dip Application of Phosphates and Marindale Mix on shelf Life of Vacuum-Packaged Chicken Breast Fillets Hannah Bues and Leslie Thompson 1701
- Fate of Salomonea in Citrus Oils and Aqueous Aroma Mickey E. Parish, Diane Baum, Robert Kruger, Renee Goodrich, and Robert Baum 1704
- Thermal Inactivation of Escherichia coli in Camel Milk Shlomo Sela, Riky Pinto, Uzi Merin, and Baruch Rosen 1706
- Inactivation of Bacillus cerevisiae with Radio Frequency Electric Fields David J. Govelet and Christopher Brunkhorst 1712
- Effect of Microorganism Characteristics on Leak Size Critical to Predicting Package Sterility Scott Keller, Joseph Marcy, Barbara Blankstein, Cameron Hackney, W. Hans Carter, and George Lacy 1716
- Comparison of Wep and Carcass Rinses for Recovery of Campylobacter from Retail Broiler Carcasses Michael T. Musgrove, Nelson A. Cox, Mark E. Berrang, and Mark A. Harrison 1720
- Detection and Enumeration of Campylobacter jejuni and Campylobacter coli by Indirect Indiplement with an Oxygen Scavenging System M. Rematello-Falah, Simon F. Park, and Martin R. Azard 1724
- Evaluation of Several Modifications of an Ecotoxicological Technique for Assessment of Media Performance Jeffrey L. Komaki 1727
- Comparison of Indicators of Microbial Quality of Meat during Aerobic Cold Storage Jean-Sack Byon, Joong Soek Min, II Suk Kim, Joong-Wan Kim, Myung-Sub Chung, and Moohe Lee 1733

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views or opinions offered by the authors of said articles and descriptions.
IAFP Offers “Guidelines for the Dairy Industry” from The Dairy Practices Council®

This newly expanded Four-volume set consists of 70 guidelines.

1. Planning Dairy Freestall Barns
2. Effective Installation, Cleaning, and Sanitizing of Milking Systems
3. Selected Personnel in Milk Sanitation
4. Installation, Cleaning, & Sanitizing of Large Parlor Milking Systems
5. Directory of Dairy Farm Building & Milking System Resource People
6. Natural Ventilation for Dairy Tie Stall Barns
7. Sampling Fluid Milk
8. Good Manufacturing Practices for Dairy Processing Plants
9. Fundamentals of Cleaning & Sanitizing Farm Milk Handling Equipment
10. Maintaining & Testing Fluid Milk Shelf-Life
11. Sediment Testing & Producing Clean Milk
12. Tunnel Ventilation for Dairy Tie Stall Barns
13. Environmental Air Control and Quality for Dairy Food Plants
14. Clean Room Technology
15. Milking Center Wastewater
16. Handling Dairy Products from Processing to Consumption
17. Prevention of & Testing for Added Water in Milk
18. Fieldperson’s Guide to High Somatic Cell Counts
19. Raw Milk Quality Tests
20. Control of Antimicrobial Drugs & Growth Inhibitors in Milk and Milk Products
21. Preventing Rancid Flavors in Milk
22. Troubleshooting High Bacteria Counts of Raw Milk
23. Cleaning & Sanitation Responsibilities for Bulk Pickup & Transport Tankers
24. Dairy Manure Management From Barn to Storage
25. Troubleshooting Residual Films on Dairy Farm Milk Handling Equipment
26. Cleaning & Sanitizing in Fluid Milk Processing Plants
27. Potable Water on Dairy Farms
29. Fat Test Variations in Raw Milk
30. Brucellosis & Some Other Milkborne Diseases
31. Butterfat Determinations of Various Dairy Products
32. Dairy Plant Waste Management
33. Dairy Farm Inspection
34. Planning Dairy Stall Barns
35. Preventing Off-Flavors in Milk
36. Grade A Fluid Milk Plant Inspection
37. Controlling Fluid Milk Volume and Fat Losses
38. Milkrooms and Bulk Tank Installations
40. Stray Voltage on Dairy Farms
41. Farm Tank Calibrating and Checking
42. Gravity Flow Gutters for Manure Removal in Milking Barns
43. Dairy Odor Management
44. Cooling Milk on the Farm
45. Pre- & Postmilking Teat Disinfectants
46. Farm Bulk Milk Collection Procedures
47. Controlling the Accuracy of Electronic Testing Instruments for Milk Components
48. Vitamin Fortification of Fluid Milk Products
49. Selection of Elevated Milking Parlor
50. Construction Materials for Milking Parlor
51. Dairy Product Safety (Pathogenic Bacteria) for Fluid Milk and Frozen Dessert Plants
52. Dairy Plant Sanitation
53. Sizing Dairy Farm Water Heater Systems
54. Production and Regulation of Quality Dairy Goat Milk
55. Trouble Shooting Microbial Defects: Product Line Sampling & Hygiene Monitoring
56. Frozen Dessert Processing
57. Resources For Dairy Equipment Construction Design
58. Maintaining & Testing Fluid Milk Shelf-Life
59. Control of Antibacterial Drugs & Growth Inhibitors in Milk and Milk Products
60. Cleaning & Sanitizing in Fluid Milk Processing Plants
61. Controlling the Accuracy of Electronic Testing Instruments for Milk Components
62. Planning A Dairy Complex - “100+ Questions To Ask”
63. Controlling The Quality And Use Of Dairy Product Rework
64. Control Points for Good Management Practices on Dairy Farms
65. Installing & Operating Milk Precoolers Properly on Dairy Farms
66. Planning A Dairy Complex - “100+ Questions To Ask”
67. Abnormal Milk - Risk Reduction and HACCP
68. Farmers Guide To Somatic Cell Counts In Sheep
69. Farmers Guide To Somatic Cell Counts In Goats
70. Layout of Dairy Milk Houses for Small Ruminant Operations
71. Biosecurity for Sheep and Goat Dairies
72. Food Allergen Awareness In Dairy Plant Operations
73. Bottling Water in Fluid Milk Plants
74. Food Safety in Farmstead Cheesemaking
75. Approving Milk and Milk Product Plants for Extended Runs

IAFP has agreed with The Dairy Practices Council to distribute their guidelines. DPC is a non-profit organization of education, industry and regulatory personnel concerned with milk quality and sanitation throughout the United States. In addition, its membership roster lists individuals and organizations throughout the world.

For the past 34 years, DPC's primary mission has been the development and distribution of educational guidelines directed to proper and improved sanitation practices in the production, processing, and distribution of high quality milk and milk products.

The DPC Guidelines are written by professionals who comprise six permanent task forces. Prior to distribution, every guideline is submitted for approval to the state regulatory agencies in each member state. Should any official have an exception to a section of a proposed guideline, that exception is noted in the final document.

The guidelines are renowned for their common sense and useful approach to proper and improved sanitation practices. We think they will be a valuable addition to your professional reference library.

If purchased individually, the entire set would cost $327. We are offering the set, packaged in four looseleaf binders for $245.00.

Information on how to receive new and updated guidelines will be included with your order.

To purchase this important source of information, complete the order form below and mail or fax (515-276-8655) to IAFP.

Please enclose $245 plus $17 shipping and handling for each set of guidelines within the U.S. Outside U.S., shipping will depend on existing rates. Payment in U.S. $ drawn on a U.S. bank or by credit card.

Name ___________________________ Phone No. ___________________________
Company ___________________________
Street Address ___________________________
City, State/Province, Code ________________
VISA/MC/AE No. ___________________________ Exp. Date ________________
How is this publication thinking about the future?

By becoming part of the past.
We’d like to congratulate this publication for choosing to be accessible with Bell & Howell Information and Learning.
It is available in one or more of the following formats:

- Online, via the ProQuest® information service
- Microform
- Electronically, on CD-ROM and/or magnetic tape

For more information, call 800-521-0600 or 734-761-4700, ext 2888
www.infolearning.com
The use of the Audiovisual Library is a benefit for Association Members only. Limit your requests to five videos. Material from the Audiovisual Library can be checked out for 2 weeks only so that all Members can benefit from its use.

Member #
First Name ___________________________ Last Name ___________________________
Company ___________________________ Job Title ___________________________
Mailing Address ___________________________
Please specify: Home Work ___________________________
City ___________________________ State or Province ___________________________
Postal Code/Zip + 4 ___________________________
Telephone # ___________________________
E-Mail ___________________________

Please Check Box Next to your Video Choice

DAIRY
• D1100 10 Points to Dairy Quality
• D1010 The Bulk Milk Hauler: Protocol
• D1030 Cold Hard Facts
• D1040 Other Extraction Method for Determination of Raw Milk Quality
• D1060 Frozen Dairy Products
• D1070 The Gerber Batter Test
• D1080 High-Temperature Short-Time Pasteurizer
• D1090 Management, Milking Quality
• D1105 Milk Handler Training
• D1110 Milk Plant Sanitation: Chemical Solution
• D1120 Milk Processing Plant Inspection Procedures
• D1125 Ohio Bulk Milk Hauling
• D1130 Pasteurizer: Design and Regulation
• D1140 Pasteurizer: Operation
• D1150 Processing Fluid Milk (slides)

ENVIRONMENTAL
• E3000 The A.I.R.3 of Clean — A Handwashing & Cleanliness Program for Early Childhood Programs
• E3020 Acceptable Racks
• E3050 Air Pollution: Indoor & Outdoor
• E3060 Allergy: Beware
• E3090 Asthma Awareness
• E3095 Effective Handwashing: Preventing Cross-Contamination in the Foodservice Industry
• E3096 EPA Test Methods for Freshwater: Efluent Toxicity Tests (Using Ciliophora)
• E3097 EPA Test Methods for Freshwater: Efluent Toxicity Tests (Using Fathead Minnow Larva)
• E3095 EPA: This is Superfund
• E3080 Feed to Drink
• E3110 Garbage: The Movie
• E3120 Global Warming: Hot Times Ahead
• E3130 Kentucky Public Swimming Pool & Bathing Facilities
• E3135 Plastic Recycling Today: A Growing Recycling Industry
• E3140 Putting Aside Antibiotics
• E3145 Radon
• E3160 RCRA: Hazardous Waste
• E3161 The Kitchen Uncorked: Odor Sanitized EMP
• E3170 The New Superfund: What It Is & How It Works: (1) Introduction to the Remedial Process
• E3175 The New Superfund: What It Is & How It Works: (2) Environmental Standards & Involvement Requirements
• E3185 The New Superfund: What It Is & How It Works: (4) Enforcement and Federal Facilities
• E3210 The New Superfund: What It Is & How It Works: (5) Emergency Precautionary Right-to-Know
• E3215 The New Superfund: What It Is & How It Works: (6) Underground Storage Tank Trust Fund & Response Program
• E3230 The New Superfund: What It Is & How It Works: (7) Research & Development: Closing Remarks
• E3240 Seek a Form
• E3245 Wash Your Hands
• E3250 Waste Not: Reducing Hazardous Waste

FOOD
• F2260 100 Degrees of Douche: The Time & Temperature of Cooking
• F2450 A Guide to Making Safe Skinned Fish
• F2500 A Lot on the Line
• F2505 The Amazing World of Microorganisms
• F2508 A Recipe for Food Safety Success
• F2509 Basic Personnel Practices
• F2510 Cleaning & Sanitizing in Vegetable Processing Plants: Do It Well
• F2510 Close Encounters of the Bird Kind
• F2515 Controlling Enteric: A Team Approach
• F2511 Controlling Salmonella: Strategies that Work
• F2515 Cooking and Cooling of Meat and Poultry Products (2 Videos)
• F2530 Egg Handling & Safety
• F2531 Emerging Pathogens and Grinding and Cooking Comminuted Beef (2 Videos)
• F2535 Fabrication and Cutting of Meat and Poultry Products (2 Videos)
• F2535 FastTrack Restaurant Video Kit
• F2535 Tape 1: Food Safety Essentials
• F2535 Tape 2: Receiving and Storage
• F2535 Tape 3: Service
• F2535 Tape 4: Process Control
• F2535 Tape 5: Production and Process Controls
• F2535 Tape 6: Process Control
• F2535 Tape 7: Multiple Food Products
• F2535 Tape 8: Food Processing
• F2535 Tape 9: Food Production
• F2535 Tape 10: Food Processing
• F2535 Tape 11: Food Processing
• F2535 Tape 12: Food Processing
• F2535 Tape 13: Food Processing
• F2535 Tape 14: Food Processing
• F2535 Tape 15: Food Processing
• F2535 Tape 16: Food Processing
• F2535 Tape 17: Food Processing
• F2535 Tape 18: Food Processing
• F2535 Tape 19: Food Processing
• F2535 Tape 20: Food Processing
• F2535 Tape 21: Food Processing
• F2535 Tape 22: Food Processing
• F2535 Tape 23: Food Processing
• F2535 Tape 24: Food Processing
• F2535 Tape 25: Food Processing
• F2535 Tape 26: Food Processing
• F2535 Tape 27: Food Processing
• F2535 Tape 28: Food Processing
• F2535 Tape 29: Food Processing
• F2535 Tape 30: Food Processing
• F2535 Tape 31: Food Processing
• F2535 Tape 32: Food Processing
• F2535 Tape 33: Food Processing
• F2535 Tape 34: Food Processing
• F2535 Tape 35: Food Processing
• F2535 Tape 36: Food Processing
• F2535 Tape 37: Food Processing
• F2535 Tape 38: Food Processing
• F2535 Tape 39: Food Processing
• F2535 Tape 40: Food Processing
• F2535 Tape 41: Food Processing
• F2535 Tape 42: Food Processing
• F2535 Tape 43: Food Processing
• F2535 Tape 44: Food Processing
• F2535 Tape 45: Food Processing
• F2535 Tape 46: Food Processing
• F2535 Tape 47: Food Processing
• F2535 Tape 48: Food Processing
• F2535 Tape 49: Food Processing
• F2535 Tape 50: Food Processing
• F2535 Tape 51: Food Processing
• F2535 Tape 52: Food Processing
• F2535 Tape 53: Food Processing
• F2535 Tape 54: Food Processing
• F2535 Tape 55: Food Processing
• F2535 Tape 56: Food Processing
• F2535 Tape 57: Food Processing
• F2535 Tape 58: Food Processing
• F2535 Tape 59: Food Processing
• F2535 Tape 60: Food Processing
• F2535 Tape 61: Food Processing
• F2535 Tape 62: Food Processing
• F2535 Tape 63: Food Processing
• F2535 Tape 64: Food Processing
• F2535 Tape 65: Food Processing
• F2535 Tape 66: Food Processing
• F2535 Tape 67: Food Processing
• F2535 Tape 68: Food Processing
• F2535 Tape 69: Food Processing
• F2535 Tape 70: Food Processing
• F2535 Tape 71: Food Processing
• F2535 Tape 72: Food Processing
• F2535 Tape 73: Food Processing
• F2535 Tape 74: Food Processing
• F2535 Tape 75: Food Processing
• F2535 Tape 76: Food Processing
• F2535 Tape 77: Food Processing
• F2535 Tape 78: Food Processing
• F2535 Tape 79: Food Processing
• F2535 Tape 80: Food Processing
• F2535 Tape 81: Food Processing
• F2535 Tape 82: Food Processing
• F2535 Tape 83: Food Processing
• F2535 Tape 84: Food Processing
• F2535 Tape 85: Food Processing
• F2535 Tape 86: Food Processing
• F2535 Tape 87: Food Processing
• F2535 Tape 88: Food Processing
• F2535 Tape 89: Food Processing
• F2535 Tape 90: Food Processing
• F2535 Tape 91: Food Processing
• F2535 Tape 92: Food Processing
• F2535 Tape 93: Food Processing
• F2535 Tape 94: Food Processing
• F2535 Tape 95: Food Processing
• F2535 Tape 96: Food Processing
• F2535 Tape 97: Food Processing
• F2535 Tape 98: Food Processing
• F2535 Tape 99: Food Processing

(Allow 4 weeks minimum from date of request.)

OTHER
• M3010 Diet, Nutrition & Cancer
• M3020 The New Superfund: Food Processing
• M3030 The New Superfund: Food Processing
• M3040 The New Superfund: Food Processing
• M3050 The New Superfund: Food Processing
• M3060 The New Superfund: Food Processing
• M3070 The New Superfund: Food Processing

BOOKLET ORDER FORM

SHIP TO:
Member #
First Name A. Last Name
Company __ JobTitle __
Mailing Address
Please specify: Home Work
City __________________ State or Province __________________
Postal Code/Zip + 4 __________________ Country __________________
Telephone # __________________ Fax # __________________
E-Mail __________________

BOOKLETS:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Procedures to Investigate Waterborne Illness—2nd Edition</td>
<td>$10.00</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Procedures to Investigate Foodborne Illness—5th Edition</td>
<td>10.00</td>
<td>20.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — $3.00 (US) $5.00 (Outside US) Each additional booklet $1.50

Multiple copies available at reduced prices.
Phone our office for pricing information on quantities of 25 or more.

OTHER PUBLICATIONS:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>International Food Safety Icons CD</td>
<td>$25.00</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pocket Guide to Dairy Sanitation (minimum order of 10)</td>
<td>.60</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Before Disaster Strikes...A Guide to Food Safety in the Home (minimum order of 10)</td>
<td>.60</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Food Safety at Temporary Events (minimum order of 10)</td>
<td>.60</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Developing HACCP Plans—A Five-Part Series (as published in DFES)</td>
<td>15.00</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Surveillance of Foodborne Disease — A Four-Part Series (as published in JFP)</td>
<td>18.75</td>
<td>18.75</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Annual Meeting Abstract Book Supplement (year requested)</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IAFP History 1911-2000</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — per 10 — $2.50 (US) $3.50 (Outside US) Shipping/Handling Other Publications Total

*Includes shipping and handling

PAYMENT:

Payment must be enclosed for order to be processed • US FUNDS on US BANK

☐ Check or Money Order Enclosed ☐ CREDIT CARD

CREDIT CARD # __________________
EXP. DATE __________________
SIGNATURE __________________

4 EASY WAYS TO ORDER

PHONE 800.369.6337; 515.276.3344
FAX 515.276.8655
MAIL 6200 Aurora Ave., Suite 200W Des Moines, IA 50322-2864, USA
WEB SITE www.foodprotection.org

Prices effective through August 31, 2004

SEPTEMBER 2003 | FOOD PROTECTION TRENDS 775
MEMBERSHIP APPLICATION

MEMBERSHIP DATA:

Prefix (J Prof. J Dr. J Mr. J Ms.)
First Name ___________________________ M.I. ___________________________ Last Name ___________________________
Company ___________________________ Job Title ___________________________
Mailing Address ___________________________
Please specify: J Home J Work
City ___________________________ State or Province ___________________________
Postal Code/Zip + 4 ___________________________ Country ___________________________
Telephone # ___________________________ Fax # ___________________________
E-Mail ___________________________

MEMBERSHIP CATEGORIES:

MEMBERSHIPS

☐ Membership with JFP & FPT - BEST VALUE!
 12 issues of the Journal of Food Protection
 and Food Protection Trends (formerly DFES)
 ☐ add JFP Online
 US $165.00 $200.00 $245.00
 Canada/Mexico $36.00 $36.00 $36.00
 International $36.00

☐ Membership with FPT
 12 issues of Food Protection Trends
 ☐ add JFP Online
 US $95.00 $110.00 $125.00
 Canada/Mexico $36.00 $36.00 $36.00
 International $36.00

☐ Student Membership with JFP & FPT
 ☐ Student Membership with JFP
 ☐ Student Membership with FPT
 ☐ add JFP Online
 US $82.50 $117.50 $162.50
 Canada/Mexico $47.50 $67.50 $97.50
 International $47.50 $62.50 $77.50

*Student verification must accompany this form.

SUSTAINING MEMBERSHIPS

Recognition for your organization and many other benefits. JFP Online included.

☐ GOLD $5,000.00
☐ SILVER $2,500.00
☐ SUSTAINING $750.00

PAYMENT:

Payment must be enclosed for order to be processed • US FUNDS on US BANK

☐ Check Enclosed ☐ US$ ☐ CAN $ ☐ EURO ☐ £

TOTAL MEMBERSHIP PAYMENT $

All prices include shipping and handling
Prices effective through August 31, 2004

INTERNATIONAL ASSOCIATION FOR FOOD PROTECTION

4 EASY WAYS TO JOIN

PHONE 800.369.6337; 515.276.8655
FAX 515.276.8655
MAIL 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864, USA
WEB SITE www.foodprotection.org

776 FOOD PROTECTION TRENDS | SEPTEMBER 2003
Exposing the Enemy!

If there was an intruder in your plant putting the health of your business at risk, wouldn’t you want its fingerprints?

Call DuPont™ Food Risk Assessment™ to the scene to investigate your facility for molecular intruders.

Our Microbial Mapping offering can help you expose pathogens or spoilage organisms that may be lurking in your plant, contaminating your products and compromising their integrity.

Our team of experts can capture the genetic fingerprints of the microbial intruders, revealing their identity and tracing their movement – helping you to eliminate them.

Knowledge is power... know your enemy. Protect your brand and your bottom line with Microbial Mapping from DuPont™ Food Risk Assessment™.

Protect your brand... get a molecular detective working for you.
DuPont™ Food Risk Assessment™
1-800-387-2122

© 2003 DuPont Canada Inc. The DuPont Oval Logo, DuPont® and The Miracles of Science® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company. DuPont Canada Inc. is a licensee. DuPont® Food Risk Assessment™ is a trademark of DuPont Canada Inc.