The picture is clearer. Doubt has been diminished. The food testing revolution has begun.

BAX SYSTEM Q7 THE POWER TO DO MORE

1-800-863-6842 Qualicon.com

powered by Applied Biosystems

The miracles of science
We Stand Behind Our Results

Since 1982, Neogen has been a market leader in providing the most comprehensive, best choices for simple, accurate, and supported food safety testing solutions.

With our proven history of standing behind our tests and customers, we've earned the trust of the food and feed industries around the block, and around the world. We will work to continue to earn that trust with unparalleled testing products and the best support in the food safety testing industry. We deliver results you can trust.

Please call for a copy of the food safety industry's most comprehensive product catalog, or for any other food safety need.

NEOGEN CORPORATION

800/234-5333 or 517/372-9200

E-mail: foodsafety@neogen.com • www.neogen.com
ARTICLES

290 Effect of Added Citric Acid and Acetic Acid on the Survival of Staphylococcus aureus and Listeria monocytogenes in a Mayonnaise-based Salad
Vanessa L. Bornemeier, Julie A. Albrecht, and Susan S. Sumner

298 New England Home Gardeners' Food Safety Knowledge of Fresh Fruits and Vegetables
Lori F. Pivarnik, Martha S. Patrioad, Nicole Leydon, and Robert K. Gable

310 Top Ten Food Safety Problems in the United States Food Processing Industry
Aylin Sertkaya, Ayseba Berlind, Rachel Lange, and Donald L. Zink

ASSOCIATION NEWS

284 Sustaining Members
286 Perspectives from North of the 49th
288 Commentary from the Executive Director
320 Affiliate Officers
325 New Members

DEPARTMENTS

326 Updates
327 News
332 Industry Products
355 Coming Events
356 Career Services Section
358 Advertising Index

EXTRAS

316 Notification of Proposed Amendments to the IAFP Bylaws
319 IAFP Secretary Announcement

IAFP 2006

336 Ivan Parkin Lecture
337 John H. Silliker Lecture
338 Preliminary Program
339 Networking Opportunities
340 Event Information
343 Registration Form
344 Workshops
346 Workshop Registration Form
347 Hotel Reservation Form
348 Sponsors
349 Exhibitors
359 Journal of Food Protection Table of Contents
362 Audiovisual Library Order Form
363 Booklet Order Form
364 Membership Application

The publishers do not warrant, either expressly or by implication, the factual accuracy of the articles or descriptions herein, nor do they so warrant any views offered by the authors of said articles and descriptions.
You can’t afford to guess at how clean your vegetables are. The standards for fresh-cut fruits and vegetables are becoming more stringent due to the recent rise of industry outbreaks, and you need a proven product to consistently meet those standards. You need Tsunami® 100.

*Tsunami 100 is the ONLY EPA-registered antimicrobial water additive product on the market that reduces pathogens in process water. It reduces 99.9% of *Escherichia coli* O157:H7, *Listeria monocytogenes* and *Salmonella enterica* in fruit and vegetable processing waters. It also provides control of spoilage and decay causing non-public health organisms present on the surface of post-harvest, fresh-cut, and processed fruits and vegetables.

Be confident you’ve got the most effective process in place for proven food quality with Tsunami 100. Find out more about how Tsunami and Ecolab can help you by calling 1-800-392-3392.
BBL™ CHROMagar™ Listeria
For the Rapid Detection of Food Pathogens

Only BBL™ CHROMagar™ Formulations Have AOAC™-RI Approval

BBL™ CHROMagar™ Listeria is a selective medium for the isolation, differentiation, and identification of Listeria monocytogenes and L. ivanovii from food* when using FDA BAM, USDA FSIS, AOAC and ISO methods with no confirmatory biochemical tests required.

BBL CHROMagar Listeria provides:
- Faster time to results
- Accuracy – Sensitivity 100% and specificity 100% in food matrix testing
- Greater recovery from raw ground beef compared to USDA methods
- Ability to test environmental samples

BD Diagnostics, your source for BD Difco™ dehydrated pre-enrichment broth media for sample preparation and BBL CHROMagar prepared plated media for the rapid detection of food pathogens. For more information, contact your BD sales representative, call us at 800.638.8663 selection 2, or visit our web site at www.bd.com/ds.

The BBL CHROMagar Family will be among the products featured at the upcoming 106th General Meeting of the American Society for Microbiology in Orlando, Florida from May 21-25, 2006. Stop by Booth 729 to see BD Diagnostics entire breadth of line.

* Raw ground beef, smoked salmon, lettuce and brie cheese

AOAC is a trademark of AOAC International. CHROMagar is a trademark of Dr. A. Rambach. Difco is a trademark of Difco Laboratories, Inc., a subsidiary of Becton, Dickinson and Company. BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2006 BD.

BD Diagnostics
800.638.8663
www.bd.com/ds
FUTURE ANNUAL MEETINGS

IAFP 2006
AUGUST 13-16
Telus Convention Centre
Calgary, Alberta, Canada

IAFP 2007
JULY 8-11
Disney's Contemporary Resort
Lake Buena Vista, Florida

IAFP 2008
AUGUST 3-6
Hyatt Regency Columbus
Columbus, Ohio

IAFP 2009
JULY 12-15
Gaylord Texan Resort
Grapevine, Texas

THE MISSION OF THE ASSOCIATION IS TO PROVIDE FOOD SAFETY PROFESSIONALS WORLDWIDE WITH A FORUM TO EXCHANGE INFORMATION ON PROTECTING THE FOOD SUPPLY.
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRAN AJAO (08)</td>
<td>Minneapolis, MN</td>
</tr>
<tr>
<td>JULIE A. ALBRECHT (06)</td>
<td>Lincoln, NE</td>
</tr>
<tr>
<td>HAROLD BENGSCHE (06)</td>
<td>Springfield, MO</td>
</tr>
<tr>
<td>PHILIP BLAGOEVICH (06)</td>
<td>San Ramon, CA</td>
</tr>
<tr>
<td>TOM G. BOUFFORD (07)</td>
<td>St. Paul, MN</td>
</tr>
<tr>
<td>CHRISTINE BRUHN (06)</td>
<td>Davis, CA</td>
</tr>
<tr>
<td>LLOYD B. BULLERMAN (08)</td>
<td>Lincoln, NE</td>
</tr>
<tr>
<td>DONNA M. CHRISTENSEN (06)</td>
<td>Calgary, Alberta, CAN</td>
</tr>
<tr>
<td>WARREN S. CLARK, JR. (07)</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>WILLIAM W. COLEMAN, II (08)</td>
<td>Fargo, ND</td>
</tr>
<tr>
<td>PETE COOK (08)</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>CARL S. CUSTER (06)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>JAMES S. DICKSON (07)</td>
<td>St. Paul, MN</td>
</tr>
<tr>
<td>FRANCISCO DíEZ-GONZALEZ (08)</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>DENISE R. EBLEN (06)</td>
<td>Stowe, VT</td>
</tr>
<tr>
<td>PHYLLIS ENTIS (08)</td>
<td>Yarram, Victoria, AU</td>
</tr>
<tr>
<td>JILL GEBLER (06)</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>DAVID GOMBAS (06)</td>
<td>Ithaca, NY</td>
</tr>
<tr>
<td>ROBERT B. GRAVANI (07)</td>
<td>Gloucestershire, U.K.</td>
</tr>
<tr>
<td>JOHN HOLAH (06)</td>
<td>Shoreview, MN</td>
</tr>
<tr>
<td>SCOTT HOOD (07)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>CHARLES HURBURGH (07)</td>
<td>Columbia, SC</td>
</tr>
<tr>
<td>ELIZABETH M. JOHNSON (06)</td>
<td>Des Moines, IA</td>
</tr>
<tr>
<td>SUSAN KLEIN (07)</td>
<td>Wits, SOUTH AFRICA</td>
</tr>
<tr>
<td>DENISE LINDSAY (08)</td>
<td>Fulton, KY</td>
</tr>
<tr>
<td>DOUG LORTON (06)</td>
<td>Mississippi State, MS</td>
</tr>
<tr>
<td>DOUGLAS L. MARSHALL (07)</td>
<td>Northbrook, IL</td>
</tr>
<tr>
<td>SUSAN K. MCKNIGHT (08)</td>
<td>Amherst, MA</td>
</tr>
<tr>
<td>LYNN MCLAUDSBOROUGH (08)</td>
<td>Manukau City, Auckland, NEW ZEALAND</td>
</tr>
<tr>
<td>JOHN MIDDLETON (06)</td>
<td>Ithaca, NY</td>
</tr>
<tr>
<td>STEVEN C. MURPHY (08)</td>
<td>University Park, PA</td>
</tr>
<tr>
<td>CATHERINE NETTLES CUTTER (07)</td>
<td>Orlando, FL</td>
</tr>
<tr>
<td>DEBBY L. NEWSLOW (06)</td>
<td>Saginaw, TX</td>
</tr>
<tr>
<td>RANZELL NICKELSON, II (08)</td>
<td>Auburn, AL</td>
</tr>
<tr>
<td>OMAR OYARZABAL (08)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>FRED PARRISH (07)</td>
<td>Sioux City, IA</td>
</tr>
<tr>
<td>DAVID H. PEPER (06)</td>
<td>Mendota Heights, MN</td>
</tr>
<tr>
<td>RUTH L. PETRAN (07)</td>
<td>White Bear Lake, MN</td>
</tr>
<tr>
<td>MICHAEL M. PULLEN (07)</td>
<td>Tucson, AZ</td>
</tr>
<tr>
<td>KELLY A. REYNOLDS (08)</td>
<td>East Lansing, MI</td>
</tr>
<tr>
<td>SARAH J. RISCH (08)</td>
<td>Edmonton, Alberta, CANADA</td>
</tr>
<tr>
<td>LAWRENCE A. ROTH (06)</td>
<td>Pensacola, FL</td>
</tr>
<tr>
<td>ROBERT L. SANDERS (07)</td>
<td>Long Island City, NY</td>
</tr>
<tr>
<td>KYLE SASAHARA (07)</td>
<td>Gainesville, FL</td>
</tr>
<tr>
<td>RONALD H. SCHMIDT (08)</td>
<td>Ames, IA</td>
</tr>
<tr>
<td>JOE SEBRANEK (06)</td>
<td>St. Paul, MN</td>
</tr>
<tr>
<td>O. PETER SNYDER (07)</td>
<td>Ft. Collins, CO</td>
</tr>
<tr>
<td>JOHN N. SOFOS (08)</td>
<td>Mendota Heights, MN</td>
</tr>
<tr>
<td>KATHERINE SWANSON (07)</td>
<td>Ames, IA</td>
</tr>
</tbody>
</table>
Sustaining Membership provides organizations the opportunity to ally themselves with IAFP in pursuit of Advancing Food Safety Worldwide. This partnership entitles companies to become Members of the leading food safety organization in the world while supporting various educational programs that might not otherwise be possible.

SUSTAINING MEMBERS

GOLD

bioMérieux, Inc.
Hazelwood, MO
800.638.4835

BPI Technology, Inc.
Dakota Dunes, SD
605.217.8000

The Coca-Cola Company
Atlanta, GA
404.676.2177

DuPont Qualicon
Wilmington, DE
302.695.5300

Ecolab, Inc.
St. Paul, MN
800.392.3392

Kraft Foods
Glenview, IL
847.646.3678

Marriott International
Washington, D.C.
301.380.2289

Microbial-Vac Systems, Inc.
Jerome, ID
208.324.7522

SILVER

BD Diagnostics
Sparks, MD; 410.316.4467

F & H Food Equipment Co.
Springfield, MO; 417.881.6114

FoodSafety Net Services, Ltd.
San Antonio, TX; 210.384.3424

MATRIX MicroScience, Inc.
Golden, CO; 303.277.9613

Orkin Commercial Services
Atlanta, GA; 404.888.2241

Quality Flow Inc.
Northbrook, IL; 847.291.7674

Roche Applied Science
Indianapolis, IN; 317.521.7569

Silliker Inc.
Homewood, IL; 708.957.7878

Warnex Diagnostics Inc.
Laval, Quebec, Canada; 450.663.6724

Weber Scientific
Hamilton, NJ; 609.584.7677

284 FOOD PROTECTION TRENDS | MAY 2006
I hope you are getting as excited as I am about this year’s Annual Meeting! Besides the great program we have lined up, we also have a fabulous venue.

Calgary is situated approximately 200 miles (322 km) north of the US border on the banks of the Bow River below the Rocky Mountains. There are two major rivers that run through the city. The Bow River is the largest and flows from the west to the south. The Elbow River flows northwards from the south until it converges with the Bow River near downtown. Although Alberta’s second city, Edmonton, is the state capital, Calgary is the territory’s commercial and cultural centre and offers hikers, fishermen and lovers of the great outdoors, the pleasure of enjoying the dramatic countryside and splendid national parks. The city is the gateway to the Canadian Rockies, including Banff National Park, which hopefully you will have time to visit.

Millions of years ago, the area around Calgary was part of a huge sea. During the dinosaur era, this area was warm, and hosted not only dinosaurs, but also generous vegetation needed to support such large animals. Over millions of years, this vegetation died and settled on the bottom of this sea. As continents shifted, Calgary became part of North America and the sediments were lifted well above sea level. The pressure of deep layers of rock on the decaying vegetation created the vast oil and gas reserves that drive a large part of Alberta’s economy today.

Speaking of dinosaurs, located only 81 mi (130 km) northeast of Calgary in Alberta’s Badlands, the Drumheller Valley is best known for its diverse and unique topography. This area provides a vast landscape that is definitely worth visiting (see Monday’s tour description on page 341). The world’s largest dinosaur statue is situated in downtown Drumheller! The city is probably best known as the home of the Royal Tyrrell Museum of Palaeontology, a world-class facility dedicated to the study of Drumheller’s early residents, the dinosaurs. Visitors to the museum can explore hundreds of preserved fossils and take part in interactive displays and exhibits.

The city of Calgary is famous for the Calgary Stampede, a very large agricultural fair and rodeo that takes place every July. The Stampede officially bills itself as “The Greatest Outdoor Show on Earth.” It features an internationally recognized rodeo competition, a midway, stage shows, agricultural competitions, chuck wagon races, and First Nations exhibitions, among many other attractions. It is among the largest and most well known festivals in Canada.

Calgary is currently a bustling metropolis with a population of slightly over a million people. The oil and gas boom has created a pleasant situation (for job-seekers!) where there are many more jobs than there are qualified people. In fact, Calgary is now second only to Toronto for its concentration of corporate head offices and boasts a higher GDP per capita than any other major Canadian city.

Although Calgary’s winters can be downright cold, Environment Canada still ranks the city as having the third most temperate climate in the country (of major cities) after Victoria and Vancouver. This is due in large part to the dry Chinook winds that routinely blow into the city from the Pacific Ocean during the winter months. These winds have been known to raise the winter temperature by up to 20°C (68°F) in just a few hours, and may last several days or even weeks. The Chinooks are a very common feature of Calgary’s winters. Although summer daytime temperatures in the +30s
(high 80s) are not uncommon, due to Calgary’s high elevation, the city does not usually experience the extremely high temperatures common to some other Canadian prairie cities. On average, the temperature ranges from a daily minimum of 15°C in January to a daily maximum of 23°C in both July and August. Calgary receives an average of 16.2 inches (413 mm) of precipitation annually, with 11.8 inches (301 mm) of that occurring in the form of rain, and the remainder as snow. It really is in the uncommon energy and its unique combination of adventure, spirit and western hospitality that makes Calgary such a great place to visit. So be sure to try and bring your friends and families to Calgary. You will not be disappointed!

As David mentioned in his March column, by the time you read this column, the Board and IAFP staff will have just met for a strategic planning session. This will give us a chance to take stock of what we have accomplished since the last strategic planning meeting took place, and to plan ahead so that we can be well situated as we head into the next 2–3 year time period. As noted several times in this column these are very exciting times for IAFP as we have turned the corner financially and are providing exciting, new services for members. We will definitely keep you updated on the outcomes of our strategic planning session and would love to have your views on the plan as we move forward.

Finally, a hearty congratulations to our new incoming secretary, Vickie Lewandowski of Kraft! I know that she is going to be a very valuable and hard-working member of our Executive Board. The whole team really looks forward to welcoming Vickie. We would also like to extend our great appreciation to Dr. Leon Gorris for agreeing to run on the slate for secretary. We certainly had two great candidates running for secretary this year!

Dr. J’s Science Corner

Although there is no proof at present to demonstrate that cats play a role in the transmission cycle of the H5N1 avian influenza virus, the virus has been found in cats in Indonesia, Thailand, Germany and Austria; the scientific community will have to keep a close watch on this one.

As recently reported in the journal Science, the virulence of the H5N1 virus may be partially due to a number of previously unnoticed amino acids in a small non-structural protein, referred to as NS1.

I am sure that all you tea aficionados know that the heart-protective properties of tea are due to potent antioxidants called flavonoids. Well, you may not have known that in general, the more processing a tea undergoes, the less flavonoids it will have. In fact, white tea, which is the least processed, has greater antioxidant activity than green tea. Black tea, which is the most processed, contains the least amount of flavonoids.

As always, I can be reached by E-mail at jeff_farber@hc-sc.gc.ca and would love to hear from you!

Have a great month.
This month on page 319, we announce the results of our Secretary election. You will see that Vickie Lewandowski received the majority of votes cast and therefore will take office as Secretary upon the conclusion of IAFP 2006. We welcome Vickie to the Executive Board and congratulate her on the success she has enjoyed in the election. We also want to express our gratitude to Leon Gorris who was not elected, but was eager to serve and more than willing to stand for election.

Many Members will recognize that Leon is our first Member from outside of North America to stand for election to the Executive Board. We are proud to be an International organization and look forward to the day when we have our first elected, International Board Member. We wish Leon all successes in the future!

As a note, we will welcome Maria Teresa Destro to the Executive Board in August as the Affiliate Council Chairperson. Maria Teresa is from São Paulo, Brazil and will represent the Affiliate Council on the Executive Board. Also note, Maria Teresa was elected to serve in this position by the Affiliate Council Members.

Now back to Vickie. By the time you read this column, Vickie will have already participated in our April Board planning session that I talked about in my March column. This will help bring her up to current on future plans and direction for IAFP. As I am writing this column prior to holding our planning session, I cannot report on the outcome of that meeting (watch for a report on the planning session in a future President’s column). In addition, Vickie will also spend two days in June at the IAFP offices for “orientation” to the operations of the Association. This time investment will help provide her with background information needed to make informed decisions that will help guide the Association through her service period on the Executive Board.

Serving on the Executive Board is a big commitment. Each of our elected Board Members serves a total of five years on the Board. Those five years only include the “official” time from becoming Secretary until conclusion of serving a year as Past President. As you can see, Vickie is already contributing her time to the Association (beginning in April) and you can confirm with Past Presidents that service to IAFP many times continues for a year or more after leaving the Board. It may sound like a long time, but the time passes very quickly! Needless to say, we are very fortunate to have many Members who are willing to serve on the Executive Board and who possess the expertise to help guide the Association towards the future. For that we are truly thankful.

Now I want to change direction and call your attention to the proposed changes to both the IAFP Constitution and the Bylaws. Changes are detailed beginning on page 316 and result from two base issues: (1) establishing an electronic newsletter for IAFP, and (2) to allow electronic voting by IAFP Members. The first issue is brought on by our desire to restructure IAFP Member dues (as explained in my April column). The electronic newsletter will become the “publication” that all Members would receive or have access to with their Membership. Each Member will then decide whether they wish to add FPT, JFP, or JFP Online to their base Membership. The electronic newsletter will not replace FPT and notices to our Members will continue to be printed in FPT in addition to being included in the electronic newsletter.

The issue of electronic voting is something that Members have requested over the last few years as it becomes more commonplace to
conduct elections via the Internet. Various changes need to be made to our voting process to implement an electronic voting system. Mostly, it involves removing the words "mail" or references to a written or paper ballot from the document. At this time, the Board has directed that our 2007 election continue as a paper ballot and that our 2008 Secretary election would be the first use of the electronic Internet system. The proposed time line will allow ample time for communication to all IAFP Members on this issue.

We hope to see Member participation increase dramatically over the roughly 25% of Members who currently vote. The electronic voting system will have many safeguards built in for a secure, online voting experience. We will contract with an outside vendor to conduct the ballot, which removes opportunity for tampering with voting results. Unique login credentials will be required, an independent results tabulator will be engaged, and a third party direct report to the IAFP Teller will be required in the new system.

We take voting privacy and security very seriously and will not do anything to jeopardize a 100% accurate and trusted vote result.

If you have any questions after reviewing the proposed amendments, please take time to call me. It is important that you understand the changes and their effect on the future of the Association.

Once again, we want to welcome Vickie Lewandowski to the Executive Board and thank Leon Gorris for standing for election!

Come Early for These Special Events!

Golf Tournament
The Links of GlenEagles
Saturday, August 12
7:30 a.m. – 4:00 p.m.

The Best of Lake Louise and Banff
Saturday, August 12
8:30 a.m. – 5:00 p.m.

Visit the Web site at www.foodprotection.org to sign up.
Effect of Added Citric Acid and Acetic Acid on the Survival of *Staphylococcus aureus* and *Listeria monocytogenes* in a Mayonnaise-based Salad

VANESSA L. BORNEMIEIER, JULIE A. ALBRECHT, and SUSAN S. SUMNER

'Department of Nutritional Science & Dietetics, University of Nebraska, Lincoln, NE 68583-0807, USA

"Department of Food Science, Virginia Polytechnical Institute and State University, Blacksburg, VA 24061, USA

SUMMARY

The study objective was to determine the effect of two concentrations (5% and 10%) of citric acid and acetic acid on the survival of *S. aureus* and *L. monocytogenes* in a mayonnaise-based surimi salad. The pH of a mayonnaise-based surimi salad (control, pH 5.45) was adjusted to approximately 5.0 and 4.6 with 5% and 10% citric acid or acetic acid. Duplicate samples of each salad were inoculated with 10^8 CFU/g *S. aureus* (FRI 100 SEA) or 10^7 CFU/g *L. monocytogenes* (ATCC 49594). *Listeria monocytogenes*-inoculated samples were held at 4°C (refrigeration) for 28 days and 10°C (temperature abuse) for 8 days. Samples inoculated with *S. aureus* were held for 8 days at 10°C. Population samples were analyzed at predetermined intervals. Three replications of the experiment were conducted. At 4°C, a 2 log reduction of *L. monocytogenes* was obtained for the no-acid control sample and the 5% citric acid sample by day 28. A 2.5 log reduction in *L. monocytogenes* was observed for the 5% acetic acid and 10% citric acid sample, and a 3 log reduction was observed for the 10% acetic acid sample. At 10°C, a 1 log reduction of *L. monocytogenes* was observed in the 5% citric acid sample and a 1.5 log reduction in the no-acid control and 10% citric acid samples by day 8. The 5% and 10% acetic acid samples decreased *L. monocytogenes* populations by approximately 2 log at 10°C. For salads inoculated with *S. aureus* at 10°C, a slight reduction in *S. aureus* populations was observed in the no-acid control and the 5% citric acid samples by day 8. A 1.5 log reduction of *S. aureus* occurred in the 5% acetic acid sample, and a 2 log reduction in the 10% citric acid and 10% acetic acid samples. The overall effectiveness of added acidulants on the inactivation of *S. aureus* and *L. monocytogenes* in a mayonnaise-based surimi crab salad were 10% acetic acid > 5% acetic acid > 10% citric acid > 5% citric acid > no acid. However, the addition of acid should not be a replacement for proper temperature control or proper food handling practices.
INTRODUCTION

Consumer demand for convenience foods has prompted the popularity of prepared salads from grocery store delis. Mayonnaise-based salads, in particular, are heavily handled during preparation and service by foodservice personnel. Holding conditions are also a concern. As indicated in our initial survey of grocery store delis, mayonnaise-based salads may be held under improper conditions and may be contaminated with microorganisms that cause foodborne disease (10).

Several foodborne illness outbreaks have been reported to be associated with mayonnaise-based salads (6, 28, 30, 31, 43). For many years, it was thought that mayonnaise promoted spoilage and dramatically increased food poisoning risks when added to salads, but in the past 25 years, the microbiological safety of commercial mayonnaise products has been well documented (77, 22, 42). However, commercial mayonnaise products have been reported to be associated with Listeria monocytogenes, followed by lactic acid, citric acid, malic acid, and hydrochloric acid (1, 9, 18, 21, 44). Similar results were found with S. aureus (35).

The presence of foodborne pathogens in the processing environment has been widely reported (12, 27, 41, 46). Ryu et al. (39) isolated L. monocytogenes from ready-to-eat fish products and Buchanan et al. (13) reported the incidence of Listeria species in seafoods to be approximately 28%. L. monocytogenes has also been isolated from surimi analogs (3, 34), frozen seafood samples (47), cooked crab meat (33), and partially cooked scallop-flavored surimi fish cake (4, 5, 7). Listeria species were isolated in 32% of seafood salads consisting of fish or seafood analog, mayonnaise, vegetables and spices (25). Yoon and Matches (49) reported that pathogens grew rapidly at abusive temperatures in imitation crab legs and flaked crab meat. A Class I recall of crab salad and a seafood spread was found to be contaminated with L. monocytogenes (6). Although S. aureus is seldom isolated from seafood products, the pathogen can be found in products that involve extensive handling, such as pickled crab meat (35).

The purpose of this study was to determine the effect of two concentrations of citric acid and acetic acid on the growth of L. monocytogenes at 4°C (refrigeration) and S. aureus and L. monocytogenes at 10°C (abusive temperature) in a mayonnaise-based surimi krab salad (initial pH 5.45) at predetermined time intervals.

MATERIALS AND METHODS

Salad preparation

One type of mayonnaise-based salad, surimi-processed fish (krab) salad, was selected for assessment on the basis of findings of the initial microbial survey of grocery store delicatessens (10). The basic recipe formulation was taken from a quantity foods textbook (40). Surimi krab salad was prepared in sterile glass bowls with sterile utensils by mixing together the following ingredients until they were completely coated with mayonnaise: 230.0 g surimi-processed fish, 56.8 g diced celery, 17.0 g chopped black olives, 108.2 g mayonnaise, 1.5 g salt, 0.25 g pepper, and 56.8 g shredded mild cheddar cheese. All salads were prepared in duplicate with ingredients purchased at a local supermarket. Perishable ingredients were stored at 4°C and used within 24 h. Raw vegetables were washed under warm tap water for approximately 60 s, drained, and chopped by hand, using a sterile knife and cutting board to simulate actual practices.

Culture preparation and salad inoculation

One strain of L. monocytogenes (ATCC 19115) and one strain of S. aureus (FRI 100 SEA) were used. Frozen stock cultures (0.1 ml) were activated by transfer to 10 ml brain heart infusion broth (Difco, Detroit, MI) and incubated for 22-24 h at 35°C. The initial cell concentration was approximately 10^6 CFU/ml.

The pH of the mayonnaise-based surimi krab salad (control, pH 5.45) was adjusted to approximately 5.0 and 4.6 with 5% and 10% citric acid or acetic acid by adding 20 ml of acid to approximately 467 g surimi krab salad. Twenty ml distilled water was added to the no-acid control salad. For each type salad with added acid, 50 g portions were weighed into 10 individual sterile pint jars and covered with sterile blending lids. Seven jars were inoculated with 0.2 ml of L. monocytogenes culture and three were inoculated with 0.2 ml of S. aureus culture. The salads were vigorously hand-mixed for approximately 2 min to ensure homogeneous distribution of the microorganisms. The target concentration level was 10^6 CFU/g. Ten additional samples were used as the uninoculated controls. Five of the L. monocytogenes-inoculated salad samples were stored at 4°C (refrigeration), while the remaining two were held at 10°C (moderate temperature-abuse simulation). The three samples inoculated with S. aureus were stored at 10°C. Three replications of the experiment were done.

Microbiological methods and analyses

The temperature-abused salad samples inoculated with either S. aureus and L. monocytogenes were analyzed at day 0, 4 and 8, while the refrigerated L. monocytogenes inoculated samples were analyzed at day 0, 7, 14, 21 and 28. Total aerobic microorganisms were analyzed at the beginning and end of each trial. Each sample was analyzed by weighing a 25 g portion into 225 ml peptone buffer (Difco, Detroit, MI) blending for 2 min, andiplating serial dilutions on appropriate selective media.

For S. aureus, salad samples dilutions were surface plated on Baird-Parker agar containing EY Tellurite (Becton Dickinson, Cockeysville, MD). Salad sample dilutions were surface plated on MOX agar for L. monocytogenes. For total aerobic microorganisms, dilutions were plated on PCA (Difco, Detroit, MI). Baird Parker and PCA plates were incubated for 48 h at 37°C, while MOX agar plates were incubated for 24 h at 35°C. Microorganisms were enumerated with a colony counter (Fisher Scientific Co., Pittsburgh, PA) and results were calculated and recorded as log CFU/g. Baird Parker agar and PCA agar were prepared and sterilized according to manufacturer’s label directions, and MOX agar preparation followed the instructions of McCain and Lee (32).

Surface colonies were randomly checked to verify that the selective pathogen counts were accurate and consistent. S. aureus colonies were confirmed by the coagulase test (45) and L. monocytogenes were confirmed using API strips (Difco, Detroit, MI). The control samples were surface plated at the same storage intervals as the pathogen inoculated samples and were analyzed for total aerobic microorganisms, S. aureus and L. monocytogenes.

pH

A blender (Oster, Milwaukee, WI) was used to homogenize a 25-µg sample of each salad in 100 ml distilled water for approximately 2 min at the high setting. Two min after blending, pH readings were obtained on an Accumet pH meter (Fisher Scientific, Pittsburgh, PA).
Statistical analysis

Data were entered into SAS and analyzed using a variation of a split-plot model design with analysis of variance (ANOVA) and Least Square Means (39).

RESULTS

Initial pH values for each trial were targeted at 5.4 for the control and no-acid control salad samples, 5.0 for the 5% citric acid and 5% acetic acid salad samples, and 4.6 for the 10% citric acid and 10% acetic acid salad samples. Target initial and the average of the actual initial pH values for all three trials are listed in Table 1.

For all salad samples inoculated with L. monocytogenes at 4°C, the pH values decreased gradually from day 0 through day 28, but the changes in pH were not significant (P > 0.05) (Table 2). For all samples inoculated with S. aureus and L. monocytogenes at 10°C (Tables 3 and 4), a gradual but nonsignificant (P > 0.05) decline in pH occurred from day 0 through day 8.

L. monocytogenes populations decreased significantly (P < 0.01) in the no-acid control sample from day 0 through day 7 in a surimi krab salad held at 4°C (7.30 to 5.67 log\textsubscript{10} CFU/g) and continued to decrease through day 28 (Table 2). Populations of L. monocytogenes in the 5% citric acid sample decreased significantly (P < 0.01) from day 0 through day 14 (6.94 to 5.29 log\textsubscript{10} CFU/g) and continued to decrease through day 28 (Table 2). A significant (P < 0.01) reduction in L. monocytogenes populations was observed for the 5% acetic acid sample from day 0 through day 7 (7.21 to 5.58 log\textsubscript{10} CFU/g), and L. monocytogenes populations decreased by an additional 1 log from day 7 through day 28 (Table 2). For the 10% citric and 10% acetic acid samples, L. monocytogenes populations decreased significantly (P < 0.01) from day 0 through day 28. A significant (P < 0.01) difference in L. monocytogenes populations was observed between the no-acid control sample and the 10% acetic acid sample at day 28 (Table 2). No significant (P > 0.05) difference in L. monocytogenes populations was observed between the no-acid control sample and the 5% citric acid, 10% citric acid, or 5% acetic acid samples from day 0 through day 28 (Table 2).

At 10°C, L. monocytogenes populations in a surimi salad decreased significantly (P < 0.01) from day 0 through day 8 in the no-acid control (7.30 to 5.81 log\textsubscript{10} CFU/g) and the 5% acetic acid samples (7.21 to 5.39 log\textsubscript{10} CFU/g) (Table 3). A 1 log decrease in L. monocytogenes populations was observed from day 0 through day 8 in the 5% citric acid sample, but the change in populations was not significant (P > 0.05). A significant (P < 0.01) decrease in L. monocytogenes populations occurred from day 0 through day 4 in the 10% citric acid (6.95 to 5.59 log\textsubscript{10} CFU/g) and 10% acetic acid (7.18 to 5.15 log\textsubscript{10} CFU/g), and a slight decrease in populations was observed from day 4 through day 8 (Table 3). By day 8, no significant difference in populations was observed between the 5% citric acid, 10% acetic acid, and 10% citric acid samples.

Changes in total aerobic populations levels are represented in Table 5. All uninoculated surimi krab salad samples contained low levels of aerobic microorganisms at the time of inoculation, with an average aerobic plate count of < 2 log\textsubscript{10} CFU/g. For the samples inoculated with L. monocytogenes at 4°C, no significant change in aerobic populations was observed between day 0 and day 28, although a 1 log reduction did occur for the 5% citric acid and 5% acetic acid samples. Aerobic populations significantly (P < 0.01) decreased for salads inoculated with S. aureus and held at 10°C, no significant change in S. aureus populations was observed in the no-acid control sample and the 5% citric acid sample between day 0 and day 8 (Table 4). A significant (P < 0.05) decline of S. aureus populations for the 10% citric acid sample was observed from day 0 through day 8 (7.93 to 5.98 log\textsubscript{10} CFU/g). S. aureus populations decreased significantly (P < 0.05) in the 5% acetic acid (7.94 to 6.63 log\textsubscript{10} CFU/g) and 10% acetic acid (7.76 to 5.65 log\textsubscript{10} CFU/g) samples from day 0 through day 4, and a slight decrease in populations was observed through day 8 (Table 4). By day 8, a significant (P < 0.05) difference was observed between the decrease in S. aureus populations in the no-acid control sample and the decrease in aerobic populations observed in the 10% citric acid and 10% acetic acid samples. At day 8, no significant difference in populations was observed between the 5% citric acid, 10% acetic acid, and 10% citric acid samples.

| Table 1. Target initial and actual initial pH values for surimi krab salad inoculated with L. monocytogenes or S. aureus |
|---|---|
| **Salad** | **Target pH** | **L. monocytogenes** | **S. aureus** |
| | | Inoculated Salad | Inoculated Salad |
| | | (4°C and 10°C) | (10°C) |
| Control (not inoculated) | 5.4 | 5.45 | 5.42 |
| No Acid Control | 5.4 | 5.48 | 5.47 |
| 5% Citric Acid | 5.0 | 4.92 | 4.95 |
| 10% Citric Acid | 4.6 | 4.46 | 4.63 |
| 5% Acetic Acid | 5.0 | 5.04 | 5.08 |
| 10% Acetic Acid | 4.5 | 4.53 | 4.68 |

1Average of six samples
from day 0 through day 28 in the 10% citric acid and 10% acetic acid samples. There was also a significant ($P < 0.01$) difference between the decrease in aerobic populations observed in the no-acid control sample and the decrease observed in the 10% acetic acid sample by day 28. No significant difference in the decrease of aerobic populations was observed between the no-acid control sample and the 5% citric acid, 10% citric acid or 5% acetic acid samples between day 0 and day 28. However, it was observed by day that 10% acetic acid had reduced $L.\text{monocytogenes}$ populations by 1 log unit more than was seen in the no-acid control sample (Table 5).

For the salad samples inoculated with $L.\text{monocytogenes}$ at 10°C, total aerobic populations decreased significantly ($P < 0.01$) from day 0 through day 8 in the 5% acetic acid sample (8.42 to 6.50 log$_{10}$ CFU/g), 10% acetic acid sample (8.29 to 7.72 log$_{10}$ CFU/g) and 10% citric acid sample (8.53 to 5.80 log$_{10}$ CFU/g) (Table 5). Significant change in aerobic populations was observed in the no-acid control and 5% citric acid samples, although microbiological populations were reduced by approximately 1 log (Table 5). A significant ($P < 0.01$) difference was observed between the decreases in aerobic populations in the no-acid control, 10% citric acid and 10% acetic acid samples. No significant ($P > 0.05$) difference was observed in the decrease of aerobic populations between the no-acid control sample and the 5% citric acid, 10% citric acid, or 5% acetic acid samples between day 0 and day 8. However, the 5% acetic acid sample did have $L.\text{monocytogenes}$ populations 1 log unit lower than in the no-acid control sample by day 8 (Table 5). For samples inoculated with $S.\text{aureus}$ at 10°C, there was no significant change in aerobic populations from day 0 through day 8 in the no-acid control, 5% citric acid, and 5% acetic acid samples (Table 5). Aerobic populations decreased significantly ($P < 0.01$) in the 10% acetic acid sample from day 0 through day 8 (8.21 to 6.26 log$_{10}$ CFU/g) (Table 5). A significant ($P < 0.001$) difference was observed between the decrease in aerobic populations in the no-acid control sample and the 10% acetic acid sample by day 4. At day 8, no significant difference was found between the $L.\text{monocytogenes}$ populations in the no-acid control sample versus the 5% citric, 10% citric, or 10% acetic acid samples.

No significant difference in antimicrobial effect was observed between acetic acid and citric acid on $L.\text{monocytogenes}$ or $S.\text{aureus}$ populations, although acetic acid was observed to consistently reduce pathogenic microorganisms to lower populations than citric acid. Throughout this study, it was observed that 10% acetic acid consistently reduced $L.\text{monocytogenes}$ or $S.\text{aureus}$ to lower populations than 5% acetic acid, but the inhibitory effect was not found to be significantly different between the two concentrations. The same was observed for citric acid.

DISCUSSION

Results from our study indicate that, over time, no significant change in pH level occurred in any of the mayonnaise-
TABLE 3. pH and *L. monocytogenes* populations in a surimi krab salad held at 10°C for 8 days

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Day 4</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH Control</td>
<td>5.45</td>
<td>5.38</td>
<td>5.39</td>
</tr>
<tr>
<td>(Not inoculated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Acid Control</td>
<td>5.48</td>
<td>5.30</td>
<td>5.35</td>
</tr>
<tr>
<td>5% Citric Acid</td>
<td>4.92</td>
<td>4.83</td>
<td>4.84</td>
</tr>
<tr>
<td>10% Citric Acid</td>
<td>4.46</td>
<td>4.48</td>
<td>4.40</td>
</tr>
<tr>
<td>5% Acetic Acid</td>
<td>5.04</td>
<td>4.88</td>
<td>4.78</td>
</tr>
<tr>
<td>10% Acetic Acid</td>
<td>4.53</td>
<td>4.52</td>
<td>4.48</td>
</tr>
<tr>
<td>Listeria (log₁₀ CFU/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (not inoculated)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No Acid Control</td>
<td>7.30⁹</td>
<td>6.17⁹</td>
<td>5.81⁹</td>
</tr>
<tr>
<td>5% Citric Acid</td>
<td>6.84⁶</td>
<td>5.68⁶</td>
<td>5.67⁶</td>
</tr>
<tr>
<td>10% Citric Acid</td>
<td>6.95⁹</td>
<td>5.39⁹</td>
<td>5.26⁹</td>
</tr>
<tr>
<td>5% Acetic Acid</td>
<td>7.21⁶</td>
<td>6.05⁶</td>
<td>5.39⁹</td>
</tr>
<tr>
<td>10% Acetic Acid</td>
<td>7.18⁹</td>
<td>5.15⁹</td>
<td>5.00⁹</td>
</tr>
</tbody>
</table>

*¹ significant at *P* < 0.01 horizontally
*² not significant (*P* > 0.05) horizontally
*³ not significant (*P* > 0.05) vertically

Based surimi krab salad samples, although a gradual decline in pH was observed, it has been found that the spoilage of mayonnaise-based salads is predominately caused by heterofermentative lactic acid bacteria (20). Therefore, the gradual decline in pH over time could be attributed to the presence of lactic acid bacteria, which ferment lactose to lactic acid and may thus have contributed to the pH reduction of the salads. Certain lactic acid bacteria can grow not only at abusive temperatures but also at refrigeration temperatures (2), which would also account for the gradual decline in pH observed in salad samples inoculated with *L. monocytogenes* at 4°C.

Results indicate that the no-acid control samples inoculated with *L. monocytogenes* were effective significantly in reducing listerial populations at both 4°C and 10°C, but they were not effective in reducing populations of *S. aureus* at 10°C. The mayonnaise in the simulated surimi krab salad could possibly account for the inhibitory effect of the no-acid control samples on *L. monocytogenes* populations. Federal standards require that commercially manufactured dressings such as mayonnaise have a pH of less than or equal to 4.1 and an acetic acid level greater than or equal to 1.4% of the aqueous phase (22). These conditions were established to assure destruction of pathogenic microorganisms and were based on studies of Welthogton and Fabian (48). Our findings (approximately 2 log reduction) are consistent with the results reported by Glass and Doyle (23), which indicated that mayonnaise could inactivate >10⁸ *L. monocytogenes* per gram within 72 hours. Erickson et al. (20) concluded that the combination of mayonnaise and refrigeration inhibited *L. monocytogenes* outgrowth for > 7 days. Other studies have also identified an antimicrobial effect of mayonnaise (17, 18, 19).

Our results indicate that added acidulants were effective in reducing populations of *L. monocytogenes*, *S. aureus*, and aerobic microorganisms in a mayonnaise-based surimi krab salad. The most effective acidulant was acetic acid, which reduced total aerobic microorganisms by approximately 1 log at 4°C and 10°C. Overall, at the same pH level, acetic acid was found to be more effective than citric acid for reducing pathogenic microorganisms, which corresponds to findings from other studies (16, 33, 36, 44). Farber et al. (27) and Sorrels et al. (44) evaluated *L. monocytogenes* behavior in laboratory media supplemented with various inorganic and organic acids. They identified acetic acid as the most effective anti-listerial acidulant. Glass et al. (24) demonstrated that acetic acid was significantly more effective than malic or citric acids in controlling *L. monocytogenes* in a queso blanco cheese. *Salmonella* was killed in mayonnaise acidified to pH 4 with acetic acid, but not with citric acid at the same pH (37). In another study, acetic acid was found to inhibit *L. monocytogenes* at pH 4.5 and citric acid at pH 4.0 (16).

The difference in antimicrobial effectiveness of acetic acid and citric acid could be attributed to the structure of the acid. The antimicrobial activity of weak acids generally correlates with their pKₐ values (24). It has been observed that weak acids, (higher pKₐ) such as acetic acid have greater antimicrobial activity against *Listeria* species than stronger acids (lower pKₐ) such as citric acid (1, 16, 18, 29, 44).
TABLE 4. pH and S. aureus populations in a surimi krab salad held at 10°C for 8 days

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Day 4</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5.42</td>
<td>5.36</td>
<td>5.30</td>
</tr>
<tr>
<td>(Not inoculated)</td>
<td>5.47</td>
<td>5.35</td>
<td>5.27</td>
</tr>
<tr>
<td>5% Citric Acid</td>
<td>4.95</td>
<td>4.92</td>
<td>4.74</td>
</tr>
<tr>
<td>10% Citric Acid</td>
<td>4.63</td>
<td>4.56</td>
<td>4.52</td>
</tr>
<tr>
<td>5% Acetic Acid</td>
<td>5.08</td>
<td>5.06</td>
<td>4.68</td>
</tr>
<tr>
<td>10% Acetic Acid</td>
<td>4.68</td>
<td>4.66</td>
<td>4.57</td>
</tr>
<tr>
<td>S. aureus (log_{10} CFU/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Not inoculated)</td>
<td>8.06a</td>
<td>7.46b</td>
<td>7.40a12</td>
</tr>
<tr>
<td>5% Citric Acid</td>
<td>7.79b</td>
<td>7.48b</td>
<td>7.47b13</td>
</tr>
<tr>
<td>10% Citric Acid</td>
<td>7.93b</td>
<td>6.91b</td>
<td>5.98b13</td>
</tr>
<tr>
<td>5% Acetic Acid</td>
<td>7.94b</td>
<td>6.63b</td>
<td>6.35b13</td>
</tr>
<tr>
<td>10% Acetic Acid</td>
<td>7.76b</td>
<td>5.65b</td>
<td>5.48b13</td>
</tr>
</tbody>
</table>

a: significant at P < 0.01 horizontally
b: not significant (P > 0.05) horizontally

Our results indicate that the effect of added acidulants on the antimicrobial activity of L. monocytogenes in a mayonnaise-based surimi krab salad did not differ significantly between the salads held at 4°C and those held at 10°C. This agrees with the findings of Wethington and Fabian (48), who reported that Salmonella inactivation in mayonnaise is unaffected by temperature. In contrast, other researchers have found that higher incubation temperatures enhance the lethal effect of acids on pathogenic microorganisms (23); the higher the incubation temperature, the greater the rate of listerial inactivation. In survival studies conducted in tryptic soy broth acidified with various acids, L. monocytogenes was inactivated at a much higher rate at 30°C than at 10°C for all acid treatments (16). L. monocytogenes could tolerate exposure to citric acid in tryptic soy broth far better at 30°C than at 35°C (1). Refrigeration temperatures appeared to provide some protection to L. monocytogenes against the stressful effects of low pH in foods (15), a finding that is not supported by our results. It should be noted, however, that the incubation period in our study varied between the salads held at 4°C (8 days) and those held at 10°C (8 days) for the acid-adjusted salads inoculated with L. monocytogenes. Therefore, it may not be justified to compare the two temperatures. We might have obtained different findings if the incubations periods were the same for both temperatures. Our results indicate that at 10°C, acetic acid and citric acid similarly reduced populations of L. monocytogenes and S. aureus in a mayonnaise-based surimi krab salad. Similar inactivation rates occurred between day 0 and day 8 for both pathogenic microorganisms. These results correspond to those of a study conducted by Buchanan and Phillips (13), who found that the inactivation rate of L. monocytogenes did not differ significantly from that of other pathogenic microorganisms in an acidic environment. Also, Erickson and Jenkins (19) observed that the inactivation of L. monocytogenes was similar to that of Salmonella species in commercial mayonnaise products.
TABLE 5. Initial and final total aerobic populations (log_{10} CFU/g) for surimi krab salads

<table>
<thead>
<tr>
<th>L. monocytogenes inoculated salad (4°C for 28 days) (log_{10} CFU/g)</th>
<th>L. monocytogenes inoculated salad (10°C for 8 days) (log_{10} CFU/g)</th>
<th>S. aureus inoculated salad (10°C for 8 days) (log_{10} CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (not inoculated)</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>Control (not inoculated)</td>
<td>1.77</td>
<td>2.15</td>
</tr>
<tr>
<td>No Acid Control</td>
<td>8.60b</td>
<td>7.87d,e</td>
</tr>
<tr>
<td>5% Citric Acid</td>
<td>8.26b</td>
<td>7.23c,d,e</td>
</tr>
<tr>
<td>10% Citric Acid</td>
<td>8.53a,b</td>
<td>6.68d,e,f</td>
</tr>
<tr>
<td>5% Acetic Acid</td>
<td>8.42a,b</td>
<td>7.35c,d,e</td>
</tr>
<tr>
<td>10% Acetic Acid</td>
<td>8.29a,b</td>
<td>6.37c,d,e</td>
</tr>
</tbody>
</table>

a,c: significant at P < 0.01 horizontally between initial and final pairs
b,d: not significant (P > 0.05) horizontally between initial and final pairs
1,2: significant (P < 0.01) vertically in decrease in population
3,4: not significant (P > 0.05) vertically in decrease in population

Our results indicate that mayonnaise alone can reduce L. monocytogenes and S. aureus populations in a mayonnaise-based surimi krab salad. Acidulants such as acetic acid and citric acid added to the mayonnaise-based salads were even more effective than mayonnaise alone in inhibiting the growth of pathogenic microorganisms. Our results indicate that the overall effectiveness of added acidulants on the inactivation of S. aureus and L. monocytogenes in a mayonnaise-based surimi salad were 10% acetic acid > 5% acetic acid > 10% citric acid > 5% citric acid > no acid. However, although organic acids may lessen the threat of listeriosis and staphylococcal food poisoning in mayonnaise-based salads, acidulants should not be considered a replacement for proper temperature control or proper food handling practices, and the question remains as to whether the taste and appearance of the product are acceptable to the consumer. Consumer acceptance of mayonnaise-based surimi krab salads with the addition of acetic or citric acid was not investigated in this study but it is an important issue that requires additional research.

REFERENCES

New England Home Gardeners' Food Safety Knowledge of Fresh Fruits and Vegetables

LORI F. PIVARNIK,' MARTHA S. PATNOAD,' NICOLE LEYDON,' and ROBERT K. GABLE2

1University of Rhode Island, Nutrition and Food Sciences Department, 530 Liberty Lane, West Kingston, RI 02892, USA; *Educational Psychology, University of Connecticut, Educational Leadership Doctoral Program, Johnson and Wales University, 26 Quail Run Road, Storrs, CT 06268, USA

SUMMARY

The objective of this research was to assess the knowledge of and attitudes toward Good Agricultural Practices of home gardeners in New England (NE). A survey was designed to measure food safety knowledge and attitudes regarding growing and handling of produce by home gardeners. By use of a professionally generated mailing list, a questionnaire was distributed to 5,000 randomly selected households of gardeners in 5 NE states. Respondents answered questions on food safety topics for all aspects of gardening and post-harvest handling. "Agree," "disagree" and "don't know," as well as Likert scale response formats, were used. Content validity and reliability were determined. Fifty-six knowledge questions for 762 respondents were assessed at item level and by use of five categories of gardening timeline (e.g., soil preparation, planting) and four categories of content (e.g., sanitation water quality). Mean percent correct ranged from 61 to 71 for timeline and from 59 to 74 for content areas, with the lowest scores for prior to planting/soil preparation and water quality. With 80% taken as subject mastery standard, respondents met the standard for only 23 of 56 items (41%). Topics scoring low concerned use of fresh manure/compost, safety of organically grown produce, cleaning produce, water safety and home canning. Responses to attitudinal questions, alpha reliability score of 0.75, were generally supportive of proper home gardening practices; however, the relationship between attitude and knowledge was lower than expected ($r = .23$). Significantly higher levels of knowledge ($P < .01$) for timeline and/or content categories were found for respondents with higher number of income, higher number of gardening years or Master Gardener certification.

INTRODUCTION

The microbial safety issues associated with commercially grown fresh produce have been well documented (2). During the past three decades, the consumption of fresh fruits and vegetables has increased in the United States (70, 19). Along with this increase, public health officials and the CDC have documented an increase in produce-related foodborne illnesses (10, 19, 21). This increase in outbreaks of foodborne illnesses contracted from eating fresh fruits and vegetables strongly suggests the need for better handling practices from grower to consumer (15). A variety of types of fresh produce have been implicated in these outbreaks, with causes attributed to many different bacteria, viruses and protozoa (21). In the period 1973 through 1997, produce-associated outbreaks accounted for 6% of total outbreaks in the 1990s, up from 0.6% in the 1970s (19). Pathogens can be found in the interior of certain fruits and vegetables as well as on the surface; they can enter leaves through the stomata, and can enter fruit through the stem, stem scar or calyx, as well as entering through damage or soft rot of the natural structure (9). Insects, animals and birds can act as vectors for human pathogens (9). A review of literature pertaining to microbial hazards associated with fresh fruits and vegetables grown commercially revealed...
Escherichia coli O157:H7, Salmonella spp., and L. monocytogenes as bacterial pathogens of significant concern with regard to fresh produce safety (3, 4, 13, 16). Certain kinds of produce provide better conditions for pathogen survival and growth than others (8). Because fresh produce does not undergo a "kill" step to remove pathogens, agricultural commodities must now be thought of as "ready-to-eat" foods.

In an effort to ensure the safety of produce and to enhance and upgrade standards, the FDA and USDA developed guidelines that outline Good Agricultural Practices (GAP) for commercial growers/producers (7). These strategies were designed to minimize the microbial safety hazards associated with fresh and minimally processed fruits and vegetables. The guidance document addresses common Good Agricultural Practices (GAP) associated with the production of fruits and vegetables, such as water, manure application, worker hygiene/sanitation, and post-harvest handling. However, risks associated with these should not be assumed to be confined to commercially produced fruits and vegetables. On the contrary, home gardeners, because of their limited educational intervention and resources, should be considered as sources of risk. Although considerable effort has been made in recent years to integrate GAP food safety practices on commercial farms, the guidance and educational efforts have not been directed at the home fruit and vegetable gardeners and no direct efforts have been made to assess the impact of home fruit and vegetable gardening practices on microbiological safety. The consumer has always been the least and last studied in the food chain, and information is largely anecdotal (17). Retrospective analysis of food poisoning provides relatively little information because consumers often fail to recall their food intake and handling practices (1). Consumers have been shown to handle fresh produce poorly from time to time. (1). Consumers have been shown to handle fresh produce poorly from time of purchase to plate (12).

The overall objective of this study was to assess the knowledge of and attitudes toward Good Agricultural Practices of home gardeners in New England in an effort to develop outreach programs that would improve their food safety practices.

METHODOLOGY

Sampling and data collection

Following the model of Salant and Dillman (88), a total of 5,000 questionnaires were mailed in two complete mailings to randomly selected households throughout five New England states (CT, NH, ME, VT and RI). The randomized mailing lists, weighted as to state population, and labels, purchased from New Am-Pro Mailing List Company, Danvers, MA, had been generated by the company from lists associated with gardening magazines, etc. The questionnaire, along with a cover letter, postage-paid return envelope and one fruit or vegetable recipe was mailed to each household. The questionnaire was completed anonymously. The complete survey packet was mailed a second time, with instructions to those who had already responded to the first solicitation to disregard the second. The initial mailing was completed in April 2004, with the second done three weeks later.

The first and second mailings generated 67% and 33% of all responses received, respectively. Sixty-seven surveys were returned as "undeliverable," and 21 were returned without any answers. Of the 888 questionnaires returned, 54 were from consumers with no gardening experience and 69 were discarded because of incomplete question responses. Therefore, 762 (15%) completed questionnaires were used in the analysis. The 1% of completed questionnaires that reflected consumers with no gardening experience were used as a comparison group when knowledge responses were evaluated against home gardening experience.
<table>
<thead>
<tr>
<th>Demographic characteristics of survey respondents (n = 762)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Under 39</td>
</tr>
<tr>
<td>40–59</td>
</tr>
<tr>
<td>60 and older</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Combined Household Income (Before taxes):</td>
</tr>
<tr>
<td>Less than $29,999</td>
</tr>
<tr>
<td>Between $30,000–$49,999</td>
</tr>
<tr>
<td>Between $50,000–$69,999</td>
</tr>
<tr>
<td>Greater than $70,000</td>
</tr>
<tr>
<td>Last Educational Level Completed</td>
</tr>
<tr>
<td>Less than 9th Grade to Some High School</td>
</tr>
<tr>
<td>High School Graduate or GED</td>
</tr>
<tr>
<td>Some College to College Degree</td>
</tr>
<tr>
<td>Post Graduate Degree</td>
</tr>
<tr>
<td>Type of Area in Which You Live</td>
</tr>
<tr>
<td>Rural Area (less than 1,000 residents)</td>
</tr>
<tr>
<td>Small Town (1,000 to 9,999 residents)</td>
</tr>
<tr>
<td>Suburban Area (10,000 to 99,999 residents)</td>
</tr>
<tr>
<td>City (over 100,000 residents)</td>
</tr>
<tr>
<td>State of Residence</td>
</tr>
<tr>
<td>Connecticut</td>
</tr>
<tr>
<td>Maine</td>
</tr>
<tr>
<td>New Hampshire</td>
</tr>
<tr>
<td>Rhode Island</td>
</tr>
<tr>
<td>Vermont</td>
</tr>
<tr>
<td>Number of Years Gardening</td>
</tr>
<tr>
<td>1–10</td>
</tr>
<tr>
<td>11–20</td>
</tr>
<tr>
<td>21–30</td>
</tr>
<tr>
<td>31–40</td>
</tr>
<tr>
<td>40+</td>
</tr>
<tr>
<td>Have You Completed a Master Gardener Program?</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Source of Gardening Knowledge (Chose all that applied)</td>
</tr>
<tr>
<td>Family or Friends</td>
</tr>
<tr>
<td>Books/Magazines</td>
</tr>
<tr>
<td>Garden Center</td>
</tr>
<tr>
<td>Newspaper/Television/Radio</td>
</tr>
<tr>
<td>University/Extension</td>
</tr>
<tr>
<td>Internet</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Data analysis

Data analysis was carried out using the SPSS statistical program, version 11.0 (20). Descriptive analyses (frequencies, distributions, ranges, standard deviations) were computed for all variables. One-way ANOVA followed by the Scheffe post hoc procedure, t-tests and chi-square statistics were performed to determine statistical differences between means. Items means were rank ordered. Reliability was examined for the timeline and content categories and for attitude scores by use of Cronbach’s alpha measure of internal consistency. Knowledge measurements pertaining to fruit and vegetable food safety were correlated with demographic variables. Significant findings were reported at \(P < 0.05 \) or \(P < 0.01 \), as noted.

Questionnaire

Respondents answered questions on food safety topics for all aspects of gardening and post-harvest handling of home grown fruits and vegetables. The questionnaire was divided into three parts: demographics, knowledge, and attitudes. The demographic section contained questions regarding age, gender, household income, education, state of residence, living area, years of gardening and source of gardening information. Fifty-six knowledge questions were assessed at the item level and by using five gardening timeline categories (general fruit/vegetable food safety, prior to planting/soil preparation, during planting/growing, harvesting and post-harvest handling) and four content categories (foodborne illness, sanitation hygiene, composting/manure application, and water). Other than those questions that were grouped in a “foodborne illness” category and reflected specific bacterial and post-harvest handling questions, other “content” areas were designated as per existing GAP principles that would impact home gardening. The response for those questions was disagree, agree or don’t know. Knowledge-based questions were graded as right or wrong. For purposes of statistical assessment, “don’t know” was considered a wrong answer. Subject mastery, at 80% correct, was determined by the 6 content experts in the field of Nutrition and Food Sciences.

Because researchers have reported a link between attitude and practice (11), a set of attitude questions was included in this survey. Ten attitude statements describing food safety aspects of home gardening were rated on a 5-point Likert scale with 1 = strongly disagree and 5 = strongly agree. Generally, questions fell into two categories: (1) questions that reflected gardeners’ feelings concerning safety of fruits and vegetables from home gardens versus those from commercial sources (e.g., markets) and (2) questions exploring home gardener attitudes concerning their responsibility for the safety of the produce they grow. The attitude questions were included in the survey to help describe home gardeners’ thoughts regarding the importance of home gardening practices to food safety and their perceptions of the safety of retail versus home grown produce.

The protocol and questionnaire were approved by the University of Rhode Island Institutional Subjects Review Board and the questionnaire items were reviewed for content validity and clarity by the 9 food safety experts from the other New England State/Land Grant Universities and by one RI state agricultural marketing specialist. Nine Master Gardener volunteers and 21 home gardeners participated in a pilot survey to assess readability and assist in the examination of content reliability. All suggested changes were considered and the questionnaire was revised based on these recommendations.

RESULTS AND DISCUSSION

Demographics

Survey respondents totaled 885, with 762 having fruit/vegetable gardening experience, 34 with no gardening experience and 69 with missing questionnaire information. Table 1 shows the demographic characteristics of respondents with gardening experience. The majority were older, with 89% age 40 or older, lived in a small town or suburban area (98%), and were highly educated (75% with some college or more). Income was fairly evenly distributed above and below $50,000 per year. The relative population distribution was as expected, with Connecticut having the largest portion of respondents. The years of gardening experience averaged 22 ± 15, with the majority of respondents indicating 1-20 years of gardening experience. When asked to identify sources of gardening information, respondents indicated that major sources of gardening knowledge were family/friends, printed information and/or other media.

Because researchers have reported a link between attitude and practice (11), a set of attitude questions was included in this survey. Ten attitude statements describing food safety aspects of home gardening were rated on a 5-point Likert scale with 1 = strongly disagree and 5 = strongly agree. Generally, questions fell into two categories: (1) questions that reflected gardeners’ feelings concerning safety of fruits and vegetables from home gardens versus those from commercial sources (e.g., markets) and (2) questions exploring home gardener attitudes concerning their responsibility for the safety of the produce they grow. The attitude questions were included in the survey to help describe home gardeners’ thoughts regarding the importance of home gardening practices to food safety and their perceptions of the safety of retail versus home grown produce.

Knowledge and attitude response

The results of the 56 knowledge questions by timeline and content categories, ranked in order from low to high and by mean, are shown in Tables 2 and 3, respectively. Shaded scores in Table 2 indicate the percent correct answers. The rank ordering of all questions showed that responses to only 23 of the 56 items (41%) met the 80% standard. Topics associated with low scores concerned the safety of organically grown produce, association of produce with pathogenic bacteria, use of manure and compost, issues associated with water safety, washing produce and home canning. Mean percent correct ranged from 61% to 71% for timeline and 59% to 74% for content areas. Prior to planting, soil preparation, planting/growing, foodborne illness, compost/manure and water safety all had 75% of the category survey items answered correctly. Although prior to planting, water safety and compost/manure application had the lowest mean scores, no category area or total knowledge assessments reached the 80% mastery level. High knowledge (80% - 89%) subject mastery; n = 83) and low knowledge (22% - 50% subject mastery, n = 71) respondents represented 11% and 9% of the survey population, respectively. Individuals with high knowledge from garden to table, had significantly higher (\(P < 0.05 \)) income. These respondents also depended less on family members for gardening information, acquiring significantly more (\(P < 0.05 \)) information from newspapers, the Internet, university/extension and gardening centers. This group also had a trend toward a higher education level.

The total attitude score, 4.01 ± .53 (Table 4), with an alpha reliability of 0.75, illustrated that the respondents were generally supportive of proper home gardening practices. Consumers felt that their gardening practices were important to the safety of the fruits and vegetables they grew and harvested in their gardens, with 86% - 97% of the respondents agreeing strongly with attitude statements relating to home gardening practices. However, there was less agreement (undecided or disagreement) with those statements that compared safety of home-grown product to that of products from commercial growers or markets/grocery stores. It appeared that gardeners not only considered home grown food safer than produce found in markets or grocery stores, but also perceive that their responsibility for produc-
<table>
<thead>
<tr>
<th>Survey Questions by Category</th>
<th>Disagree</th>
<th>Agree (%)</th>
<th>Don’t Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Fruit and Vegetable Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organically grown produce is less likely to cause foodborne illness then conventionally grown produce.</td>
<td>41*</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>Outbreaks of foodborne illnesses associated with eating raw fruits and vegetables have been increasing.</td>
<td>19</td>
<td>44</td>
<td>37</td>
</tr>
<tr>
<td>Fruits and vegetables contain many bacteria that can affect quality but do not cause illness.</td>
<td>32</td>
<td>52</td>
<td>16</td>
</tr>
<tr>
<td>Foodborne illnesses commonly occur from improper food handling in the home.</td>
<td>9</td>
<td>83</td>
<td>8</td>
</tr>
<tr>
<td>It can take only a small number of harmful bacteria to make a person sick.</td>
<td>8</td>
<td>83</td>
<td>9</td>
</tr>
<tr>
<td>Disease-causing bacteria can be found on fruits and vegetables.</td>
<td>5</td>
<td>84</td>
<td>11</td>
</tr>
<tr>
<td>It is important to wash your hands before handling fruits and vegetables.</td>
<td>9</td>
<td>88</td>
<td>3</td>
</tr>
<tr>
<td>It is important to wash your hands before and after harvesting.</td>
<td>6</td>
<td>91</td>
<td>3</td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The temperature of compost should be 100°F (38°C) for at least 3 days.</td>
<td>8</td>
<td>26</td>
<td>66</td>
</tr>
<tr>
<td>Produce grown in soil that has been treated with fresh manure in the spring should not be harvested for at least four (4) months.</td>
<td>19</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>When manure is properly composted, harmful bacteria are destroyed.</td>
<td>17</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>If fresh animal manure is used as fertilizer at the beginning of the growing season, it should be applied 2 weeks prior to planting and incorporated into the soil.</td>
<td>11</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>Gardeners should regularly check the temperature of their compost.</td>
<td>11</td>
<td>57</td>
<td>32</td>
</tr>
<tr>
<td>Soil contains bacteria that can cause foodborne illness.</td>
<td>15</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>Fresh animal manure is best applied after the growing season to prepare the soil for next year.</td>
<td>11</td>
<td>67</td>
<td>22</td>
</tr>
<tr>
<td>Animal manure (e.g., cow, goat, horse, chicken, and pig) can be used for composting.</td>
<td>21</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>Fresh animal manure can be applied to the garden at anytime during the growing season.</td>
<td>71</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>The growth of bacteria is needed in a compost bin for decomposition and “rich” compost.</td>
<td>3</td>
<td>81</td>
<td>16</td>
</tr>
<tr>
<td>It is necessary to “turn” or “stir” a compost pile.</td>
<td>8</td>
<td>85</td>
<td>7</td>
</tr>
<tr>
<td>Cat or dog feces can be added to the compost pile.</td>
<td>90</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>During Planting/Growing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic gardening practices make home-grown produce safer to eat.</td>
<td>21</td>
<td>63</td>
<td>16</td>
</tr>
<tr>
<td>All outside faucets used to water the garden should have a back-flow protector.</td>
<td>19</td>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>Well water is safer for gardening than municipal or city water.</td>
<td>51</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Water can be a source of disease-causing bacteria that can contaminate produce.</td>
<td>24</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>It is important to change clothes after working in the garden.</td>
<td>25</td>
<td>63</td>
<td>12</td>
</tr>
<tr>
<td>Certain produce can get contaminated through the roots by contaminated water.</td>
<td>11</td>
<td>65</td>
<td>24</td>
</tr>
<tr>
<td>Fertilizing with fresh manure during the growing season should be encouraged to help plants grow.</td>
<td>65</td>
<td>13</td>
<td>22</td>
</tr>
</tbody>
</table>
TABLE 2. Survey knowledge question responses in ranked order within safety categories from low to high by correct answers (n=762) (con't)

<table>
<thead>
<tr>
<th>Survey Questions by Category</th>
<th>Disagree</th>
<th>Agree</th>
<th>Don't Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>The only reason to limit access of animals to the garden is to prevent the produce from being eaten or destroyed.</td>
<td>74</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>The best time to water a garden is first thing in the morning.</td>
<td>16</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>It is important to keep the area around the garden mowed and cleared to keep pests and rodents away.</td>
<td>6</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>It is important to change clothes after applying fertilizer in the garden.</td>
<td>5</td>
<td>91</td>
<td>4</td>
</tr>
<tr>
<td>Harvesting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is okay to harvest fruits or vegetables from the garden when you are feeling ill.</td>
<td>44</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>Damaged or bruised produce is more likely to cause foodborne illness.</td>
<td>22</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>If you have a cut or a sore on your hands, wear clean gloves when harvesting to protect fruit and vegetables.</td>
<td>11</td>
<td>82</td>
<td>7</td>
</tr>
<tr>
<td>Clean containers should be used when harvesting produce.</td>
<td>4</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Post Harvesting Handling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home canned string beans are safe to eat if they were processed by the hot water bath (boiling water) method.</td>
<td>14</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>It is safe to use diluted chlorine bleach solution, followed by a rinse, to clean produce.</td>
<td>35</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Very cold water should be used to wash warm, fresh picked produce to get it cold.</td>
<td>40</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Washing produce from the garden with soap and water will help keep it safe to eat.</td>
<td>42</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>Disease-causing bacteria cannot get inside fruits and vegetables that have peels, rinds or skins.</td>
<td>60</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>After cutting raw meat or chicken, wipe off the cutting board surface with a wet dishcloth or sponge before using the board to cut produce.</td>
<td>68</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>Freezing home grown vegetables will keep them safe to eat.</td>
<td>16</td>
<td>68</td>
<td>16</td>
</tr>
<tr>
<td>Home canned fruits or vegetables are only safe if they are processed using scientifically tested/approved methods.</td>
<td>16</td>
<td>70</td>
<td>14</td>
</tr>
<tr>
<td>Disease-causing bacteria can survive and/or grow at refrigerator temperatures.</td>
<td>13</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>It is safe to eat produce as you pick it.</td>
<td>74</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>The temperature of a home refrigerator should be 40°F or below.</td>
<td>6</td>
<td>81</td>
<td>13</td>
</tr>
<tr>
<td>After brushing off surface dirt, wash the outer melon skin or rind, even though it is not eaten.</td>
<td>10</td>
<td>83</td>
<td>7</td>
</tr>
<tr>
<td>Use a brush and water to clean fruits and vegetables that have a firm surface.</td>
<td>10</td>
<td>84</td>
<td>6</td>
</tr>
<tr>
<td>Washed vegetables should be dried with a clean cloth or paper towel before storage.</td>
<td>9</td>
<td>84</td>
<td>7</td>
</tr>
<tr>
<td>Fruits and vegetables should be washed in clean drinking water before eating.</td>
<td>8</td>
<td>87</td>
<td>5</td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is okay to store fresh produce in the refrigerator next to or below raw meat and poultry.</td>
<td>88</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
ing safe fruits and vegetables was not the same as that of a commercial grower. This may be due to the fact that the commercial producer would be perceived as serving the larger public. Although the reliability was good, the relationship between attitude and knowledge was lower than expected ($r = 0.25$). The respondents appeared to have a positive attitude toward fruit and vegetable safety information, they did not appear to have the knowledge or reasoning to actually support their attitude. Knowledge timeline and content category reliability scores were lower than desired; therefore, mean scores (Table 3) should be viewed as trends with emphasis on the descriptive rather than statistical attributes of the respondents. These categories were “multi-faceted,” resulting in questions that crossed over different food safety areas with varying degrees of difficulty. The variation in difficulty and item content appears to have resulted in lower reliability scores. The content category, which contained questions of more similarity, had higher reliability scores than scores for questions in the timeline dimension, where questions were more diverse. However, the total knowledge score had an acceptable Cronbach’s alpha of 0.78, which could be used for further statistical assessment.

Table 5 compares the total knowledge responses to the demographic categories. Significantly ($P < 0.01$) higher gardeners scored higher in just about every category as well as total knowledge. While the impact of these demographics may indicate higher food safety awareness for some home gardeners, the mean scores for all categories and total knowledge were still much lower than the desired 80% mastery standard.

Conclusion

Regardless of the subtle differences found by this survey knowledge of food safety of fresh fruits and vegetables, by New England home gardeners, all knowledge levels assessed fell below the 80% subject mastery. More than 50% of the survey questions addressing aspects of general fruit/vegetable safety, gardening practices and post-harvest handling were either answered incorrectly or were answered by an indication that the respondent did not know the answer. Therefore, the results of this survey strongly indicate a lack of food safety knowledge among New England home gardeners and support the need for outreach programming and training.

These findings will be used to develop an outreach program for food safety from garden to table. Resources will be developed and delivered through Master Gardener programs and its volunteer network that exist within the New England Land Grant Universities. This is an ideal approach for conducting this food safety education, since the Master Gardener program has been established in the majority of states as part of the Land Grant University-sponsored Cooperative Extension outreach efforts to address the needs of the home gardener. Utilizing the Good Agricultural Practices framework, emphasis of the education program will be on those specific areas of knowledge that fell short of subject mastery. In addition, efforts will be made to place educational materials in those venues that this survey indicated were key sources for gardening information by home gardeners. Further research will include on-site, structured interviews and observations with home gardeners to probe the topics associated with especially low knowledge scores to determine areas of misunderstanding and lack of knowledge.

Acknowledgment

This study was funded by a grant from the USDA Integrated Research, Education and Competitive Grants Program.
TABLE 3. Mean scores (%) for home gardener survey in timeline and content categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean % Correct</th>
<th>Survey Questions range (%)</th>
<th>Survey Questions below mastery</th>
<th>Total Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Fruit and Vegetable Food Safety</td>
<td>71 ± 17</td>
<td>41–91</td>
<td>37.5%</td>
<td>8</td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td>61 ± 18</td>
<td>8–90</td>
<td>75%</td>
<td>12</td>
</tr>
<tr>
<td>During Planting and Growing</td>
<td>63 ± 18</td>
<td>21–91</td>
<td>75%</td>
<td>12</td>
</tr>
<tr>
<td>Harvest</td>
<td>70 ± 25</td>
<td>44–95</td>
<td>50%</td>
<td>4</td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td>69 ± 12</td>
<td>14–96</td>
<td>50%</td>
<td>20</td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodborne Illness</td>
<td>68 ± 14</td>
<td>14–91</td>
<td>62%</td>
<td>21</td>
</tr>
<tr>
<td>Sanitation/Hygiene</td>
<td>74 ± 14</td>
<td>34–96</td>
<td>39%</td>
<td>18</td>
</tr>
<tr>
<td>Compost or Manure</td>
<td>61 ± 19</td>
<td>8–90</td>
<td>75%</td>
<td>12</td>
</tr>
<tr>
<td>Water Safety</td>
<td>59 ± 24</td>
<td>38–81</td>
<td>75%</td>
<td>4</td>
</tr>
<tr>
<td>Total Knowledge</td>
<td>73 ± 12</td>
<td>8–96</td>
<td>59%</td>
<td>56</td>
</tr>
</tbody>
</table>

*aMinimum subject mastery @ 80%.

TABLE 4. Comparison of knowledge and attitude reliability within timeline and content categories

<table>
<thead>
<tr>
<th>Knowledge category</th>
<th>Knowledge reliability*</th>
<th>Knowledge correlation with total attitude**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Food Safety</td>
<td>0.34</td>
<td>0.13</td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td>0.57</td>
<td>0.08</td>
</tr>
<tr>
<td>During Planting and Growing</td>
<td>0.52</td>
<td>0.22</td>
</tr>
<tr>
<td>Harvest</td>
<td>0.43</td>
<td>0.23</td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td>0.48</td>
<td>0.18</td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodborne Illness</td>
<td>0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>Sanitation/Hygiene</td>
<td>0.58</td>
<td>0.20</td>
</tr>
<tr>
<td>Compost or Manure</td>
<td>0.63</td>
<td>0.05</td>
</tr>
<tr>
<td>Water Safety</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Total Knowledge</td>
<td>0.78</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*Cronbach's alpha internal consistancy of reliability.

**Reliability total attitude = 0.75, total attitude score 4.04 ± 0.53.
<table>
<thead>
<tr>
<th>Demographic Categories</th>
<th>Number of Respondents</th>
<th>Mean Percent Correct*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gardening Experience (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54</td>
<td>59 ± 15(^a)</td>
</tr>
<tr>
<td>1-10</td>
<td>241</td>
<td>65 ± 12(^b)</td>
</tr>
<tr>
<td>11-29</td>
<td>271</td>
<td>69 ± 11(^b)</td>
</tr>
<tr>
<td>30+</td>
<td>250</td>
<td>68 ± 12(^b)</td>
</tr>
<tr>
<td>State of Residence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>347</td>
<td>67 ± 25</td>
</tr>
<tr>
<td>Maine</td>
<td>168</td>
<td>68 ± 24</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>111</td>
<td>67 ± 24</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>78</td>
<td>68 ± 28</td>
</tr>
<tr>
<td>Vermont</td>
<td>57</td>
<td>69 ± 28</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 39</td>
<td>82</td>
<td>67 ± 11</td>
</tr>
<tr>
<td>40 - 59</td>
<td>367</td>
<td>67 ± 12</td>
</tr>
<tr>
<td>Over 60</td>
<td>312</td>
<td>68 ± 12</td>
</tr>
<tr>
<td>Income (dollars)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 29,999</td>
<td>140</td>
<td>65 ± 12(^a)</td>
</tr>
<tr>
<td>30,000 ≤ 49,999</td>
<td>170</td>
<td>67 ± 13(^ab)</td>
</tr>
<tr>
<td>50,000 ≤ 69,999</td>
<td>159</td>
<td>67 ± 11(^ab)</td>
</tr>
<tr>
<td>> 70,000</td>
<td>230</td>
<td>69 ± 11(^b)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 9th to some high school</td>
<td>32</td>
<td>62 ± 14</td>
</tr>
<tr>
<td>High school or GED</td>
<td>160</td>
<td>68 ± 12</td>
</tr>
<tr>
<td>College to some graduate</td>
<td>423</td>
<td>68 ± 12</td>
</tr>
<tr>
<td>Post graduate</td>
<td>144</td>
<td>67 ± 11</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>294</td>
<td>67 ± 12</td>
</tr>
<tr>
<td>Female</td>
<td>396</td>
<td>68 ± 11</td>
</tr>
<tr>
<td>Master Gardener</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>18</td>
<td>74 ± 14(^a)</td>
</tr>
<tr>
<td>No Program</td>
<td>742</td>
<td>67 ± 12(^b)</td>
</tr>
<tr>
<td>Living Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>63</td>
<td>69 ± 12</td>
</tr>
<tr>
<td>Small Town</td>
<td>317</td>
<td>67 ± 12</td>
</tr>
<tr>
<td>Suburban</td>
<td>323</td>
<td>68 ± 11</td>
</tr>
<tr>
<td>City</td>
<td>55</td>
<td>65 ± 9</td>
</tr>
</tbody>
</table>

*Figures with different letters (a,b) within categories are significantly different @ P < 0.01.

**Does not include those with no gardening experience.
TABLE 6. Comparison of knowledge responses in home gardening survey to gardening experience

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of years gardening</th>
<th>0 (N=54)</th>
<th>1–10 (N=241)</th>
<th>11–29 (N=271)</th>
<th>30+ (N=250)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td></td>
<td>Mean % Correct*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Food Safety</td>
<td></td>
<td>63 ± 19<sup>a</sup></td>
<td>69 ± 17<sup>ab</sup></td>
<td>72 ± 16<sup>b</sup></td>
<td>71 ± 18<sup>b</sup></td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td></td>
<td>47 ± 22<sup>a</sup></td>
<td>57 ± 19<sup>b</sup></td>
<td>63 ± 17<sup>c</sup></td>
<td>63 ± 18<sup>c</sup></td>
</tr>
<tr>
<td>During Planting and Growing</td>
<td></td>
<td>54 ± 20<sup>a</sup></td>
<td>61 ± 17<sup>ab</sup></td>
<td>64 ± 17<sup>b</sup></td>
<td>63 ± 19<sup>b</sup></td>
</tr>
<tr>
<td>Harvest</td>
<td></td>
<td>63 ± 28<sup>a</sup></td>
<td>69 ± 24<sup>a</sup></td>
<td>71 ± 26<sup>a</sup></td>
<td>71 ± 25<sup>a</sup></td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td></td>
<td>65 ± 16<sup>a</sup></td>
<td>71 ± 13<sup>ab</sup></td>
<td>73 ± 11<sup>b</sup></td>
<td>74 ± 12<sup>b</sup></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodborne Illness</td>
<td></td>
<td>58 ± 19<sup>a</sup></td>
<td>64 ± 14<sup>b</sup></td>
<td>69 ± 13<sup>b</sup></td>
<td>69 ± 15<sup>b</sup></td>
</tr>
<tr>
<td>Sanitation/Hygiene</td>
<td></td>
<td>69 ± 15<sup>a</sup></td>
<td>74 ± 14<sup>a</sup></td>
<td>74 ± 14<sup>a</sup></td>
<td>73 ± 15<sup>a</sup></td>
</tr>
<tr>
<td>Compost or Manure</td>
<td></td>
<td>47 ± 23<sup>a</sup></td>
<td>56 ± 20<sup>a</sup></td>
<td>63 ± 18<sup>b</sup></td>
<td>64 ± 19<sup>b</sup></td>
</tr>
<tr>
<td>Water Safety</td>
<td></td>
<td>50 ± 26<sup>a</sup></td>
<td>57 ± 22<sup>a</sup></td>
<td>61 ± 25<sup>a</sup></td>
<td>58 ± 26<sup>a</sup></td>
</tr>
<tr>
<td>Total Knowledge</td>
<td></td>
<td>59 ± 15<sup>a</sup></td>
<td>65 ± 12<sup>b</sup></td>
<td>69 ± 11<sup>b</sup></td>
<td>68 ± 12<sup>b</sup></td>
</tr>
</tbody>
</table>

*Minimum subject mastery @ 80%.
Figures with different letters within rows are significantly different @ P < 0.01.

TABLE 7. Comparison of knowledge responses in the home gardening survey to income demographic

<table>
<thead>
<tr>
<th>Category</th>
<th>≤ 29,999 (N=140)</th>
<th>30,000 ≤ 49,999 (N=170)</th>
<th>50,000 ≤ 69,999 (N=159)</th>
<th>>70,000 (N=230)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td>Mean % correct*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Food Safety</td>
<td>67 ± 19<sup>a</sup></td>
<td>70 ± 17<sup>ab</sup></td>
<td>72 ± 16<sup>ab</sup></td>
<td>73 ± 17<sup>b</sup></td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td>62 ± 19<sup>a</sup></td>
<td>60 ± 18<sup>a</sup></td>
<td>60 ± 18<sup>a</sup></td>
<td>62 ± 18<sup>a</sup></td>
</tr>
<tr>
<td>During Planting and Growing</td>
<td>56 ± 19<sup>a</sup></td>
<td>61 ± 18<sup>ab</sup></td>
<td>64 ± 17<sup>b</sup></td>
<td>67 ± 17<sup>b</sup></td>
</tr>
<tr>
<td>Harvest</td>
<td>70 ± 25<sup>a</sup></td>
<td>72 ± 23<sup>a</sup></td>
<td>69 ± 26<sup>a</sup></td>
<td>70 ± 26<sup>a</sup></td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td>71 ± 13<sup>a</sup></td>
<td>71 ± 14<sup>a</sup></td>
<td>72 ± 12<sup>a</sup></td>
<td>74 ± 12<sup>a</sup></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodborne Illness</td>
<td>63 ± 15<sup>a</sup></td>
<td>66 ± 15<sup>ab</sup></td>
<td>69 ± 12<sup>b</sup></td>
<td>70 ± 14<sup>b</sup></td>
</tr>
<tr>
<td>Sanitation/Hygiene</td>
<td>72 ± 14<sup>a</sup></td>
<td>74 ± 15<sup>a</sup></td>
<td>72 ± 14<sup>a</sup></td>
<td>75 ± 13<sup>a</sup></td>
</tr>
<tr>
<td>Compost or Manure</td>
<td>62 ± 20<sup>a</sup></td>
<td>60 ± 19<sup>a</sup></td>
<td>60 ± 19<sup>a</sup></td>
<td>62 ± 19<sup>a</sup></td>
</tr>
<tr>
<td>Water</td>
<td>50 ± 25<sup>a</sup></td>
<td>57 ± 24<sup>ab</sup></td>
<td>61 ± 24<sup>b</sup></td>
<td>65 ± 23<sup>bc</sup></td>
</tr>
<tr>
<td>Total Knowledge</td>
<td>65 ± 12<sup>a</sup></td>
<td>67 ± 13<sup>ab</sup></td>
<td>67 ± 11<sup>ab</sup></td>
<td>69 ± 11<sup>b</sup></td>
</tr>
</tbody>
</table>

*Minimum subject mastery @ 80%.
Figures with different letters (a,b,c) within rows are significantly different @ P < 0.01.
TABLE 8. Comparison of knowledge responses in home gardening survey to participation in Master Gardener programs

<table>
<thead>
<tr>
<th>Category</th>
<th>Completed Master Gardener program (N=18)</th>
<th>No program (N=742)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline</td>
<td>Mean % Correct</td>
<td></td>
</tr>
<tr>
<td>General Food Safety</td>
<td>75 ± 17<sup>a</sup></td>
<td>71 ± 17<sup>a</sup></td>
</tr>
<tr>
<td>Prior to Planting/Soil Preparation</td>
<td>72 ± 18<sup>a</sup></td>
<td>61 ± 18<sup>a</sup></td>
</tr>
<tr>
<td>During Planting and Growing</td>
<td>68 ± 22<sup>a</sup></td>
<td>63 ± 18<sup>a</sup></td>
</tr>
<tr>
<td>Harvest</td>
<td>71 ± 26<sup>a</sup></td>
<td>70 ± 25<sup>a</sup></td>
</tr>
<tr>
<td>Post Harvest Handling</td>
<td>79 ± 11<sup>a</sup></td>
<td>72 ± 12<sup>b</sup></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodborne Illness</td>
<td>74 ± 14<sup>a</sup></td>
<td>67 ± 14<sup>a</sup></td>
</tr>
<tr>
<td>Sanitation/Hygiene</td>
<td>77 ± 13<sup>a</sup></td>
<td>74 ± 14<sup>a</sup></td>
</tr>
<tr>
<td>Compost or Manure</td>
<td>74 ± 19<sup>a</sup></td>
<td>61 ± 19<sup>a</sup></td>
</tr>
<tr>
<td>Water Safety</td>
<td>67 ± 26<sup>a</sup></td>
<td>59 ± 24<sup>a</sup></td>
</tr>
<tr>
<td>Total Knowledge</td>
<td>74 ± 14<sup>a</sup></td>
<td>67 ± 12<sup>b</sup></td>
</tr>
</tbody>
</table>

^{*Minimum subject mastery @ 80%.}

Figures with different letters (a,b) within rows are significantly different @ P < 0.01.

under agency award No. 2003-51110-01713. This project has been assigned Contribution No. 5028 by the US Department of Agriculture at the University of Rhode Island, Agricultural Experiment Station. The project directors would like to thank the project coordinators at the other New England Land Grant Universities for their expertise and significant contributions to this project: Diane Wright Hirsch, University of Connecticut; Jim Dill and David Handley, University of Maine; Catherine Violette, University of New Hampshire; and M. Dale Steen, University of Vermont.

REFERENCES

CONGRATULATIONS!

In March 2006, the International Association for Food Protection participated at Food Safety World in Washington, D.C. While exhibiting, we offered a drawing for a one-year Membership with our Association and a free registration to our Annual Meeting. We are pleased to announce the following winners of the drawing:

IAFP Membership
Cindy Roberts
Food Safety Web Specialists
Washington, D.C.

IAFP Annual Meeting Registration
Marcia Walker
Fresherized Foods
Fort Worth, Texas

Environmental Surface Sampling
Your Way - Wet or Dry

- Optional sterile glove for both
- Sponge is non-inhibitory
- Hydrated with neutralizing buffer - ready to use, or
- Add buffer to dry sponge

1.800.558.9595 (US) • 1.800.668.0600 (Canada)
www.whirl-pak.com • info@eNasco.com
Top Ten Food Safety Problems in the United States Food Processing Industry

AYLIN SERTKAYA,1 AYESHA BERLIND,1 RACHEL LANGE,2 and DONALD L. ZINK2
1Eastern Research Group, Inc. (ERG), 110 Hartwell Ave., Lexington, MA 02421, USA; 2FDA, Center for Food Safety and Applied Nutrition (CFSAN), 5100 Paint Branch Pkwy., College Park, MD 20740, USA

SUMMARY

The preventive controls are less rigorous at some food processing facilities than at others, potentially increasing the risk of microbiological, chemical, and physical food safety hazards. We used a modified three-round Delphi technique to generate expert opinion on the ten food safety problems that are of top concern for the food processing industry today, and the preventive controls needed to address them. The expert panel members evaluated the frequency and severity of the food safety risk posed for five food processing industry sectors (baked, dairy, frozen, refrigerated, and shelf-stable goods, excluding meat and poultry products) and three plant sizes for each of the ten most important problems identified. The experts collectively ranked “deficient employee training” as the top problem facing food processors today, followed by “poor plant and equipment sanitation” and “contamination of raw materials.” Other problems included “poor plant design and construction,” “post-process contamination,” “difficult-to-clean equipment,” and “incorrect labeling and packaging.” The expert panel also made recommendations on the types of preventive controls needed to address these problems. Some of the main recommendations with broad applicability across all food sectors included ongoing and targeted training of employees, management, and suppliers; periodic audits of facility and raw material suppliers; improved recordkeeping; and validation/evaluation of activities such as employee training and cleaning procedures.

INTRODUCTION

Food safety is paramount to food processing. Although the food processing industry has made big strides in enhancing the safety of foods manufactured, the food safety literature indicates that there remains room for further improvements in microbiological, chemical, and physical safety at food processing plants. Published reports indicate that some food processing plants continue to struggle with such food safety challenges as poor hygienic practices (5), ineffective employee training (7), deficient cleaning and sanitation of equipment and utensils (5, 10), raw material contamination (8, 11), and ineffective allergen control (2, 4), among others. Further, evolution of new agents as well as new vehicles transmitting known pathogens, increased reliance on food imports, adoption of more sophisticated food production and processing technologies, and increased automation make prevention of food contamination a moving target for food processors (9).

The majority of these problems can be remedied with basic common sense preventive controls, such as targeted employee training, monitoring of cleaning and sanitation effectiveness via environmental sampling and testing, and implementation of raw material supplier qualification and monitoring programs. Others are more difficult to control, such as post-processing contamination with Listeria monocytogenes, a pathogen that is ubiquitous in the processing environment.

A peer-reviewed article

*Author for correspondence: Phone: 781.674.7227; Fax: 781.674.2851
E-mail: aylin.sertkaya@erg.com

310 FOOD PROTECTION TRENDS | MAY 2006
Preventive controls also vary in cost, and given limited budgets, food processors may benefit from adopting a risk-based approach to prioritizing their food safety initiatives based on a risk-payoff analysis. For example, problems that pose the highest risk to food safety but are least costly to fix can be addressed earlier than those with low risk but high costs. This study is designed to provide a global perspective on the state of food manufacturing in the United States, with the goal of aiding regulators and food processors in developing such an analysis.

The objectives of this study were twofold: (1) To identify the main problems that pose microbiological (i.e., pathogenic bacteria, viruses, and parasites), chemical (i.e., allergens, cleaners and solvents, and mycotoxins), and/or physical (i.e., foreign objects such as glass and metal) safety hazards to food at the processor level, and (2) to determine the preventive controls that food manufacturers should implement to address each of the problems identified.

MATERIALS AND METHODS

The study objectives required gathering current data that are not accurately known and that did not easily lend themselves to highly precise analytical techniques, such as a statistical industry survey, which would entail asking manufacturers to release potentially sensitive information. Thus, we used a modified Delphi technique to generate the necessary information from a panel of nationally recognized experts in food safety. The Delphi technique involves eliciting opinions of experts on a collective basis and is widely applied in the forecasting and policy arenas (6, 7). A successful application of the technique requires assembling a panel, preferably consisting of 15 or more individuals who are considered experts in the given field of investigation, although some Delphi studies have been conducted with a panel consisting of as few as four experts.

Study design

We assembled a 15-member panel comprising nationally recognized experts in food safety, HACCP, food plant sanitation, quality systems, process optimization, GMP compliance, and food microbiology. On average, the panel members possessed over 30 years of food industry experience in various sectors, such as canned foods, fresh produce, meat and poultry products, and seafood. In identifying the experts, we relied on recommendations from FDA, various food industry personnel, and other experts in food safety.

The study utilized a three-round design. In Round 1, we provided each panel member with a list of food safety problems previously identified through a literature review and discussions with selected expert panel members. We then asked each panel member to: (1) indicate the major food sectors, including baked, dairy, frozen, refrigerated, and shelf-stable, to which the listed problem is mainly applicable, (2) add to the list of food safety problems if necessary, and (3) select the ten most important food safety problems facing food manufacturers today, based on their frequency and severity.

The objective of Round 2 was to determine whether each of the top ten problems identified in Round 1 posed a sufficiently different food safety risk for a particular food item (e.g., pies) within a major food category (e.g., baked goods) than for the major food category as a whole. Thus, we asked each panel member to indicate whether a separate risk score had to reflect the risk of the food safety problem with respect to all hazards (i.e., microbiological, physical, and chemical) except for allergens, and “Allergen” score had to reflect the risk of the food safety problem with respect to allergens only.

We also asked each expert to indicate the types of preventive controls that food processors need to implement to address each of the ten food safety problems by facility size and major food sector. Although large food processors might have the capital to invest in more sophisticated technologies, small processors are likely to face resource constraints that make such technologies infeasible. Therefore, the expert panel was instructed to take account of cost-effectiveness when making recommendations on the types of controls by size of food processor and main food sector (i.e., baked goods, dairy, frozen, refrigerated, and shelf-stable). Given the large number of food items identified for risk scoring in round 2, we asked experts to provide preventive control recommendations for only the main food sectors and to note any additional controls that might be needed for a subcategory.

Data analysis

We used STATA to perform descriptive univariate analysis as well as factor analysis on the data collected. We used STATA’s factor, greigen, rotate, and score functions for factor analysis, a data reduction technique that reduces the number of variables used in an analysis by creating new variables (called factors) that combine redundancy in the data. A factor analysis looks for correlations among the variables, and the first step is to determine the number of relevant factors. Although STATA’s algorithms used to solve factor analyses include methods of determining an appropriate number of factors, it is also possible to specify (fix) the number of factors in the analysis. For this study, we both allowed the algorithms to determine the number of factors and used judgment in determining the appropriate number of factors. The output from the factor analysis generates a table that relates each variable to each factor and assigns a numerical value between −1 and 1 to each relationship. The numerical values, referred to as factor loadings, reflect the strength of the relationship between the
TABLE 2. Ranking of food safety problems by number of votes across all food sectors

<table>
<thead>
<tr>
<th>Food Safety Problem</th>
<th>Votes</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficient employee training</td>
<td>15</td>
<td>(94%)</td>
</tr>
<tr>
<td>Contamination of raw materials</td>
<td>12</td>
<td>(75%)</td>
</tr>
<tr>
<td>Poor plant and equipment sanitation</td>
<td>12</td>
<td>(75%)</td>
</tr>
<tr>
<td>Poor plant design and construction</td>
<td>12</td>
<td>(75%)</td>
</tr>
<tr>
<td>No preventive maintenance</td>
<td>11</td>
<td>(69%)</td>
</tr>
<tr>
<td>Difficult-to-clean equipment</td>
<td>10</td>
<td>(63%)</td>
</tr>
<tr>
<td>Post-process contamination at manufacturing plant</td>
<td>9</td>
<td>(56%)</td>
</tr>
<tr>
<td>Contamination during processing</td>
<td>9</td>
<td>(56%)</td>
</tr>
<tr>
<td>Poor employee hygiene</td>
<td>7</td>
<td>(44%)</td>
</tr>
<tr>
<td>Incorrect labeling or packaging</td>
<td>5</td>
<td>(31%)</td>
</tr>
<tr>
<td>Contamination by reworked product</td>
<td>5</td>
<td>(31%)</td>
</tr>
<tr>
<td>Inadequate cooling</td>
<td>5</td>
<td>(31%)</td>
</tr>
<tr>
<td>Biofilms</td>
<td>4</td>
<td>(25%)</td>
</tr>
<tr>
<td>Lack of equipment knowledge</td>
<td>4</td>
<td>(25%)</td>
</tr>
<tr>
<td>Poor pest control</td>
<td>4</td>
<td>(25%)</td>
</tr>
<tr>
<td>Stagnant water due to dead ends in plumbing</td>
<td>4</td>
<td>(25%)</td>
</tr>
<tr>
<td>Condensate on pipes and other equipment</td>
<td>3</td>
<td>(19%)</td>
</tr>
<tr>
<td>Lack of crisis management protocol</td>
<td>3</td>
<td>(19%)</td>
</tr>
<tr>
<td>Lack of knowledge of welding standards</td>
<td>2</td>
<td>(13%)</td>
</tr>
<tr>
<td>Lack of product recovery protocol</td>
<td>2</td>
<td>(13%)</td>
</tr>
<tr>
<td>Lack of allergen control programs</td>
<td>1</td>
<td>(6%)</td>
</tr>
<tr>
<td>Lack of equipment parts reconciliation after repairs</td>
<td>1</td>
<td>(6%)</td>
</tr>
<tr>
<td>Use of unpotable water</td>
<td>1</td>
<td>(6%)</td>
</tr>
</tbody>
</table>

factors and the variables. Variables that are closely related to one another should all load highly on the same factor.

The method allowed us to generate an overall risk score that combines the information in all of the ten problems, as well as four factor risk scores by sector.

RESULTS

Descriptive analysis

Analysis of Round 1 data shows that “refrigerated products” is the one sector to which the majority of food safety problems are applicable. Additionally, although some problems, such as “deficient employee training,” “poor plant and equipment sanitation,” “contamination of raw materials,” and “poor plant design and construction,” are applicable to all food sectors, other problems, such as “biofilms” and “condensate on pipes and other equipment,” are more sector-specific. The relative importance of a given food safety problem (measured by the number of votes received) varies from sector to sector. However, we find that those problems with broad applicability across all sectors (“deficient employee training,” “contamination of raw materials,” “poor plant and equipment sanitation,” and “poor plant design and construction”) also rank highest in the top-ten food safety problems list (Table 2).

Examination of Round 2 responses shows that the number of food items selected across the food sectors for scoring in the subsequent round is lowest for shelf-stable foods. The refrigerated, frozen, and dairy sectors have the highest number of food items selected. Overall, given the different areas of expertise of individual panel members, a large number of food items within each food sector were identified as meriting a separate risk score. The total number of categories for the panel members to score (for “general” as well as “allergen” risks) by facility size ranges from 70 to over 100 across the ten food safety problems, substantially increasing the respondent burden in the third round.

The risk score data in Round 3 shows that small and medium-sized facilities tend to have higher general and allergen risk scores than large facilities across all problems and food sectors. The food safety problems with the highest general risk scores include “deficient employee train-
ing, "poor plant and equipment sanitation," "difficult-to-clean equipment," "poor employee hygiene," and "contamination of raw materials." The majority of these problems have also been identified as having broad applicability across sectors in the initial Delphi round. The problems with the highest allergen scores are "incorrect labeling or packaging," followed by "deficient employee training" and "difficult-to-clean equipment."

Factor analysis

Given the degree of overlap among various food safety problems, we expect that some underlying factors (i.e., root causes), which are smaller than the number of variables (i.e., number of food safety problems), are mainly responsible for the covariance among our variables. Therefore, we performed a factor analysis to determine the number of underlying dimensions in the risk score data collected. For the analysis, we separated the general risk scores from the allergen risk scores. Next, we performed a second set of factor analyses and determined that both general and allergen risks are best described by a four-factor model. That is, the four variables can best be described by four underlying factors. This does not imply that each variable is assigned to a specific factor. Variables can (and will) be related to more than one factor. The four factors, differed slightly however, between the general and allergen categories. We named the four factors in the general category (1) process-related contamination risk, (2) equipment risk, (3) quality control risk, and (4) input-related risk. Similarly, the four factors in the allergen category were named (1) in-process contamination risk, (2) quality control risk, (3) other contamination risk, and (4) equipment risk. The names of factors were derived from those variables that contributed the most to the factor values and were subjective. For example, the "process-related contamination risk" factor got its name from the fact that the variables that contribute the most to it were "contamination during processing," "contamination of raw materials," and "poor employee hygiene."

Tables 3 and 4 summarize the factor analysis results for general and allergen risk score data, respectively. One way to see the information in Tables 3 and 4 is as two sets of risk summaries. The four factors aggregate the information from the ten risk problems to four summary measures, whereas the overall risk factor summarizes the four risk factors, or the ten risk problems, into one measure for each sector. The data on the ten risk problems generate a broad picture of the problems in each sector. The one- and four-factor models, however, account for correlations among the ten risk problem scores to generate summary measures.

As far as general food safety risks are concerned (Table 3), the study shows that the refrigerated products sector has the highest overall risk (1.098), followed by the dairy products sector (0.837). The shelf-stable and baked goods sectors, on the other hand, pose lower than average general food safety risks. Process-related contamination and quality control risks are highest in the dairy products sector, whereas equipment and input-related contamination risks are elevated in the refrigerated products sector. When allergen risks are considered (Table 4), refrigerated products have the highest overall risk (0.975) followed by baked goods (0.707). Further, the in-process contamination and equipment risks are the highest in the refrigerated products sector, Baked goods and frozen products sectors pose the highest risk with respect to quality control and other contamination, respectively.

Analysis of expert panel responses to the second part of Round 3 reveals that there is a range of preventive controls that could effectively address most of the food safety problems faced by the food processing industry today. Although the list of preventive controls recommended to address each food safety problem is extensive, some of the recurring themes across all sectors and food safety problems include:

<p>| TABLE 3. Overall risk scores and factor risk scores by sector, general risk category |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Baked Goods</th>
<th>Dairy</th>
<th>Food Sectors</th>
<th>Refrigerated</th>
<th>Shelf-Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall risk</td>
<td>-0.058</td>
<td>0.837</td>
<td>0.232</td>
<td>1.098</td>
<td>-0.513</td>
</tr>
<tr>
<td>Process-related contamination [a]</td>
<td>-0.376</td>
<td>0.665</td>
<td>0.128</td>
<td>0.518</td>
<td>-0.249</td>
</tr>
<tr>
<td>Equipment [b]</td>
<td>-0.084</td>
<td>0.254</td>
<td>0.259</td>
<td>0.848</td>
<td>-0.375</td>
</tr>
<tr>
<td>Quality control [c]</td>
<td>-0.037</td>
<td>0.670</td>
<td>-0.087</td>
<td>0.182</td>
<td>-0.102</td>
</tr>
<tr>
<td>Input-related contamination [d]</td>
<td>0.542</td>
<td>0.078</td>
<td>0.206</td>
<td>0.668</td>
<td>-0.333</td>
</tr>
</tbody>
</table>

TABLE 4. Overall risk scores and factor risk scores by sector, allergen risk category

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Baked Goods</th>
<th>Dairy</th>
<th>Food Sectors Frozen</th>
<th>Refrigerated</th>
<th>Shelf-Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall risk</td>
<td>0.707</td>
<td>0.107</td>
<td>0.453</td>
<td>0.975</td>
<td>-0.527</td>
</tr>
<tr>
<td>In-process contamination [a]</td>
<td>0.197</td>
<td>-0.102</td>
<td>0.250</td>
<td>0.551</td>
<td>-0.261</td>
</tr>
<tr>
<td>Quality control [b]</td>
<td>0.434</td>
<td>0.391</td>
<td>0.228</td>
<td>0.364</td>
<td>-0.269</td>
</tr>
<tr>
<td>Other contamination [c]</td>
<td>-0.007</td>
<td>0.017</td>
<td>0.301</td>
<td>0.272</td>
<td>-0.184</td>
</tr>
<tr>
<td>Equipment [d]</td>
<td>0.470</td>
<td>-0.005</td>
<td>0.222</td>
<td>0.756</td>
<td>-0.351</td>
</tr>
</tbody>
</table>

- **Training** - Ongoing and targeted training on issues such as allergen control, cleaning and sanitation procedures, incoming ingredient receipt protocol, and monitoring; training of employees, management, and suppliers.
- **Audits** - Periodic audits and inspections of facility and raw material suppliers, either in-house or by third-party firms.
- **Documentation** - Documentation of training activities, raw material handling policies and activities, cleaning and sanitation, receiving records, and use of sign-off logs, and
- **Validation/evaluation** - Evaluation of training effectiveness and establishment of accountability; validation of cleaning through testing (e.g., swabs, organoleptic evaluations, and bioluminescence tests).

Other commonly noted problem-specific preventive controls were:

- Supplier audits and supplier certification programs for "raw material contamination" problems.
- Plant design reconfiguration and use of outside consultants for plant design, better sanitation, and improved flow and access to equipment for "poor plant design and construction" problems.
- Sanitation standard operating procedures (SSOPs) and environmental sampling and other monitoring for "difficult-to-clean equipment" problems.
- Use of preventive maintenance programs and documentation for deficiencies in preventive maintenance and assignment of accountability for "contamination during processing" problems.
- Environmental sampling, proper implementation of SSOPs, institution of HACCP, and product and process flow controls for "post-process contamination problems," and
- Label review and verification for "incorrect labeling or packaging" problems.

DISCUSSION

The study provides a global perspective on safety problems in the food manufacturing industry as well as information on the relative importance of these problems across various food sectors and firm sizes. Our findings indicate that the following are the top ten problems faced by food manufacturers today, in order of decreasing importance:

- Deficient employee training.
- Contamination of raw materials.
- Poor plant and equipment sanitation.
- Poor plant design and construction.
- No preventive maintenance.
- Difficult to clean equipment.
- Post-process contamination at manufacturing plant.
- Contamination during processing.
- Poor employee hygiene.
- Incorrect labeling and packaging.

Not surprisingly, these are also the most frequently mentioned problems in the food safety literature.

Although refrigerated and dairy foods have the highest general risk of food safety problems compared to other food categories, baked and refrigerated foods pose the highest risk in terms of allergen hazards. Additionally, the study shows that the extent of these problems at small and medium-sized manufacturers likely varies from that at larger processors, with smaller facilities generating higher general and allergen risk scores than large facilities across all food safety problems and sectors.

The expert panel agrees that the majority of food safety problems identified could be addressed with better training of employees; regular third-party or in-house audits of food facility operations; improved recordkeeping, especially documentation of training activities, HACCP, and SSOPs; and validation/evaluation of activities such as cleaning and training effectiveness. Although the risk scores vary by food sector and facility size, the study shows that the preventive controls for addressing the food safety problems do not.

The study findings may have implications for food policy in general. As regulators are increasingly embracing a more risk-based approach to setting priorities and allocating resources for food safety, the results of this study can help focus their efforts. For example, results from the study indicate that training is a key component of preventing foodborne hazards in food processing plants. One area that
policymakers may therefore want to explore further is the role of government in improving employee training.

Our findings may also aid food processors in prioritizing their in-plant food safety initiatives. The study helps clarify which food safety problems are most likely to occur in food processing plants, taking into account sector-specific challenges. This ranking can help food processors understand what processes in their plant pose the greatest risk in terms of food contamination. Furthermore, the study provides information on the most effective preventive controls available to increase the safety of the food that they produce. Given the limited budgets of food processors, these data might help them to determine where they should focus their spending to ensure that the foods that they produce are safe.

ACKNOWLEDGMENTS

This work was supported by FDA Center for Food Safety and Applied Nutrition (CFSAN). We greatly acknowledge all those who participated in the study and/or provided input, including Dane Bernard, C. Dee Clingman, Peter Cocotas, Clifford Coles, Charles Cook, George Evancho, Cameron Hackney, John Manoush, Nancy Nagle, Robert Price, William Sanders, Robert Savage, William Sperber, Richard Stier, Tommy Shannon, Don Ward, and Edmund Zottola. We also would like to thank the Food GMP Modernization Working Group and the economists and epidemiologists at FDA for their guidance and support along every phase of this study, and Louis Nadeau, who provided statistical support on the project. The opinions expressed herein are those of the authors and do not necessarily represent those of FDA and ERG.

REFERENCES

OUTDOOR ADVENTURE IN KANANASKIS
Thursday, August 17 • 8:30 a.m. – 2:30 p.m.

Welcome to the REAL WEST! Transfer by coach to Kananaskis Country for a morning of activities in the beautiful Canadian Rockies. Tucked away in the spectacular Kananaskis Valley, Boundary Ranch is the perfect setting for an Alberta Barbecue. Lunch at Boundary Ranch offers the opportunity to relax and watch the trail rides leave the corral, get involved in activities like horseshoes or roping or take a picturesque stroll through the mountains surrounding the ranch.

Consider the additional activities offered for a small fee. Optional activities:

- Biking in Kananaskis
- Voyageur Canoe Ride
- Kananaskis Hiking Tours
- Horseback Trail Ride at Boundary Ranch
- Whitewater Rafting on the Kananaskis River

Go to page 343 to register.
Proposed changes to be voted on by the IAFP Membership present at the IAFP Annual Business Meeting on Tuesday, August 15, 2006 at 12:15 p.m. in Calgary, Alberta, Canada.

Proposed change #1

ARTICLE VI.
MEETINGS

A. Each year, IAFP shall hold an Annual Business Meeting.

1. A quorum, for any meeting to conduct business, shall consist of at least 50 voting members.

2. Robert’s Rules of Order shall govern the procedures at all IAFP meetings except where otherwise provided for in the Constitution or Bylaws. Voting by proxy shall not be permitted.

B. Other meetings of IAFP may be called by the Executive Director by duly announcing any called meeting in the official publication of IAFP at least 60 days prior to the date of the meeting.

C. In case a quorum is not present to transact necessary business, the Executive Board is authorized to act for the best interests of IAFP.

D. The Executive Board shall meet at each IAFP Annual Business Meeting and at such other times as the President deems necessary.

1. A quorum for Executive Board meetings shall consist of at least four members of the IAFP Executive Board and decisions shall be by a majority vote of those present.

2. In the event of a tie vote, the presiding officer will be permitted to vote.

E. When, in the discretion of the Executive Board, it is considered advisable to conduct a vote on a question by mail ballot, a majority of the votes cast will be necessary to carry the proposition.

Rational: To amend the Constitution to allow for electronic voting.

Proposed change #2

ARTICLE VII.
AMENDMENTS

A. Any member may propose amendments to the Constitution by submitting them in writing to the Executive Director, at least 60 days before the date of the next announced Annual Business Meeting.

1. The Executive Director shall notify all members, at least 30 days before the Annual Business Meeting that the proposed amendments will be open for discussion at that meeting.

2. Such proposed amendments, upon a majority affirmative vote of the members present, shall, within 60 days, be submitted to the entire membership of IAFP by the Executive Director.

3. All members voting on such amendments shall, within 45 days after issuance of such notification, register their votes in writing with the Association office. Executive Director; on sealed ballots furnished by IAFP.

4. These ballots shall be opened by the Tellers Committee and counted and certified to the IAFP President by the Chairperson of the Tellers Committee. The results shall be reported by the IAFP President to the membership.

5. If the proposed amendments are passed by a two-thirds vote of those members who register their votes with the Association office, Executive Director; they shall become a part of the Constitution from the date of such report and notice by the IAFP President.

Rational: To amend the Constitution to allow for electronic voting.
Proposed changes to be voted on by the IAFP Membership present at the IAFP Annual Business Meeting on Tuesday, August 15, 2006 at 12:15 p.m. in Calgary, Alberta, Canada.

Proposed change #1

SECTION I.
MEMBERSHIP AND DUES

7. Any person, having once become a member, may continue membership in IAFP so long as the annual membership dues are paid, except as provided in Section II, subsection B8, of these Bylaws.

7.1 Any member who fails to pay annual due by due date shall be placed on the inactive list.

7.1.1 Members on the inactive list shall not be entitled to member entitlements and will not receive publications of IAFP.

7.1.2 Such member(s) may be reinstated within 90 days of their membership expiry date, upon payment of dues.

7.1.3 Any member who is delinquent in dues after 90 days will be removed from the inactive list.

7.1.3.1 Membership may be reestablished by filing an application and payment of annual dues.

7.1.3.2 Members rejoining after 90 days will be considered as new members and their anniversary date adjusted accordingly.

Rational: To clarify inactive Members are not entitled to receive Member entitlements.

Proposed change #2

SECTION I.
MEMBERSHIP AND DUES

8. Each member of IAFP, in good standing, shall receive at no extra cost, the regular issues of the Association’s official publication of IAFP and such other publications as the Executive Board may direct, for the period in which the dues are paid. Other publications may be provided at additional cost.

Rational: To clarify publications received by each Member.

Proposed change #3

SECTION V.
PUBLICATIONS

A. All publications of IAFP will be issued under the authority of the Executive Board.

1. Any Affiliate Association may publish its own material but must assume full responsibility therefore, and not obligate IAFP in any manner.

B. The electronic newsletter shall be the official publication of IAFP for membership communication.

C. Food Protection Trends shall be the official applied technical publication of IAFP and the Journal of Food Protection will be the scientific research publication.

1. These Journals will be the property of IAFP, which will own the copyrights and all articles published therein.

2. The Executive Board will appoint Scientific Editors for Food Protection Trends and Journal of Food Protection to 4-year renewable terms and establish appropriate compensation.

Rational: This amendment adds the electronic newsletter as the official publication of IAFP. Upon approval, this allows the Association to revise its dues structure, adding a base Membership fee for those who want to only receive the electronic newsletter. Other language clarifies where Scientific Editors will be appointed.

Proposed change #4

SECTION VI.
STANDING COMMITTEES, SPECIAL COMMITTEES, PROFESSIONAL DEVELOPMENT GROUPS and TASK FORCES

B. Special Committees

1. Special Committees provide support services to IAFP on a continuous basis. Special Committees of IAFP shall consist of the following: 3-A Committee on Sanitary Procedures, Audiovisual Library, Awards, Black Pearl Selection, Committee on Control of Foodborne Illness, Constitution and Bylaws, Developing Scientist Award, Fellows Selection, Foundation Fund, Membership, Nominating, Past Presidents’, and Tellers.
1.9 Foundation Fund Committee
The Foundation Fund Committee shall consist of the President, President-Elect and Vice President of IAFP and a chairperson and vice chairperson recommended by the President-Elect for confirmation by the Executive Board. The chairperson and vice chairperson shall serve in such position for no more than two consecutive terms. The chairperson shall recommend other individuals to the President-Elect for confirmation by the Executive Board. Appointed membership (including the chairperson and vice chairperson) shall be balanced with equal representation from industry, government and education. All appointments shall be for 3-year renewable terms. The Foundation Fund Committee shall:

1.9.1 Oversee IAFP Foundation monies;
1.9.2 Solicit gifts to the Foundation; and
1.9.3 Identify and fund programs which further the goals and objectives of the Foundation and IAFP.

Rational: This amendment updates the name of the Foundation Committee and removes “Fund” from that name.

Proposed change #5

SECTION VI.
STANDING COMMITTEES, SPECIAL COMMITTEES, PROFESSIONAL DEVELOPMENT GROUPS and TASK FORCES

B. Special Committees

1.11 Nominating Committee
Each year prior to the Annual Meeting, the President-Elect shall appoint a chairperson and a vice chairperson for the Nominating Committee for the following year. The chairperson will submit the names of four to seven IAFP members to serve on the committee, to the Executive Board for confirmation.

1.11.1 At least one member shall have served on the Nominating Committee the previous year, and the members should be representative of geographical and membership groups.

1.11.2 The chairperson of the committee shall be announced at the Annual Meeting, and published in the official publication of IAFP following the Annual Meeting, together with the date by which candidates for nomination(s) for office(s) shall be submitted.

1.11.3 The Nominating Committee shall submit the names of at least two nominees for the office of Secretary to the Executive Director as directed by the President. The nominees’ names, with pictures and biographical sketches, shall be published in the official publication of IAFP not later than April 1 of the year in which the election is to be held.

1.11.4 Ballots shall be provided distributed by the Executive Director as directed by the Executive Board and must be returned to the Association office Executive Director by the established deadline, for checking against the IAFP eligible voter list. The ballots are then forwarded to the Tellers Committee will oversee the election and certify the results for opening and counting.

1.11.5 Voting by proxy or electronic voting shall be permitted only in the election of the Secretary according to procedures established by the Executive Board.

1.11.5.1 The nominee receiving the greatest number of votes shall be certified to the President, by the chairperson of the Tellers Committee, at least two months in advance of the Annual Meeting.

Rational: To amend the Bylaws to allow for electronic voting.

Proposed change #6

SECTION VI.
STANDING COMMITTEES, SPECIAL COMMITTEES, PROFESSIONAL DEVELOPMENT GROUPS and TASK FORCES

B. Special Committees

1.13 Tellers Committee
The Tellers Committee shall consist of a chairperson recommended by the President-Elect and confirmed by the Executive Board. The chairperson, subject to the Executive Board’s review, shall appoint three other committee members, as necessary. All appointments shall be for 1-year terms. The Tellers Committee shall:

1.13.1 Oversee and certify the results of each election and other membership votes.

Rational: To amend the Bylaws to allow for electronic voting.
The International Association for Food Protection welcomes Ms. Vickie Lewandowski to the Executive Board as Secretary. Ms. Lewandowski will take office at the conclusion of the Awards Banquet at IAFP 2006, the Association's 93rd Annual Meeting in Calgary, Alberta, Canada. By accepting this position, she made a five-year commitment to the Association and will begin her term as President in 2009.

Ms. Vickie Lewandowski is an Associate Principal Microbiologist for Kraft Foods, Inc. where she is responsible for providing microbiological and food safety expertise to the global cream cheese, cultured dairy products, and specialty cheese businesses. Her responsibilities fall into the areas of HACCP development and support, microbial challenge studies, product development support (growth and productivity initiatives), processing plant support (troubleshooting, product startups), and training.

Ms. Lewandowski has over 19 years of industry experience in microbiology and food safety. Beginning her career as a quality control technologist at Kemps/Marigold Foods, she experienced the challenges that occur daily at a manufacturing facility. She then advanced to a technologist position at Pillsbury, where she became acutely aware of the critical role of microbiology and food safety in product development while working with R&D associates on prepared dough products and frozen meals (pizza). Ms. Lewandowski then joined the staff at r-Tech (Land O’ Lakes) where she developed expertise on test methodologies and development of challenge study/method validation protocols.

Upon completion of her Masters Degree, Ms. Lewandowski accepted a food microbiologist position at Cargill. There she provided microbiological and food safety expertise to a wide variety of global food businesses including meat, eggs, poultry, juice concentrate, corn milling, wheat milling, chocolate processing, soy processing, etc. In addition to working with product developers at Cargill, Ms. Lewandowski also provided support to the processing plants through applied research and troubleshooting.

Ms. Lewandowski is a recognized expert in molecular subtyping methodology (PFGE), pathogen and spoilage organism test methodologies, challenge study development, and HACCP. The opportunity to work with several large, diverse companies has allowed Ms. Lewandowski to engage in an array of industry experiences, to gain knowledge of a vast number of food products and processes and ultimately, to be an integral part of providing safe food to millions worldwide.

Since joining IAFP in 1995, Ms. Lewandowski has been a very active member. She served on the Local Arrangements Committee for the 2000 IAFP Annual Meeting in Minneapolis. She has organized and convened several well-received symposia and has been a presenter for symposia and technical sessions. Ms. Lewandowski is currently a member of the Program Committee (since 2002) and is serving as Chairperson of this committee for 2006. She is currently the Vice Chairperson of the Dairy Quality and Safety Professional Development Group. Ms. Lewandowski has been a judge for the Developing Scientist Competition for 2004 and 2005 and was Chairperson of that committee for 2005.

Other professional affiliations for Ms. Lewandowski include membership in the Institute of Food Technologists and the American Society for Microbiology. She is also an active member of the Associated Illinois Milk, Food and Environmental Sanitarians, an Affiliate of IAFP.

Ms. Lewandowski earned her Bachelor of Science Degree in Food Science from the University of Minnesota. While pursuing her career, she continued her education and was awarded her Masters Degree in Food Microbiology in 1997.
AFFILIATE OFFICERS

ALABAMA ASSOCIATION FOR FOOD PROTECTION
Pres., John P. Nelson .. Birmingham
Pres. Elect, Brian Bower ... Headland
Vice Pres., Patricia Lindsey ... Cullman
Past Pres., Jon Searles ... Sylacauga
Sec'y. Treas., Karen Crawford Tuscaloosa
Delegate, Tom McCaskey .. Auburn
Mail all correspondence to:
G. M. Gallaspy
P.O. Box 303017, Suite 1250
Montgomery, AL 36130-3017
334.206.5375
E-mail: ggallaspy@adph.state.al.us

ALBERTA ASSOCIATION FOR FOOD PROTECTION
Pres., Kevin Webster .. Edmonton
Past Pres., Gary Gensler .. Edmonton
Treas., Susan Gibson .. Edmonton
Delegate, Lynn M. McMullen Edmonton
Mail all correspondence to:
Lynn M. McMullen
University of Alberta
Dept. of Ag., Food and Nutritional Science
4-10 Ag. For. Center
Edmonton, Alberta T6G 2P5 Canada
780.492.6015
E-mail: lynn.mcmullen@ualberta.ca

ARIZONA ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Chris Reimus .. Phoenix
Pres. Elect, Mohammed Heydari Phoenix
Past Pres., Aimee Upton ... Phoenix
Sec'y., Susie Sid ... Phoenix
Treas., Veronica Oros .. Tempe
Delegate, Mohammed Heydari Phoenix
Mail all correspondence to:
Chris Reimus
Maricopa County Environmental Health Division
1001 N. Central Ave., Suite 300
Phoenix, AZ 85004
480.820.7655 ext. 202
E-mail: creimus@mail.maricopa.gov

BRAZIL ASSOCIATION FOR FOOD PROTECTION
Pres., Maria Teresa Destro ... São Paulo
Vice Pres., Ivone Delazeri ... São Paulo
Past Pres., Mariza Landgraf São Paulo
Sec'y., Ellen Lopes ... São Paulo
Treas., Bernadette D.G.M. Franco São Paulo
Delegate, Maria Teresa Destro São Paulo
Mail all correspondence to:
Maria Teresa Destro
Univ. São Paulo
Av Prof. Lineu Prestes 580 Bl14
São Paulo, SP 05.506-900 Brazil
55.113.091.2199
E-mail: mdestro@usp.br

BRITISH COLUMBIA FOOD PROTECTION ASSOCIATION
Pres., Terry Peters .. Richmond
Vice Pres., Annette Moore .. Abbotsford
Sec'y., Ernst Schoeller .. West Vancouver
Treas., Lorraine McIntyre ... Vancouver
Delegate, Lorraine McIntyre Vancouver
Mail all correspondence to:
Terry Peters
5500 Woodpecker Dr.
Richmond, British Columbia V7E 5A8 Canada
604.666.1080
E-mail: terry.peters@telus.net

CALIFORNIA ASSOCIATION OF DAIRY
AND MILK SANITARIANS
Pres., Michelle Clark .. Hayward
1st Vice Pres., Ross Henderson-McBean Sacramento
2nd Vice Pres., Sarah Goreham-Houston Fairfield
1st Past Pres., Frances Valles Ontario
2nd Past Pres., Dawn Stead Woodland Hills
Exec. Sec'y/Treas., John Bruhn ... Davis
Delegate, John Bruhn .. Davis
Mail all correspondence to:
John C. Bruhn
101B Cress Hall
Dairy Research and Information Center
University of California-Davis
Food Science and Technology
Davis, CA 95616-8598
530.752.2192
E-mail: jcbruhn@ucdavis.edu

CAPITAL AREA FOOD PROTECTION ASSOCIATION
Pres., Randy Huffman ... Arlington, VA
Vice Pres., LeeAnne Jackson .. College Park, MD
Past Pres., Jianghong Meng .. College Park, MD
Sec'y., Kalmia Kniel .. Newark, DE
Treas., Alan Parker ... Annapolis, MD
Delegate, Carl Custer .. Washington, D.C.
Mail all correspondence to:
Kalmia E. Kniel
University of Delaware
Dept. of Animal & Food Sciences
044 Townsend Hall, 531 S. College Ave.
Newark, DE 19716-2150
302.831.6513
E-mail: kniel@udel.edu
CAROLINAS ASSOCIATION FOR FOOD PROTECTION
Pres., Paul Dawson Clemson, SC
Vice Pres., Melissa Ranfrow Hope Mills, NC
Past Pres., James Ball Salisbury, NC
Sec'y., Xiuping Jiang Clemson, SC
Treas., Steve Tracey Salisbury, NC
Delegate, Paul Dawson Clemson, SC

Mail all correspondence to:
Paul Dawson
Clemson University
Food Science Dept.
224 Poole Ag. Center, P.O. Box 340371
Clemson, SC 29634-0371
864.656.3397
E-mail: pdawson@clemson.edu

CONNECTICUT ASSOCIATION FOR FOOD PROTECTION
Pres., David Pantalone Ansonia
Vice Pres./Treas., Kevin Gallagher Milford
Vice Pres./Asst. Treas., Karen Rotella Middlebury
Sec'y., Bob Brown East Bridgewater
Delegate, Frank Greene Hartford

Mail all correspondence to:
Frank Greene
CT Dept. of Consumer Protection
Div. of Food and Standards
165 Capitol Ave., Room 165
Hartford, CT 06106
860.713.6160
E-mail: frank.green@po.state.ct.us

FLORIDA ASSOCIATION FOR FOOD PROTECTION
Pres., Rick Barney Tampa
Vice Pres., Natalie Dyenson St. Cloud
Past Pres., Marjorie Jones Palm City
Sec'y., Joe Watson Oviedo
Treas., Kristin Boncaro Deltona
Delegate, Peter Hibbard Oviedo

Mail all correspondence to:
Rick A. Barney
Sweetbay Supermarket
3801 Sugar Palm Dr.
Tampa, FL 33619
813.620.1139 ext. 332
rabarney@kashnkarry.com

GEORGIA ASSOCIATION FOR FOOD PROTECTION
Pres., Oscar Garrison Atlanta
Pres. Elect, Harold King Atlanta
Vice Pres., Tonya Gray Newman
Past Pres., Louis Hughes Brunswick
Sec'y., Pamela Metheny Atlanta
Treas., Jim Camp Newman
Delegate, David Fry Lawrenceville

Mail all correspondence to:
Oscar Garrison
GA Dept. of Agriculture
Consumer Protection Division
Capitol Square, Room 306
Atlanta, GA 30334
404.656.3627
E-mail: ogarris@agr.state.ga.us

IDAHO ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Paul E. Guenther Lewiston
Pres. Elect, Dale King Orofino
Past Pres., Barry Burnell Boise
Sec'y./Treas., Steve Pew Pocatello
Delegate, Paul E. Guenther Lewiston

Mail all correspondence to:
Paul E. Guenther
No. Central District Health Dept.
215 Tenth St.
Lewiston, ID 83501
208.799.3100
pguenthe@phd2.state.id.us

ASSOCIATED ILLINOIS MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Jayne Nosari Springfield
Pres. Elect, John Ellingson Rockford
1st Vice Pres., Rebecca Thomas Manlius
2nd Vice Pres., Kris Zetterlund Cary
Past Pres., Pat Callahan Springfield
Sec'y., Steve DiVincenzo Springfield
Treas., Dennis Gaalwyk Naperville
Delegate, Jayne Nosari Carlinville

Mail all correspondence to:
Steve DiVincenzo
Illinois Dept. of Public Health
525 W. Jefferson St.
Springfield, IL 62761
217.785.2439
sdivince@idph.state.il.us

INDIANA ENVIRONMENTAL HEALTH ASSOCIATION, INC.
Pres., Richard Wise Indianapolis
Pres. Elect, Chris Menze Franklin
Vice Pres., Pat Minnick Lebanon
Past Pres., Scott Gilliam Indianapolis
Treas., Mary Stiker Indianapolis
Sec'y., Margaret Voyles Indianapolis
Delegate, Helene Uhlman Hammond

Mail all correspondence to:
Helene Uhlman
Hammond Health Dept.
649 Conkey St., East
Hammond, IN 46324-1101
219.853.6358

ASSOCIATED ILLINOIS MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Jayne Nosari Springfield
Pres. Elect, John Ellingson Rockford
1st Vice Pres., Rebecca Thomas Manlius
2nd Vice Pres., Kris Zetterlund Cary
Past Pres., Pat Callahan Springfield
Sec'y., Steve DiVincenzo Springfield
Treas., Dennis Gaalwyk Naperville
Delegate, Jayne Nosari Carlinville

Mail all correspondence to:
Steve DiVincenzo
Illinois Dept. of Public Health
525 W. Jefferson St.
Springfield, IL 62761
217.785.2439
sdivince@idph.state.il.us

ASSOCIATED ILLINOIS MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Jayne Nosari Springfield
Pres. Elect, John Ellingson Rockford
1st Vice Pres., Rebecca Thomas Manlius
2nd Vice Pres., Kris Zetterlund Cary
Past Pres., Pat Callahan Springfield
Sec'y., Steve DiVincenzo Springfield
Treas., Dennis Gaalwyk Naperville
Delegate, Jayne Nosari Carlinville

Mail all correspondence to:
Steve DiVincenzo
Illinois Dept. of Public Health
525 W. Jefferson St.
Springfield, IL 62761
217.785.2439
sdivince@idph.state.il.us

INDIANA ENVIRONMENTAL HEALTH ASSOCIATION, INC.
Pres., Richard Wise Indianapolis
Pres. Elect, Chris Menze Franklin
Vice Pres., Pat Minnick Lebanon
Past Pres., Scott Gilliam Indianapolis
Treas., Mary Stiker Indianapolis
Sec'y., Margaret Voyles Indianapolis
Delegate, Helene Uhlman Hammond

Mail all correspondence to:
Helene Uhlman
Hammond Health Dept.
649 Conkey St., East
Hammond, IN 46324-1101
219.853.6358

IOWA ASSOCIATION FOR FOOD PROTECTION
Pres., Leo Timms Ames
1st Vice Pres., Lisa Pool New Hampton
2nd Vice Pres., Charlie Uhlenhopp Anamosa
Past Pres., Bill Nierert Anamosa
Sec'y., Phyllis Borer Sibley
Treas., Jim Mills Sibley
Delegate, Leo Timms Ames

Mail all correspondence to:
Phyllis Borer
AMPI
1020 - 4th Ave., P.O. Box 36
Sibley, IA 51249
712.754.2511 ext. 33
E-mail: borerp@ampi.com

MAY 2006 | FOOD PROTECTION TRENDS 321
KANSAS ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Tom Morey .. Topeka
2nd Vice Pres., Bronson Farmer Salina
Past Pres., Karen Purvis Hays
Sec'y., Marlene Stamm Junction City
Treas., Greg Willis .. Hoisington
Delegate, Michael Kopf Salina
Mail all correspondence to:
Cynthia Kastens
Sedgwick County Code Enforcement
1144 S. Seneca
Wichita, KS 67213-4443
316.383.7951
E-mail: ckastens@sedgwick.gov

KENTUCKY ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SANITARIANS
Pres., Tony White Harrodsburg
Pres. Elect, Matthew Rhodes Louisville
Vice Pres., Vonia Grabeel Lexington
Past Pres., Laura Strevels Edgewood
Sec'y., Branda Haydon Waddy
Treas., Mark Reed .. Frankfort
Delegate, Matthew Rhodes Louisville
Mail all correspondence to:
Matt Rhodes
Jefferson Co. Health Dept.
400 E. Gray St
Louisville, KY 40202
502.574.6633
E-mail: matt.rhodes@loukymetro.org

KOREA ASSOCIATION OF MILK, FOOD AND ENVIRONMENTAL SPECIALISTS
Pres., Deog-Hwan Oh Kangwon
Vice Pres., Dong-Kwan Jeong Pusan
Past Pres., Duck-Hwa Chung Kyungnam
Sec'y., Sang-Do Ha Gyunggi
Delegate, Sang-Do Ha Gyunggi
Mail all correspondence to:
Sang-Do Ha
Chung-Ang University
Dept. of Food Science and Technology
72-1 Naeri, Daeduk-myun
Ansg, Gyunggi 456-756
South Korea
322.250.6457
E-mail: sangdoha@post.cau.ac.kr

METROPOLITAN ASSOCIATION FOR FOOD PROTECTION
Pres., Howard Rabonovich North Wales, PA
1st Vice Pres., Gary Moore West Caldwell, NJ
2nd Vice Pres., Alan Talsarky Trenton, NJ
Sec'y./Treas., Carol Schwar Washington, NJ
Delegate, Fred Weber Hamilton, NJ
Mail all correspondence to:
Carol Schwar
Warren County Health Dept.
319 W. Washington Ave.
Washington, NJ 07882
908.689.6693
E-mail: cshwarz@entermail.net

MEXICO ASSOCIATION FOR FOOD PROTECTION
Pres., Fausto Tejeda-Tejuiillo Puebla
Vice Pres., Nanci E. Martinez-Gonzalez Guadalajara
Past Pres., Lydia Mota De La Garza Mexico City
Sec'y., M. Refugio Torres-Vitela Guadalajara
Treas., Norma Heredia Monterrey
Delegate, Montserrat Hernandez-Iturriaga Queretaro
Mail all correspondence to:
Alejandro Castillo
Texas A&M University
2471 TAMU
Kleberg Center, Room 314A
College Station, TX 77843-2471
979.845.3565
E-mail: a-castillo@tamu.edu

MICHIGAN ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Brian Cecil Grass Lake
Pres. Elect., Alan Hauck Ann Arbor
Past Pres., John Gohlke Lansing
Treas., Becky Ouellette Lansing
Sec'y., Kristen Schweighofer Ann Arbor
Delegate, Brian Cecil Grass Lake
Mail all correspondence to:
Krisen Schweighofer
Washtenaw Co. Planning & Environment
705 N. Zeeb Road, P.O. Box 8645
Ann Arbor, MI 48107
734.222.3968
E-mail: schweigk@ewashtenaw.org

MISSISSIPPI ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Tim Butts Louisville
Past Pres., Anne Hogue Canton
Sec'y./Treas., Elizabeth Lane Brandon
Delegate, Tim Butts Louisville
Mail all correspondence to:
Anne Hogue
Mississippi State Dept. of Health
317 N. Union
Canton, MS 39046
601.750.9916
E-mail: annehogue@msdh.state.ms.us

MISSOURI MILK, FOOD AND ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Andrew Hoffman Warrenton
Pres. Elect, Steve Raithel Jefferson City
Vice Pres., Steve Crawford Arnold
Past Pres., Marsha Perkins Columbia
Sec'y., Cathy Sullivan Marshall
Treas., Gala Jaramillo Jefferson City
Delegate, Cathy Sullivan Marshall
Mail all correspondence to:
Andrew Hoffman
Warren Co. Health Dept.
105 S. Market St.
Warrenton, MO 63383
636.456.7169
E-mail: ahoffman@co.warren.mo.us
SOUTH DAKOTA ENVIRONMENTAL HEALTH ASSOCIATION
Pres., John Weaver Aberdeen
Pres. Elect, Roger Puthoff Huron
Past Pres., Mark Schuttefoll Sioux Falls
Sec’y, Treas., Mike Fillaus Pierre
Delegate, Darwin Kurtenbach Pierre
Mail all correspondence to:
John Weaver
21 – 13th Ave. NW
Aberdeen, SD 57401
Phone: 605.226.7451
E-mail: john.weaver@mail.ihs.gov

SOUTHERN CALIFORNIA ASSOCIATION FOR FOOD PROTECTION
Pres., Marty Gushwa Moorpark
Pres. Elect., Dawn Stead Woodland Hills
Vice Pres., Rebecca Bedner Vernon
Sec’y, Matt McGillicuddy Saugus
Treas., Margaret Burton San Diego
Delegate, Steve Nason Camarillo
Mail all correspondence to:
Margaret Burton
Jack in the Box
9330 Balboa Ave.
San Diego, CA 92123
858.571.2441
E-mail: margaret.burton@jackinthebox.com

TENNESSEE ASSOCIATION OF MILK, WATER AND FOOD PROTECTION
Pres., Robert Owen Murfreesboro
Pres. Elect., Jim Howie Washburn
Sec’y, Treas., F. Ann Draughon Knoxville
Delegate, F. Ann Draughon Knoxville
Mail all correspondence to:
F. Ann Draughon
University of Tennessee
Food Safety & Processing Center
2605 River Road
Knoxville, TN 37996
865.974.8400
E-mail: draughon@utk.edu

TEXAS ASSOCIATION FOR FOOD PROTECTION
Pres., Thomas Supak Brenham
Past Pres., Gregory G. Crishi Dallas
Sec’y, Treas., Ron Richter College Station
Delegate, Fred Reimers San Antonio
Mail all correspondence to:
Tom Supak
Blue Bell Creameries, Inc.
P.O. Box 1807
Brenham, TX 77833
979.836.7977
E-mail: tommy.supak@bluebell.com

UNITED KINGDOM ASSOCIATION FOR FOOD PROTECTION
Pres., Gordon Hayburn Cardiff, Wales, UK
Pres. Elect., Chris Griffith Cardiff, Wales, UK
Vice Pres., Louise Fielding Cardiff, Wales, UK
Sec’y, Derrick Blunden Driffield, E. Yorkshire, UK
Treas., Ginny Moore Cardiff, Wales, UK
Delegate, David Lloyd Cardiff, Wales, UK
Mail all correspondence to:
Gordon Hayburn
Univ. of Wales Institute, Cardiff
School of Applied Sciences
Colchester Ave.
Cardiff, Wales CF23 9XR
United Kingdom
44.0.292041.6456
E-mail: ghayburn@uwic.ac.uk

UPPER MIDWEST DAIRY INDUSTRY ASSOCIATION
Pres., Bruce Streege Zumbrota
Vice Pres., Dan Erickson North St. Paul
Sec’y, Treas., Paul Nierman North St. Paul
Delegate, Dan Erickson North St. Paul
Mail all correspondence to:
Paul Nierman
DQCI Services
5205 Quincy St.
Mounds View, MN 55112-1400
763.785.0848
E-mail: paul@dqci.com

WASHINGTON ASSOCIATION FOR FOOD PROTECTION
Pres., George Berkompas Ferndale
Pres. Elect, Marty Brown Bothell
Past Pres., Nancy Byers Olympia
Sec’y, Treas., Stephanie Olmsted Kent
Delegate, Stephanie Olmsted Kent
Mail all correspondence to:
Stephanie Olmsted
Safeway Inc.
32727 193rd Ave. SE
Kent, WA 98042
425.455.8953
stephanie.olmsted@safeway.com

WISCONSIN ASSOCIATION FOR FOOD PROTECTION
Pres., Marianne Smukowski Madison
Pres. Elect, Matt Mathison Madison
1st Vice Pres., Tom Leitzke Madison
2nd Vice Pres., Cindy Dohm Madison
Past Pres., Howard Mack Baraboo
Sec’y, Randy Dags Sun Prairie
Treas., Neil Vassau Verona
Delegate, Randy Dags Sun Prairie
Mail all correspondence to:
Randy Dags
6699 Prairie View Dr.
Sun Prairie, WI 53590-9430
608.837.2087
E-mail: rdags@juno.com

WYOMING ENVIRONMENTAL HEALTH ASSOCIATION
Pres., Sherry Maston Wheatland
Pres. Elect, Doug Evans Gillette
Past Pres., Roy Kroeger Cheyenne
Sec’y, Ellen Southwell Cheyenne
Treas., Bryan Grapes Torrington
Delegate, Sherry Maston Wheatland
Mail all correspondence to:
Ellen Southwell
Laurie Co. Health Dept.
100 Central Ave., Room 266
Cheyenne, WY 82007
307.633.4090
E-mail: esouthwell@laramiecounty.com
NEW MEMBERS

AUSTRALIA
Donglai Zhang
University of Tasmania
Hobart, Tasmania

CANADA
Johanna L. Leggate
Carleton University
Ottawa, Ontario
Kirsten A. Mattison
Health Canada
Ottawa, Ontario
Sandra M. Moorhead
University of Guelph
Guelph, Ontario
Marin Pavlic
University of Guelph
Guelph, Ontario
Nizar W. Ramji
NR Consultants
Vancouver, British Columbia

GERMANY
Guenter Klein
Tierarztlche Hochschule Hannover
Hannover

MEXICO
Bertha A. Hernandez-Rodriguez
Universidad Autonoma Chapingo
 Texcoco, Edo de Mexico

SOUTH KOREA
Jun-Young Cha
Daegu Hanmy University
Dae-Gu
Jung Em Joh
Seoul

THAILAND
Kanyarat Chooprang
King Mongkut's Institute of Technology Ladkrabang
Bangkok
Suree Nanasombat
King Mongkut’s Institute of Technology Ladkrabang
Bangkok
Pussadee Tangwatcharin
Prince of Songkla University
Hat Yai, Songkhla

UNITED STATES

CALIFORNIA
Benny Carlos
Manning Beef LLC
Pico Rivera
Jeff B. Nelken
Food Safety and HACCP Compliance
Woodland Hills

DISTRICT OF COLUMBIA
Cindy A. Roberts
Food Safety Web Specialists
Washington

GEORGIA
Julie K. Northcutt
USDA/ARS
Athens

ILLINOIS
Mary Lynum
Kraft Foods
Glenview

KANSAS
Mindi D. Russell
Kansas State University
Manhattan

MICHIGAN
Maria A. Mogollon
Michigan State University
Lansing

MINNESOTA
Jocelyn H. Chopskie
Ecolab
Egan

OHIO
Wendy S. Fox
Abbott Laboratories, Ross Products Division
Columbus

PENNSYLVANIA
Caroline Friel
Wawa Inc.
Media

TEXAS
Teri S. Troxel
Masterfoods USA
Waco

VIRGINIA
Michael V. Campbell
Henrico Health Dept.
Richmond

NEW GOLD SUSTAINING MEMBER
Bruce J. Bradley
Microbial-Vac Systems, Inc.
Jerome, ID

NEW SUSTAINING MEMBER
Jeffrey M. Farber
Health Canada
Ottawa, Ontario, Canada
Sargento Foods Inc. Has Announced the Hiring of Michael G. Vaszily as Senior Brand Manager

Michael G. Vaszily has been hired as senior brand manager of its Consumer Products Division, with responsibility for refrigerated snacks and shredded cheese.

Mr. Vaszily grew up in Racine, WI and earned his MBA from Marquette University in 2000. Before joining the Sargento family in December, Mr. Vaszily was the global products innovation manager for Spectrum Brands, where he helped reshape the Remington Shaving and Grooming product line. He also was a brand manager for Heinz Ketchup at Heinz, and for Ziploc at S.C. Johnson.

Denise Mullinax Joins California Dairy Research Foundation as Assistant Director

The California Dairy Research Foundation (CDRF) recently announced the appointment of Denise Mullinax as assistant director of the California Dairy Quality Assurance Program (CDQAP). Ms. Mullinax comes to the CDRF from Hilmar Cheese Co. where she worked on environmental issues, biosecurity, milk quality, and risk management.

Ms. Mullinax received her bachelor's degree in animal science and master's of agriculture management from the University of California-Davis. She spent two years as a UC cooperative extension advisor before joining Hilmar Cheese Co. in 1998 as producer education coordinator. Her most recent position at Hilmar was dairy environmental and quality coordinator.

Food Institute Elects New Trustees from Processing and Retailing Sectors

At the most recent meeting of the Food Institute's board of trustees, Peter R. Lavoy, president and chief operating officer of Foodtown, Inc., Avenel, NJ, and Dean E. Erstad, senior vice president sales, Seneca Foods Corporation, Janesville, WI, were unanimously elected to the Board of the Elmwood Park, NJ–Trade Association.

Mr. Lavoy has had an extensive career in the grocery industry. A graduate of the University of Miami in Florida, with a B.S. in marketing, he joined Foodtown in 1997 and was appointed president and chief operating officer in January of 1999. Prior to joining Foodtown, he was with Grand Union for 16 years, holding various positions in operations, procurement and merchandising throughout the US, and A&P for 14 years, as corporate vice president of merchandising and procurement.

Dean Erstad has been with the Seneca Foods Corporation since 1995 and presently is responsible for brand, private label, foodservice, frozen, and international business segments. Previously, he held the position of vice president of Private Label Retail where he integrated two major acquisitions into the Private Label segment. From 1992 to 1995, Mr. Erstad was an account executive for Owatonna Canning Company.

Prime Energy Appoints New Director of Operations

Prime Energy has announced the appointment of James Blohm to the position of director of operations. Mr. Blohm will be located at the company's headquarters in LaPorte, TX.

As director of operations, Mr. Blohm will be responsible for managing and leading Prime Energy's business development, marketing, and fleet groups. Prior to joining Prime Energy, he served as vice president of sales operations at National OilwellVacco in Houston, TX.

Mr. Blohm received an MBA from Rice University and a bachelor's degree in operations management from the University of Houston.
Silliker Acquires Atlangene Applications, Leading Genetic Testing Laboratory in Europe

Silliker Group Corp. announced the acquisition of the Clabo Group, a network of food testing and consulting laboratories in France. Widely recognized for its preeminence in semi-automated microbiology technology, the Clabo Group is comprised of 12 companies, including Atlangene Applications, one of the leading genetic testing laboratories in Europe.

Founded in 1996, Atlangene is ISO 17025 accredited and provides expert analysis to pharmaceutical, food, and food processing companies throughout Europe from its state-of-the-art laboratory located near Nantes.

"With the addition of Atlangene to our existing GMO laboratory in Cergy, France, we have significantly augmented our ability to provide companies both here and abroad with outstanding genetic testing services," said Dr. Jodene Jurgens, director of the Silliker GMO Testing Center in Cedar Rapids, IA.

Silliker GMO testing facilities specialize in real-time PCR testing, a fast and reliable method that is used to verify the absence of or levels of GMOs in products. Through Silliker-eSTAR.com, an online data management system, customers are provided with real-time access to their GMO testing results.

"We're looking forward to working with Atlangene's outstanding professionals to advance the science of genetic detection and enhance company programs that are designed to help companies meet increasingly stringent international regulations for GMOs," Dr. Jurgens said.

Model Food Emergency Response Plan: Cooperative Effort Results in Model Template

The Food and Drug Administration (FDA) in cooperation with the National Association of State Departments of Agriculture (NASDA), USDA's Food Safety and Inspection Service (FSIS), and the Department of Homeland Security (DHS) has announced the availability of a model Food Emergency Response Plan Template. The goal of the response plan is to enhance the protection of the nation's agricultural industry and food security through prevention, detection, response, and recovery.

The template provides states with a guide to develop either a stand-alone emergency response plan for responding to a food-related emergency or an addendum to an existing all-hazard state emergency response plan. Useful planning tools include documents previously developed in cooperation with the DHS — national planning scenarios, target capabilities, and uniform task lists.

"FDA remains vigilant in its mission to protect our country's food supply and continues to maintain collaborative partnerships with our federal and state partners by planning for, monitoring and reacting to any potential threats," said Dr. Robert E. Brackett, director of FDA's Center for Food Safety and Applied Nutrition. "By collaborating more closely with our partners involved in food safety and security, we will better leverage all of the available resources to be better prepared for any food emergency incident."

Because a food emergency could occur at any point from farm to fork, including pre-harvest production, processing, and distribution, states can use the template to develop useful plans to manage a food emergency. In addition, states can establish a uniform structure and content that will result in response plans that are similar in structure, scope, and response operations among all states.

A food-related emergency involves the unintentional or deliberate contamination, threatened or actual, of food that impacts or may impact human health. A food emergency response plan does not apply to food incidents routinely handled by local or state health departments.

Consumption of Risky Foods Declines

Americans are eating safer. The number of people who reported eating one or more foods associated with an increased risk of foodborne disease declined by a third from 1998 to 2002, according to survey results released at the International Conference on Emerging Infectious Diseases.

"Overall we are seeing a decline in risky food consumption and that may be attributable to published media reports of foodborne outbreaks and outreach efforts by the public health community," says Erica Weis of the California Department of Health Services, the lead author on the study.

Weis and her colleagues compared data from two Foodborne Diseases Active Surveillance Network (FoodNet) telephone surveys conducted in 1998 and 2002, in which subjects were asked about...
foods they had consumed in the previous week. Specifically they looked at whether the subject had consumed one of 7 "risky foods" known to be associated with an increased risk of foodborne illness:

- pink hamburgers
- pink ground beef
- raw fresh fish
- raw oysters
- raw/unpasteurized milk
- runny eggs
- alfalfa sprouts

In 1998, 31% of those surveyed said that they had consumed one or more risky foods in the previous week. By 2002, that number had dropped to 21%. The most commonly reported risky food item consumed was runny eggs.

Men ages 18-64 were more likely to report consuming risky foods than women of the same age group (38% vs. 30%) and Asians/Pacific Islanders were more likely to consume risky foods than whites (32% vs. 21%). The safest eaters were African Americans, only 15% of whom reported consuming one or more risky foods in the 2002 survey.

Among subjects under the age of 18, those who were immunocompromised were much more likely to consume risky foods than healthy subjects (21% vs. 14%).

"Consumption of risky foods declined significantly in 2002 compared to 1998. However, in the future there needs to be more targeted outreach to those groups that continue to have high levels of risky food consumption," says Weis. The research was conducted by a working group that included investigators from the California Department of Health Services, the Centers for Disease Control and Prevention, the Connecticut Emerging Infections Program, the Georgia Division of Public Health, the Tennessee Department of Health and the Oregon Department of Human Services.

First General Outbreak of Verocytotoxin-producing Escherichia coli O157 in Denmark

This report describes the first general outbreak of verocytotoxin-producing Escherichia coli (VTEC) in Denmark. Twenty-five patients, 18 children and seven adults, with culture-confirmed VTEC O157:H7 infection and indistinguishable pulsed-field gel electrophoresis DNA profiles, were identified during a six-month period from September 2003 to March 2004. The outbreak strain possessed the virulence genes: eae, vtx1 and vtx2c. All patients but one presented with diarrhea; none developed hemolytic uremic syndrome. The outbreak was restricted to Copenhagen and surrounding areas. A case-control study including 11 cases and 55 matched controls revealed an association between VTEC O157:H7 infection and shopping in a specific supermarket chain in Copenhagen and surrounding area, matched odds ratio (OR): 8.7 (95% confidence interval (CI): 1.1-71). After exclusion of three assumed secondary cases, only consumption of a particular kind of organic milk from a small dairy was associated with disease OR: 8.7 (95% CI 1.6-48). Environmental and microbiological investigations at the suspected dairy did not confirm the presence of the outbreak strain, but the outbreak stopped once the dairy was closed and thoroughly cleaned.

Verocytotoxin-producing Escherichia coli is an important cause of gastroenteritis, in particular in industrialized countries. In recent decades, VTEC has caused a number of outbreaks affecting large numbers of people, including outbreaks associated with both pasteurized and unpasteurized milk.

VTEC is mandatorily reportable in Denmark both through laboratory based surveillance and clinical notifications from the treating physician. Based on laboratory reports, the incidence has increased from 1.0 per 100,000 population in 1999 (53 cases), to 3.1 per 100,000 in 2004 (168 cases). This trend is most likely due to an increased number of stool specimens examined for diarrheagenic E. coli, including VTEC. General outbreaks of VTEC gastroenteritis have not previously been seen in Denmark; only sporadic cases or small family clusters of infection have been detected.

In late 2003, the Danish VTEC reference laboratory at Statens Serum Institut observed that seven isolates of VTEC O157:H7 had identical patterns as judged by pulsed-field gel electrophoresis. The samples were received over a period of four months. In January and February 2004, seven additional isolates were detected, and we initiated an investigation of this first general outbreak of VTEC infection in Denmark. The objectives of the investigation were to characterize the outbreak and, if possible, determine the vehicle.

FDA Issues Draft Guidance for the Safe Production of Fresh-cut Fruits and Vegetables

To minimize microbial food safety hazards common to the processing of most fresh-cut fruits and vegetables sold to consumers in a ready-to-eat form, The Food and Drug Adminis-
FDA published a draft guidance document for producers of fresh-cut produce entitled "Guide to Minimize Microbial Food Safety Hazards of Fresh-cut Fruits and Vegetables."

"Fresh cut produce is the fastest growing sector of the fresh produce industry. This document should help to improve safety by providing clearer guidance on how to reduce health hazards that are potentially introduced during the production process," said acting FDA commissioner Dr. Andrew von Eschenbach.

Processing produce into fresh-cut produce increases the risk of bacterial contamination and growth by breaking the natural exterior barrier of the produce by peeling, slicing, coring, trimming, or mashing with or without washing or other treatment before being packaged for consumption. Examples of fresh-cut products are shredded lettuce, sliced tomatoes, salad mixes (raw vegetable salads), peeled baby carrots, broccoli florets, cauliflower florets, cut celery stalks, shredded cabbage, cut melons, sliced pineapple, and sectioned grapefruit.

This draft guidance discusses the production and harvesting of fresh produce and provides recommendations for fresh-cut processing in several areas: (1) personnel health and hygiene, (2) training, (3) building and equipment, (4) sanitation operations, and (5) fresh-cut produce production and processing controls from product specification to packaging, storage and transport. The final chapters provide recommendations on recordkeeping and on recalls and tracebacks. The guide complements FDA's Current Good Manufacturing Practices regulations by providing specific guidance on the processing of fresh-cut produce.

In the draft guidance, FDA recommends that processors encourage the adoption of safe practices by their partners throughout the supply chain, including produce growers, packers, distributors, transporters, importers, exporters, retailers, food service operators, and consumers, to ensure that the processor's efforts will be enhanced. These practices include: establishing a company policy that employees report any active case of illness to supervisors before beginning work and training; training supervisors to recognize typical signs/symptoms of infectious disease; maintain the proper first aid to protect and cover any wound; and not allow an employee to work with any aspect of fresh or fresh-cut produce, processing equipment or tools until the wound has healed and/or the infectious disease has been treated.

The guidance also recommends that fresh-cut processors consider a preventive control program such as the Hazard Analysis Critical Control Points (HACCP) system to build safety into the processing operations for fresh-cut fruits and vegetables. HACCP is a prevention-based food safety system designed to prevent, eliminate, or reduce to acceptable levels the microbial, chemical, and physical hazards associated with food production.

FDA believes awareness of the common risk factors discussed in this guidance and implementation of preventive controls determined by a firm to be appropriate to its individual operations will enhance the safety of fresh-cut fruits and vegetables.

Consumers can reduce their risk of illness from fresh-cut produce by following safe-handling practices such as refrigerating the product after purchase; using only clean hands, utensils or dishes in preparing the product; and discarding the product when the "use-by" date has expired. More information on safe handling practices of produce can be found at http://www.fightbac.org.

Better Training for Safer Food

"Better Training for Safer Food" is a new initiative of the Commission aimed at organizing a Community (EU) training strategy in the areas of food law, feed law, animal health and animal welfare rules, as well as plant health rules.

Article 51 of Regulation (EC) No 882/2004 Regulation (EC) No. 882/2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules, provides the legal instrument for this initiative.

Training will be designed for all staff of competent authorities of Member States involved in official controls activities so as to keep them up-to-date with all aspects of Community law in the above specified areas and ensure that controls are carried out in a more uniform, objective and adequate manner in all Member States.

It is also essential that third countries and in particular developing countries are familiar with EU import requirements and, where they exist, with the possibility of EU support. For this purpose, training organized for Member States in the EU will be open to participants from third countries and specific training sessions will also be organized for third country participants on the spot.

The future Community training strategy in the areas of food law, feed law, animal health, animal welfare and plant health, will be explained in a Commission White Paper expected to be published in June 2006. Pending this publication, a series of training programs has been launched for implementation during 2006.
The main objective of the initiative "Better Training for Safer Food" is the organization and development of a Community training strategy with a view to:

- Ensuring and maintaining a high level of consumer protection and of animal health, animal welfare and plant health
- Promoting a harmonized approach to the operation of Community and national control systems
- Creating an equal level playing field for all food businesses
- Enhancing trade of safe food
- Ensuring fair trade with third countries and in particular developing countries

Mad Cow Disease on the Wane Worldwide

Cases of Bovine Spongiform Encephalopathy (BSE) or "mad cow disease" worldwide are declining, according to the UN Food and Agriculture Organization (FAO). They have been dropping at the rate of some 50 percent a year over the past three years, the Organization said.

Amid the current international alarm over avian flu, it is good news that the battle against another worrying disease is being won.

In 2005, just 474 animals died of BSE around the world, compared with 878 in 2004 and 1,646 in 2003, and against a peak of several tens of thousands in 1992, according to figures collected by the Paris-based World Animal Health Organization (OIE), with which FAO works closely.

Only five human deaths resulting from variant Creutzfeldt-Jakob Disease (vCJD), believed to be the human form of BSE, were reported worldwide in 2005. All of them were in the United Kingdom—the country most affected by the disease—where nine deaths were registered in 2004 and 18 in 2003.

Andrew Speedy, an FAO animal production expert, commented: "It is quite clear that BSE is declining and that the measures introduced to stop the disease are effective. But further success depends on our continuing to apply those measures worldwide."

FAO insists on the importance of a scientific approach to detect and control the disease, ensuring it is eradicated in affected countries—and kept out of unaffected ones.

FAO, together with Swiss experts, has been running courses for specialists from countries as far afield as Serbia, Egypt, Vietnam, Argentina, Brazil, Chile, Colombia, Mexico, Peru, Uruguay and Paraguay on BSE diagnosis, surveillance and prevention in the animal feed and meat industries.

Also vital, said Speedy, is a tracking system that allows animals to be identified all the way from birth to shopping basket. This has been adopted across Europe but has yet to be implemented partially or fully in a number of other countries.

Rapid Salmonella Test May Reduce Meat and Produce Recalls

An innovative test to detect Salmonella in ready-to-eat meats has been developed by Agricultural Research Service (ARS) scientists. The preliminary test—still being evaluated by agency researchers—relies on PCR (polymerase chain reaction) technology to detect food-contaminating microbes on a molecular level.

Food technologist Jitu Patel with the ARS Food Technology and Safety Laboratory, and microbiologist Arvind Bhagwat with the ARS Produce Quality and Safety Laboratory, in Beltsville, MD, compared their laboratory-developed "molecular beacon" test with a commercial rapid-detection test currently in use. While both tests can detect Salmonella in eight hours, the laboratory test is less expensive than commercial kits.

To evaluate the new test's efficacy, the scientists artificially contaminated various meats (turkey, bologna and ham slices) and produce (mixed salad, sprouts) with S. enterica serovar Typhimurium and allowed it to incubate for 20 hours. Both tests were sensitive enough to detect contamination in the meat products at an estimated level of two to four cells per 25 grams. In comparing the tests after a relatively brief incubation period of eight hours, two to four cells of Salmonella were detected in the 25-gram samples of meat as well as produce.

The ability of the molecular beacon test to detect very low levels of Salmonella contamination in eight hours will aid the food industry in quality assurance, helping prevent recalls of contaminated meats and produce by stopping the products from being introduced in the marketplace. Detection of contaminated foods could be achieved within a work shift—before shipment takes place.

World Health Organization Global Salm-Surv

Safe food is essential in maintaining a healthy and productive lifestyle. Foods can harbor harmful microorganisms
that may cause serious human illnesses. WHO defines foodborne illnesses as “diseases, usually either infectious or toxic in nature, caused by agents that enter the body through the ingestion of food” and estimates that each year two million people die from diarrheal diseases, mostly attributed to contaminated food and drinking water. In developing countries, where diarrheal diseases are particularly prevalent, determining the proportion due to foodborne diseases can be difficult. Clinical laboratory and public health infrastructure to perform such assessments is not present in all nations. A 1997 WHO survey revealed that up to one-third of WHO Member States indicated a lack of basic infrastructure for laboratory-based surveillance for foodborne diseases.

Recognizing the public health importance of foodborne diseases and the need to strengthen public health infrastructure globally, WHO Global Salm-Surv, a World Health Organization-sponsored program, was launched in 2000. WHO Global Salm-Surv is a capacity-building program that trains international microbiologists and epidemiologists on foodborne disease laboratory-based surveillance and outbreak detection and response through training courses and other program activities.

Founding members of WHO Global Salm-Surv included the World Health Organization, The Centers for Disease Control and Prevention (United States of America) and the Danish Institute for Food and Veterinary Research (Denmark). In recent years, additional partners have joined WHO Global Salm-Surv: Reseau International des Instituts Pasteur (France), Public Health Agency of Canada, Animal Sciences Group (Netherlands), Food and Drug Administration (United States of America), Enternet (European Union) and OzFoodNet (Australia).

WHO Global Salm-Surv Vision:
Foodborne and other infectious enteric diseases are a common cause of illness, disability and death worldwide. We believe they are preventable and therefore, place an unnecessary burden on society. Our vision is that all countries will prevent and control these diseases.

WHO Global Salm-Surv Mission:
To promote integrated, laboratory-based surveillance and foster intersectoral collaboration among human health, veterinary and food-related disciplines, thereby enhancing the capacity of countries to detect, respond to and prevent foodborne diseases.

Details about the WHO Global Salm-Surv Program, including descriptions of training and program activities, can be found at www.who.int/salmsurv/en.

In March 2006, the International Association for Food Protection participated at the Food Safety Summit in Las Vegas, NV. While exhibiting, we offered a drawing for a one-year Membership with our Association and a free registration to our Annual Meeting. We are pleased to announce the following winners of the drawing:

IAFP Membership

E. J. Bauman
DNV Certification
Newnan, GA

IAFP Annual Meeting Registration

Margaret Timm
Oregon Health and Science University
Portland, OR

In Memory of...

Neil B. Webb
Raleigh, NC

IAFP would like to extend our deepest sympathy to the family and friends of Neil Webb who passed away in March 2006.

IAFP will always have sincere gratitude for his contributions to the Association and his profession.
Fluid Metering Precision
Low Flow Pulseless Fluid Delivery System

Fluid Metering, Inc. has combined its patented CeramPump® No-Valve Fluid Control principle with their new phase-canceling technology to eliminate pulsation for continuous fluid metering down to extremely low flows of 5 µl/min. Previously, pulse-free metering, in the microliter range, relied solely on syringe pump technology.

The Smooth-flo® Fluid Delivery System is a fully programmable dispensing system which is controlled by precision stepper motors.

FMI's phase-canceling technology uses 3 separate valveless pump heads, uniquely timed, to eliminate pulsation. In addition, a second stepper motor adjusts the piston displacement which allows for fine adjustment to be made to the shot size by changing the stroke length.

The Smooth-flo® can be programmed for a variety of functions using a user-friendly touch screen interface which can control up to 16 systems on a single bus.

Up to 128 metering devices can be controlled using a PLC or computer. The Smooth-flo® will store up to 100 programs letting the user change between setups on the fly.

The system produces a pulse-free fluid delivery with 1% or better accuracy for millions of cycles.

Fluid Metering is certified as compliant with ISO 9001 quality standards. The Fluid Metering catalog details operating principles, pump capacities, motor characteristics, materials of construction, prices and ordering information.

Fluid Metering, Inc.
800.223.3388
Syosset, NY
www.fmipump.com

New Dual-indexing Bulk System from Gainco Improves Product Packing Operations

The new dual-indexing bulking and batching system from Gainco, Inc. is designed to optimize meat and poultry packing operations. Whether packing chicken tenders, boneless breasts, drumsticks, wings, leg quarters or chops, Gainco's new automated system delivers the highest degree of versatility, durability and cost-saving performance.

The ingenious labor-saving design of Gainco's dual-indexing bulk system is equipped with a "smart" conveyor that automatically indexes product containers following the bulk/batch cycle. Designed for optimal accuracy at high speeds, Gainco's dual load cell design improves settle time, thereby increasing accuracy and throughput - up to 980 pounds per minute (+/-14 cycles). Moreover, the system's unique "straddle" design with an in-line hopper greatly reduces the equipment footprint, thereby optimizing floor space.

Gainco's ability to construct individual system components according to multiple hardware and software configurations results in system designs that are ideally suited to the wide range of bulking applications needed by poultry processors. The systems can accommodate all popular sizes of totes, boxes or tubs.

Gainco's new dual-indexing bulk system is fully integrated with the company's DataMan™ online, real-time reporting system for data collection. Using either Ethernet or RF interfaces, managers are able to oversee production processes more efficiently and effectively with this application.

The new dual-indexing bulk system features Gainco's washdown-tough Infiniti Plus™ programmable controller, offering ease and flexibility in the product run setup and operation. This IP69K-rated weight indicator is specifically designed to thrive in the harshest food processing environments. Other features of the new bulk system include its innovative open-frame design as opposed to a conventional tubular construction. This open-frame design allows no place for food debris to hide or bacteria-prone residual water to collect, along with providing easier maintenance access. Moreover, the system is equipped with load cell overload protection to prevent damage and reduce long-term operating costs.

Be sure to mention, "I read about it in Food Protection Trends"!

The publishers do not warrant, either expressly or by implication, the factual accuracy of the products or descriptions herein, nor do they so warrant any views or opinions offered by the manufacturer of said articles and products.
Users of Gainco’s dual-indexing bulk systems have access to Gainco’s industry-leading Blue Ribbon Service program, wherein customers can receive expert 24-hour, 7-day service on all equipment components, distribution systems, software and wireless communications support. Blue Ribbon Service’s customer service technicians are certified in most states, and all service work is guaranteed.

Gainco, Inc.
770.534.0703
Gainesville, GA
www.gainco.com

FKI Logistex Begins Manufacturing Its Hybrid AS/RS Cranes in the United States

FKI Logistex announces that it is now manufacturing its hybrid automated-storage-and-retrieval (AS/RS) cranes in the United States at its plant in St. Louis, MO.

“It is incumbent upon FKI Logistex to provide the same high degree of service and support everywhere we do business. Our St. Louis manufacturing capability will provide North American customers with same level of manufacturing and technical support we have been providing from our UK-based facility — with the advantage of being closer to home,” says Stephen Legg, director, product and technology development, FKI Logistex.

“Many of our North American customers are asking that our equipment be built stateside and with US parts to avoid the volatility of currency risk, to increase spare parts availability, and to reduce shipping costs,” says Ken Matson, executive vice president, Manufacturing Systems, FKI Logistex North America. “Additionally, we have seen a trend in some markets that our equipment be specified with US parts to meet their manufacturing guidelines.”

“This move shows our strong commitment to responding to this market requests,” Matson adds. “We will be increasing our spare parts stock in St. Louis, supporting our cranes with a larger technical and manufacturing operation, and meeting the demands of our marketplace.”

FKI Logistex has begun manufacturing a model of its Maestro™ crane in St. Louis as part of a large order for one of its US-based customers. The model has undergone an engineering conversion for local manufacture. The rest of the FKI Logistex crane product line, including all of the company’s Condor™ units, will still be manufactured in the United Kingdom.

Once the semi-automatic Maestro models currently being manufactured are completed, automated versions will likely be built next, ramping up to units with different load handlers. A St. Louis-based manufacturing technical support team has been organized to provide support with an intimate knowledge of the new crane manufacture.

Approximately 70 percent of FKI Logistex cranes support distribution for retailers and manufacturers, while another 30 percent directly support manufacturing processes. FKI Logistex cranes are typically used in high-bay warehouses in AS/RS applications, where they take advantage of vertical space to reduce the need for costly warehouse floor space.

FKI Logistex
877.935.4564
St. Louis, MO
www.fkilogistex.com

Bilsom Upgrades Viking™ Series Earmuffs with Air Flow Control™ Technology

Bilsom has upgraded its popular Viking™ Series noise blocking earmuffs to incorporate its patented Air Flow Control™ technology (AFC), which delivers optimal attenuation across all frequencies without increasing earcup size or weight. Viking Series multi-position headbands give workers the flexibility to wear their earmuffs over-the-head, behind-the-head, or under-the-chin, allowing them to be worn with hard hats, face shields, respirators, and other PPE.

“Our Air Flow Control technology has proven so effective we’re extending it to other products in the Bilsom® Noise Blocking earmuff segment,” said Bill Sokol, vice president strategic marketing for the Bacou-Dalloz Hearing Safety Group. “As sound travels through the air in our AFC earcups, a patented baseplate chamber and high-tech non-woven layer manage the flow of air inside the earmuff to control how sound reaches the ear,” Sokol explained. “The result is better, more consistent overall attenuation across all frequencies and in almost all industrial noise environments without increasing earcup size or weight.”

Air Flow Control Technology has boosted attenuation on the V1 model from 23 to 25, and V2 model from 25 to 27. Attenuation on V3 remains at 29, though with improved lower frequency attenuation.

Designed to provide all-day comfort, Viking Series V2 and V3 earmuffs feature a dual-headband design with an inner ventilated band for better positioning and breathability, and a non-deforming outer headband that minimizes pressure on the head. An
improved attached elastic headband strap provides additional comfort and helps to ensure attenuation when earmuffs are worn in other than over-the-head positions.

Snap-in ear cushions make replacement quick and easy, and dielectric construction with rugged ABS plastic makes Viking Series earmuffs suitable for almost all workplaces, and especially for electrical and mining environments.

Bacou-Dalloz Hearing Safety Group
800.430.5490
Smithfield, RI
www.hearingportal.com

A la Cart Introduces the DualTemp 120 Innovative Meal Delivery System for Cook-serve Hospital Operations

A la Cart, Inc. well known for its advanced systems that revolutionize meal quality, while allowing operations to reap more benefits with cook chill — now offers a groundbreaking solution for hospital operations that use conventional food preparation. The company is pleased to introduce DualTemp 120. It’s a meal delivery cart and so much more!

Start with the fact that DualTemp can hold hot food hot indefinitely. And DualTemp really holds. In fact, after 30 minutes, meal quality just gets better, and safe food temperatures are maintained. Compare that to other conventional cook-serve heating systems (insulated base/pellet) available today. While they may hold food hot for 30 to 45 or 60 minutes, quality inevitably begins to decline at 30 minutes. And food safety becomes more questionable.

With DualTemp, the gentle heating source is the cart itself, on one side.

The other side (DualTemp is divided into two compartments) has built-in refrigeration, so it also holds cold food and beverages cold — another major advantage of this remarkable new system from A la Cart.

Because DualTemp serves as both the heating/refrigeration system and the meal delivery cart, there are no bases and less pieces overall to deal with. Plus, no extra heating step is required at the trayline. DualTemp plugs in 15–30 minutes prior to tray assembly, and trays are simply loaded into pre-heated and cooled compartments. The cart can then be transported and plugged in on the floor to hold meals at ideal, consistent and HACCP-safe temperatures as long as needed. The DualTemp 120 cart plugs in to any 120 V/20 amp outlet, so it can be used virtually anywhere.

Dual Temp’s hold-on-the-floor capability makes it especially beneficial for areas that require more serving flexibility, such as: birthing center, pediatrics and oncology; units where patients require assistance with feeding; and where the busy nursing staff is responsible for serving meals.

In addition to simplifying the heating/trayline/serving process, A la Cart’s DualTemp 120 offers other benefits when it comes to efficiency and convenience. It virtually eliminates the need for late tray preparation. Late trays can be prepared with the regular trayline and kept in a DualTemp cart in the kitchen, where they remain ready to serve as soon as a patient is ready to eat.

DualTemp also allows operations to run traylines as much as an hour in advance, using conventional food preparation. That means no more “plating and running” to serve, before food cools down. If desired, all patients can be served at or close to (depending on hospital size) the same time. Delays in food preparation/trayline assembly will no longer cause delays in meal service.

Using DualTemp doesn’t require one specific dishware type. Options include china, plastic or disposable for greater convenience, cost savings and flexibility in tray presentation. Finally, the DualTemp cart is compact and easy to maneuver, has easy-to-operate controls and holds up to 20 trays.

A la Cart, Inc.
800.762.2278
Charlotte, NC
www.alacartinc.com

Low Cost/High Performance Raman Systems from Lambda Solutions, Inc.

The remarkable 532nm Dimension-P2 Systems with resolution at 4 or 6 cm⁻¹ is now available.

Though low cost, these units deliver unparalleled sensitivity at an extremely high signal to noise ratio. The Dimension-P2 systems are controlled with RamanSoft software, which automates data acquisition and
processing and includes our patented background removal algorithm.

RamanSoft seamlessly integrates with GRAMS Spectral ID® and IQ Predict® and is compliant with 21 CFR part 11 regulations.

Lambda Solutions, Inc.
781.478.0170
Waltham, MA
www.lambdasolutions.com

DNA-based Results for Salmonella in Less Than 24 Hours Now Available with the Assurance GDS System from BioControl

BioControl Systems, Inc., has announced the addition of Salmonella to its Assurance GDS™ (Genetic Detection System) platform. Assurance GDS combines the latest advancements in molecular technology and food microbiology to provide faster results with the increased accuracy required to meet today's food and environmental testing challenges.

Assurance GDS offers the first Salmonella method to provide accurate results in as few as 20 hours. "Customers can now get their Salmonella results an entire day faster with Assurance GDS than with most other rapid methods," states Phil Feldsine, president of BioControl. "This is an important advantage to customers holding product for release," says Feldsine.

In addition to faster results Assurance GDS also offers greater accuracy in the form of multiple layers of specificity. "Another key advantage that Assurance GDS has over other pathogen detection systems is that its design includes three levels of specificity," according to Geoff Bright, microbiology product manager. These include immunomagnetic separation (IMS), highly specific primers, and a patented probe system which ensure the highest degree of accuracy. "The multiple levels of specificity have enabled us to overcome matrix interference and cross reactivity; issues that are common to other genetic based systems. The benefit to customers being consistently, accurate results," says Bright.

Completing the system is the Assurance GDS Rotor-Gene, an innovative multi-channel rotary cycler for the amplification and detection of the target. The Assurance GDS Rotor-Gene can read multiple, distinct targets thereby eliminating the need for melt curves, which can be difficult and time consuming to interpret.

In addition to Salmonella, the Assurance GDS system includes assays for E. coli O157:H7 (AOAC Official Method 2005.04) and Shiga Toxin Genes (AOAC Official Method 2005.05). Assays for Listeria and Listeria monocytogenes are currently in development.

BioControl Systems, Inc.
425.603.1123 x137
Bellevue, WA
www.biocontrolsys.com

New UVC Portable Unit Provides In-room Decontamination from Steril-Aire

A new mobile decontamination unit equipped with multi-patented, high output UVC technology is now available from Steril-Aire. Called the "Remedial In-room Decontamination System (RIDS)," it provides a safe and effective way to decontaminate surfaces infested with mold (such as Stachybotrys and Aspergillus), viruses (e.g., colds, flu, SARS, bird or avian flu and measles); and bacteria (including TB, Legionella, E. coli, Listeria, Salmonella and whooping cough).

The user wheels the RIDS unit into the infested area, leaves the room and turns on the unit remotely, allowing the energy from the high output UVC Emitters to decontaminate walls, tabletops and other surfaces. A 12 x 12, area can typically be decontaminated in approximately 24 hours. Multiple RIDS units may be used to treat larger areas.

Steril-Aire UVC technology uses no chemicals, produces no ozone or other toxic contaminants, and minimizes worker exposure during the decontamination process. The high output UVC energy quickly kills or inactivates microorganisms that contribute to poor IAQ and/or the spread of infectious disease.

The portable RIDS unit is suitable for any type of residential, commercial, industrial or institutional building. Applications include residential and commercial surface mold remediation; food preparation and processing areas; surface decontamination in hospitals and health care facilities; and surface treatment in DNA laboratories to prevent cross-contamination.

Steril-Aire, Inc.
800.278.3745
Burbank, CA
www.steril-air.com

AmeriVap™ Systems Introduces X treme Steam

xtreme Steam (dry steam) generators for all your packaging lines, processing equipment, etc., can now be attached to new automatic conveyor belt cleaners for plastic and mesh belts. Plastic belts steam and extract simultaneously leaving belts sanitized and dry in one pass. All equipment totally portable, uses quarts per hour, not gallons per minute.

AmeriVap Systems, Inc.
404.350.0239
Atlanta, GA
www.amerivap.com
Sunday, August 13
6:00 p.m.

“A Progress Paradox: If We Have the Safest Food Supply, Why Am I Working So Hard?”

Dr. Arthur P. Liang
Acting Associate Director for Food Safety
National Center for Zoonotic, Vectorborne, and Enteric Diseases
Centers for Disease Control and Prevention
Atlanta, Georgia

Dr. Arthur Liang is director of the Food Safety Office, at the Centers for Disease Control and Prevention, National Center for Infectious Diseases (CDC/NCID). He is a former CDC Epidemic Intelligence Service officer and former chief of the Communicable Disease Division at the Hawaii Department of Health. Dr. Liang currently serves on the Executive Committee of the National Advisory Committee on Microbiological Criteria for Foods (NACMCF) and is the CDC advisor to the Board of Directors of the Association of Food and Drug Officials (AFDO). He is also a member of the Preventive Medicine Residency Advisory Committee for the Walter Reed Army Institute of Research, a fellow and member of the Board of Regents of the American College of Preventive Medicine. He is board certified in General Preventive Medicine and Public Health. Dr. Liang earned his BA from Oberlin College, an MPH in International Health and Epidemiology from the University of Hawaii, and his MD from the University of Maryland.

Join us at the Wine and Cheese Reception in the Exhibit Hall following the Ivan Parkin Lecture.
(The Wine and Cheese Reception is sponsored by Kraft Foods)
On a wintry Wisconsin afternoon in 1941, a future microbiologist drew his first breath and cried, “I hope you washed your hands!” Some years later, after completing undergraduate majors in zoology and chemistry, William Sperber earned his M.S. (1967) and Ph.D. (1969) degrees in microbiology from the University of Wisconsin at Madison. In his subsequent employment with major food companies he has become one of the world’s experts in designing and controlling the microbiological safety and quality of foods.

Several of Dr. Sperber’s innovations in graduate school were the development of M-Broth and the Enrichment-Serology procedure for Salmonella detection, which became a forerunner of ELISA-based technologies. At Best Foods in 1970, twelve years before the Tylenol® incident, he led the development of the first tamper-evident packaging feature for a consumer food product. Hired in 1972 to conduct the first hazard analyses for consumer food products in Pillsbury’s novel HACCP system, Dr. Sperber led Pillsbury’s microbiology and food safety programs until 1995. At that time he joined Cargill, where he remains employed today on a post-retirement basis as Senior Corporate Microbiologist and “Global Ambassador for Food Safety,” promoting principles of food safety and public health, beginning with the most important principle, “Wash Your Hands!”

A former chair of the IFT Division of Food Microbiology and the Food Microbiology Research Conference, Dr. Sperber was appointed five times by the US Secretary of Agriculture to the National Advisory Committee on Microbiological Criteria for Foods. The author of numerous publications and presentations, he is currently developing several book chapters and co-editing a new Compendium on the Microbiological Spoilage of Foods and Beverages, still “trying to make the world safer for people who eat.” Bill and his wife, Renate, enjoy gardening, bicycling, books, music, and travel.
SUNDAY, AUGUST 13
Opening Session — 6:00 p.m.—7:00 p.m.
- Ivan Parkin Lecturer - Arthur Liang, Ph.D., CDC, Atlanta, GA, USA

MONDAY, AUGUST 14
Morning — 8:30 a.m. — 12:00 p.m.
Symposium Topics
- Making Foods Safer: How Outbreaks Can Influence Change
- Surrogate Microorganisms: Selection, Use and Validation
- The Canadian Approach to Food Safety
- Verification of Sanitary Design of Food Equipment
- Practical Application of Risk Assessment Tools in the Food Industry

Technical Session
- Applied Laboratory Methods and Meat and Poultry

Poster Session (9:30 a.m. – 1:30 p.m.)
- Food Toxicology, Education and General Microbiology

Afternoon — 1:30 p.m. — 5:00 p.m.
Symposium Topics
- Foodborne Viruses and Foodborne Viral Infections: Disease Burden, Epidemiology, Detection and Transmission
- Spores, Spores, and More Spores...What is Spoiling My Ready-to-Drink (RTD) Beverage? Is It Alicyclobacillus or Heat Resistant Mold?
- Biosecurity at Retail

Round-Table Topics
- Issues Regarding Raw Milk Sales and Consumption
- Refrigerated Ready-to-Eat (RTE) Foods: Microbiological Concerns and Control Measures

Technical Session
- Education and Dairy

Poster Session (2:00 p.m. – 6:00 p.m.)
- Dairy, Meat and Poultry

TUESDAY, AUGUST 15
Morning — 8:30 a.m. — 12:00 p.m.
Symposium Topics
- Disaster Preparedness and Response
- Symposium on Enterobacter sakazakii
- Campylobacter – From Gate to Plate
- Hygiene and Sanitation Solutions to Manage Evolving Risks
- International Food Law—A Global Overview

Technical Session
- Pathogens and Antimicrobials

Poster Session (9:30 a.m. – 1:30 p.m.)
- Seafood and Applied Laboratory Methods

Afternoon — 12:15 p.m. — 1:00 p.m.
- IAFP Business Meeting

Afternoon — 1:30 p.m. — 5:00 p.m.
Symposium Topics
- Foodborne Disease Update
- Contamination of Ready-to-Eat (RTE) Foods: Transfer and Risk—Listeria monocytogenes and Other Microorganisms
- Role and Application of International Standards in Supporting Food Safety Management and Testing
- A New Crack at Egg Safety: From the Hen House to Your House
- Cleaning and Sanitation for Retail Food Safety—Identifying the Issues

Technical Session
- Risk Assessment and Epidemiology

Poster Session (2:00 p.m. – 6:00 p.m.)
- Pathogens and Produce

WEDNESDAY, AUGUST 16
Morning — 8:30 a.m. — 12:00 p.m.
Symposium Topics
- Aftermath of Hurricane Katrina and Rita on Seafood Safety
- Assuring Microbiological Safety of Organic Products
- Symposium on Salmonella: The Saga Continues

Technical Sessions
- Education
- Pathogens and Antimicrobials—Listeria

Poster Session (9:30 a.m. – 1:30 p.m.)
- Risk Assessment and Antimicrobials

Afternoon — 1:30 p.m. — 3:30 p.m.
Symposium Topics
- How Risk Managers Decide on Risk from Different National Perspectives
- Symposium on Food Allergen Control at Retail and Foodservice
- Quality Control in Research Labs

Round-Table Topic
- Water Safety and Quality: Global Water — HACCP Issues

Technical Session
- Produce

Afternoon — 3:45 p.m. — 4:30 p.m.
- John H. Silliker Lecturer — "Rising From the Ocean Bottom — The Evolution of Microbiology in the Food Industry" — William Sperber, Ph.D., Cargill, Wayzata, MN, USA

Subject to change
IAFP 2006
Networking Opportunities

WELCOME RECEPTION - Hyatt Regency Calgary
Saturday, August 12 - 4:30 p.m. – 5:30 p.m.
Sponsored by Orkin Commercial Services
Welcome to IAFP 2006 and to the beautiful city of Calgary. Reunite with colleagues from around the world as you socialize and prepare for the leading food safety conference. Everyone is invited!

AFFILIATE RECEPTION - Hyatt Regency Calgary
Saturday, August 12 - 5:30 p.m. – 7:00 p.m.
Affiliate Officers and Delegates plan to arrive in time to participate in this educational reception. Watch for additional details.

COMMITTEE MEETINGS - Hyatt Regency Calgary
Saturday, August 12 - 1:00 p.m. – 5:00 p.m.
Sunday, August 13 - 7:00 a.m. – 5:00 p.m.
Refreshments Sponsored by Springer New York LLC
Committees and Professional Development Groups (PDGs) plan, develop and institute many of the Association’s projects, including workshops, publications, and educational sessions. Share your expertise by volunteering to serve on any number of committees or PDGs. Everyone is invited to attend.

STUDENT LUNCHEON - Hyatt Regency Calgary
Sunday, August 13 - 12:00 p.m. – 1:30 p.m.
Sponsored by Texas A&M Agriculture, Department of Animal Science, Food Safety
The mission of the Student PDG is to provide students of food safety with a platform to enrich their experience as Members of IAFP. Sign up for the luncheon to help start building your professional network.

EDITORIAL BOARD RECEPTION - Hyatt Regency Calgary
Sunday, August 13 - 4:30 p.m. – 5:30 p.m.
Editorial Board Members are invited to this reception to be recognized for their service during the year.

OPENING SESSION
AND IVAN PARKIN LECTURE - Telus Convention Centre
Sunday, August 13 - 6:00 p.m. – 7:00 p.m.
Join us to kick off IAFP 2006 at the Opening Session. Listen to the prestigious Ivan Parkin Lecture delivered by Dr. Arthur Liang.

CHEESE AND WINE RECEPTION - Telus Convention Centre
Sunday, August 13 - 7:00 p.m. – 9:00 p.m.
Sponsored by Kraft Foods
An IAFP tradition for attendees and guests. The reception begins in the Exhibit Hall immediately following the Ivan Parkin Lecture on Sunday evening.

IAFP JOB FAIR - Telus Convention Centre
Sunday, August 13 through Wednesday, August 16
Employers, take advantage of recruiting the top food scientists in the world! Post your job announcements and interview candidates.

COMMITTEE AND PDG CHAIRPERSON BREAKFAST
(By invitation) - Hyatt Regency Calgary
Monday, August 14 - 7:00 a.m. – 9:00 a.m.
Chairpersons and Vice Chairpersons are invited to attend this breakfast to report on the activities of your committee.

EXHIBIT HALL LUNCH - NEW! - Telus Convention Centre
Monday, August 14 - 12:00 p.m. – 1:00 p.m.
Sponsored by JohnsonDiversey
Stop in the Exhibit Hall for lunch and business on Monday and Tuesday.

EXHIBIT HALL RECEPTIONS - Telus Convention Centre
Monday, August 14 - 5:00 p.m. – 6:30 p.m.
Sponsored by DuPont Qualicon
Tuesday, August 15 - 5:00 p.m. – 6:00 p.m.
NEW!
Join your colleagues in the Exhibit Hall to see the most up-to-date trends in food safety techniques and equipment. Take advantage of these great networking receptions.

PRESIDENT’S RECEPTION (By invitation) - Hyatt Regency Calgary
Monday, August 14 - 6:30 p.m. – 7:30 p.m.
Sponsored by Fisher Scientific
This by invitation event is held each year to honor those who have contributed to the Association during the year.

PAST PRESIDENTS’ DINNER (By invitation) - Hyatt Regency Calgary
Monday, August 14 - 7:00 p.m. – 9:30 p.m.
Past Presidents and their guests are invited to this dinner to socialize and reminisce.

BUSINESS MEETING - Telus Convention Centre
Tuesday, August 15 - 12:15 p.m. – 1:00 p.m.
You are encouraged to attend the Business Meeting to keep informed of the actions of YOUR Association.

JOHN H. SILLIKER LECTURE - Telus Convention Centre
Wednesday, August 16 - 3:45 p.m. – 4:30 p.m.
The John H. Silliker Lecture will be delivered by Dr. William H. Sperber.

AWARDS BANQUET - Hyatt Regency Calgary
Wednesday, August 16 - 7:00 p.m. – 9:30 p.m.
Bring IAFP 2006 to a close at the Awards Banquet. Award recipients will be recognized for their outstanding achievements and the gavel will be passed from Dr. Jeffrey Farber to Incoming President Frank Yiannas, M.P.H.
EVENING EVENTS

NEW - IAFP Foundation Fundraisers

Murder Mystery Dinner at the Deane House
Tuesday, August 15 • 6:30 p.m. – 10:00 p.m.

A short ride from downtown Calgary leads to The Deane House located in the Fort Calgary interpretive site. Nestled on the banks of the Elbow River, the house has maintained its historical authenticity and is a perfect setting for relaxed, casual dining.

The Deane House Mystery from History is a unique, interactive dinner theatre. Characters from the past play out a mystery, loosely based on local history while guests play detective, trying to figure out “who dunnit.” During Act I, enjoy a leisurely cocktail in the Captain’s Room while the characters mingle with the crowd. The Narrator explains the rules of the game, how the evening will proceed and makes formal introductions. Guests then move to the main dining room where Act II unfolds during soup and salad service... and concludes with a murder. After a sumptuous entree, explore the house, eavesdropping and listening for further clues. As the curtain comes down on Act III, return to the dining room where dessert is served. At this point “guesses” are revealed and the murder is solved.

Dinner at The Ranche
Tuesday, August 15 • 6:30 p.m. – 10:00 p.m.

The flavors and traditions of Alberta’s ranching heritage live on at The Ranche Restaurant. Originally built in 1886 by William Roper Hull as the headquarters of The Bow Valley Ranche, it was sold in 1902 to Patrick Burns, one of the founding members of the Calgary Stampede. This intriguing historic house was once one of Southern Alberta’s grandest private residences and today it is home to one of Calgary’s finest and most creative restaurants – a unique setting within the city.

Located in Fish Creek Provincial Park, the Ranche is acclaimed for its commitment to exceptional dining experiences. Executive Chef Alistair Barnes and his team offer discriminating dinners, fresh baked bread, the finest meat, poultry and fish, naturally raised game (from their own game ranch!), fresh vegetables and mouth-watering desserts.

A portion of your registration fee from the two IAFP Foundation Fundraising activities will be donated to the Foundation.

GOLF TOURNAMENT

Golf Tournament at The Links of GlenEagles
Saturday, August 12 • 7:30 a.m. – 4:00 p.m.

Join your friends and colleagues for a relaxing round of golf, Canadian Rocky style, before IAFP 2006. From the very first tee at The Links of GlenEagles, you know you’ve made the right choice for your day of golf. On every hole there are panoramic Rocky Mountain views as a backdrop to one of Canada’s most superb golf courses. At The Links of GlenEagles you will find a pristine course - lush green fairways, the brilliant white sand bunkers and exciting changes in elevation.

Designer Les Furber, one of Canada’s greatest golf designers, carved this course into the rugged foothills just as they run up to the Rocky Mountains. Portions of the course run along a cliff some 200 feet above the Bow River Valley. The course offers a grand visual experience as well as a golfing adventure. It’s a round you will talk about for months afterward.

Price includes transportation, greens fees with cart, range balls, lunch and prizes.

DAYTIME TOURS

The Best of Lake Louise and Banff
Saturday, August 12 • 8:00 a.m. – 5:00 p.m.

For over a century, explorers have been making the trip to the incredible towering mountain peaks and icy blue glaciers, which are the highlights of Banff National Park. As you depart the urban city of Calgary, you will pass through the rolling wheat fields and into the foothills before entering the majestic beauty of the Canadian Rockies. Once in Banff National Park, the journey continues along the winding Bow Valley Parkway passing Hole-in-the-Wall, Johnston Canyon and magnificent Castle Mountain. At Lake Louise, enjoy free time to discover this special place with outdoor pursuits: hike, rent a canoe, or try horseback riding. If you prefer, the Fairmont Chateau Lake Louise has various shops, lounges, restaurants, and fabulous architecture that will impress for hours. The rich history and beauty of Lake Louise will last in memory for years to come! Rejoin the group to enjoy a delicious lunch before departing the Chateau for the second half of the tour.
The next part of the adventure in the Rockies leads to beautiful Banff. This tour features the spray of cool waterfalls, an optional ascent up a mountain, a taste of local history and a chance to spy on wildlife — complete in one afternoon! To start, feel the power of the Bow Falls and the beauty that surrounds it just below the Fairmont Banff Springs Hotel. Continue exploring some of the best views in town — Surprise Corner on Tunnel Mountain Drive, the Hoodoos (oddly shaped pillars of glacial rock) and Mount Norquay's winding road. Next stop at the Cave and Basin Centennial Center — the birthplace of Canada’s national parks where the guide will provide interesting tidbits on Banff’s rich natural and human history. Before returning to Calgary, enjoy some free time to explore the many unique cafes, boutiques, and shops in downtown Banff or take a relaxing stroll through the tranquil Cascade gardens.

Optional: For those not wanting to stop downtown, the coach will continue on to Sulphur Mountain where guests can take the gondola up to the 7,500 foot summit of the mountain and enjoy a panoramic view of the entire Bow Valley as well as explore the interpretive trail that winds atop the mountain. Gondola admission is not included in the tour price.

The Complete Calgary Tour
Sunday, August 13 • 10:00 a.m. - 4:00 p.m.

Spend today exploring the exciting attractions of Calgary. This thriving business center combines the friendly atmosphere of the old west with the aggressive style of a modern cosmopolitan center. The day will be highlighted by stops at historical locations, unique neighborhoods and scenic viewpoints. Start at the Calgary Tower that features spectacular views of Calgary and the Canadian Rockies as well as a new glass floor attraction. Visit Heritage Park where the sights and sounds of Canada’s exciting pioneer west has been recreated; enjoy a tour onboard an authentic steam train followed by lunch in one of the historical buildings. Last, make a stop at Canada Olympic Park, an internationally-renowned winter training facility and home to the world’s largest Olympic Hall of Fame!

Drumheller and the Badlands
Monday, August 14 • 8:00 a.m. - 4:00 p.m.

Wind whines through the stubble of brush over a dry valley, its whispers joined only by the incessant creaking of crickets and the occasional clacking of grasshoppers’ wings. This is the Badlands of Alberta! As the landscape changes, you will feel as though you’ve stepped back in time – way back to prehistoric time! The highlight of this tour will be at the Royal Tyrrell Museum of Paleontology in Drumheller. This museum is a major exhibition and research center, and one of the largest paleontological museums in the world. It displays more than 200 dinosaur specimens, the largest number under one roof anywhere. Most of the dinos on display were found in Alberta; the majority just outside in Dinosaur Provincial Park and Drumheller. Following a tour of the museum, enjoy the unique landscape of some of the many self-guided trails and a leisurely lunch.

Art Walk
Tuesday, August 15 • 10:00 a.m. - 1:30 p.m. (Lunch not included)

Downtown Calgary isn’t all concrete and glass – it’s also home to some of Calgary’s best-known art galleries. These gems will be explored on a walking tour of downtown. Stops will include the Stephen Lowe Art Gallery featuring Western and Asian fine art paintings and sculptures by more than 65 artists; Diana Paul Galleries, where some of Canada’s most renowned contemporary impressionists are featured; Gainsborough Galleries, opened in 1923, the longest-running art gallery in the city; and Wallace Galleries, representing accomplished Canadian and international contemporary visual artists.

The tour will end at Art Central - Calgary’s newest addition to the art scene, with three floors of bright open space housing art galleries and artists studios. A short tour highlighting the main attractions on each floor will be followed by a demonstration in one of the artist’s studios.

Following the tour, explore Art Central, enjoy a delicious lunch (not included) in one of the trendy downtown restaurants, or continue exploring Calgary’s artistic offerings.

Yoga and Cooking Class
Wednesday, August 16 • 9:45 a.m. - 2:00 p.m.

Today is dedicated to the issues of health and vitality that are so prevalent in the Western Canada lifestyle. Start the day with a private session at one of the trendy downtown yoga studios. The local instructor will lead an hour-long vinyasa yoga class. This popular form of yoga focuses on integrating breath and movement, awareness and alignment, and strength and flexibility in daily life. The result is improved circulation, a light and strong body, and a calm mind.

After class, depart for the Cookbook Company, Calgary’s culinary hub. The culinary classroom plays host to over 200 cooking classes, wine classes, specialty dinners and workshops each year. The body and mind theme will be carried forward into this culinary adventure with the cooking of a delicious and healthy vegetarian lunch with the local yoga and cooking guru.

POST MEETING ACTIVITY

Outdoor Adventure in Kananaskis
Thursday, August 17 • 8:30 a.m. - 2:30 p.m.

Welcome to the REAL WEST! Transfer by exclusive coach to Kananaskis Country for a morning of activities in the beautiful Canadian Rockies.

Tucked away in the spectacular Kananaskis Valley, Boundary Ranch is the perfect setting for an Alberta Barbecue. Lunch at Boundary Ranch offers the opportunity to relax and watch the trail rides leave the corral, get involved in activities like horseshoes or roping or take a picturesque stroll through the mountains surrounding the ranch. There is always a lot to see and do! Wander through the unique log and cedar facilities and enjoy western hospitality at its finest! Consider the additional activities offered for a small fee. Optional activities:

- Biking in Kananaskis
- Voyageur Canoe Ride
- Kananaskis Hiking Tours
- Horseback Trail Ride at Boundary Ranch
- Whitewater Rafting on the Kananaskis River
IMPORTANT! Please read this information before completing your registration form.

MEETING INFORMATION

Register to attend the world's leading food safety conference.

Full Registration includes:
- Technical Sessions
- Symposia
- Poster Presentations
- Ivan Parkin Lecture
- John H. Silliker Lecture
- Exhibit Hall Lunch (Mon.-Tues.)
- Awards Banquet
- Exhibit Hall Admittance
- Cheese and Wine Reception
- Exhibit Hall Reception (Mon.-Tues.)
- Program and Abstract Book

4 EASY WAYS TO REGISTER

Complete the Attendee Registration Form and submit it to the International Association for Food Protection by:

- Online: www.foodprotection.org
- Fax: 515.276.8655
- Mail: 6200 Aurora Avenue, Suite 200W
 Des Moines, IA 50322-2864, USA
- Phone: 800.369.6337; 515.276.3344

The early registration deadline is July 12, 2006. After this date, late registration fees are in effect.

REFUND/CANCELLATION POLICY

Registration fees, less a $50 administration fee and any applicable bank charges, will be refunded for written cancellations received by July 28, 2006. No refunds will be made after July 28, 2006; however, the registration may be transferred to a colleague with written notification. Refunds will be processed after August 23, 2006. Event and tour tickets purchased are nonrefundable.

EXHIBIT HOURS

Sunday, August 13, 2006 7:00 p.m. - 9:00 p.m.
Monday, August 14, 2006 9:30 a.m. - 6:30 p.m.
Tuesday, August 15, 2006 9:30 a.m. - 6:00 p.m.

DAILY EVENTS - Lunch included

Saturday, August 12, 2006 8:00 a.m. - 5:00 p.m.
The Best of Lake Louise and Banff
Sunday, August 13, 2006 10:00 a.m. - 4:00 p.m.
The Complete Calgary Tour
Monday, August 14, 2006 8:00 a.m. - 4:00 p.m.
Drumheller and the Badlands
Tuesday, August 15, 2006 10:00 a.m. - 1:30 p.m.
Art Walk (Lunch not included)
Wednesday, August 16, 2006 9:45 a.m. - 2:00 p.m.
Yoga and Cooking Class

EVENING EVENTS

Sunday, August 13, 2006
Opening Session 6:00 p.m. - 7:00 p.m.
Cheese and Wine Reception
Sponsored by Kraft Foods 7:00 p.m. - 9:00 p.m.
Monday, August 14, 2006
Exhibit Hall Reception
Sponsored by DuPont Qualicon 5:00 p.m. - 6:30 p.m.
Tuesday, August 15, 2006
Exhibit Hall Reception 5:00 p.m. - 6:00 p.m.
NEW - IAFP Foundation Fundraisers
Murder Mystery Dinner at the Deane House 6:30 p.m. - 10:00 p.m.
Dinner at The Ranche 6:30 p.m. - 10:00 p.m.
Wednesday, August 16, 2006
Awards Banquet Reception 6:00 p.m. - 7:00 p.m.
Awards Banquet 7:00 p.m. - 9:30 p.m.

POST MEETING ACTIVITY

Thursday, August 17, 2006
Outdoor Adventure in Kananaskis 8:30 a.m. - 2:30 p.m.

GOLF TOURNAMENT

Saturday, August 12, 2006
Golf Tournament at The Links of GlenEagles 7:30 a.m. - 4:00 p.m.

HOTEL INFORMATION

Hotel reservations can be made online at www.foodprotection.org. See page 347 for additional hotel information.
IAFP 2006 Registration Form

First name (as it will appear on your badge) Last name

Employer Title

Mailing Address (Please specify: Home Work)

City State/Province Country Postal/Zip Code

Telephone Fax E-mail

Regarding the ADA, please attach a brief description of special requirements you may have.

IAFP occasionally provides Attendees’ addresses (excluding phone and E-mail) to vendors and exhibitors supplying products and services for the food safety industry. If you prefer NOT to be included in these lists, please check the box.

PAYMENT MUST BE RECEIVED BY JULY 12, 2006 TO AVOID LATE REGISTRATION FEES

REGISTRATION FEES:

<table>
<thead>
<tr>
<th>Category</th>
<th>Members Without Pay 9 June</th>
<th>Members Without Pay 15 June</th>
<th>Nonmembers Without Pay 9 June</th>
<th>Nonmembers Without Pay 15 June</th>
<th>TOTAL Without Pay 9 June</th>
<th>TOTAL Without Pay 15 June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>$ 395 ($445 late)</td>
<td>$ 80 ($90 late)</td>
<td>$ 597 ($647 late)</td>
<td>Not Available</td>
<td>$ 50 ($60 late)</td>
<td>$ 50 ($60 late)</td>
</tr>
<tr>
<td>Student Member</td>
<td>$ 80 ($90 late)</td>
<td>$ 215 ($240 late)</td>
<td>$ 330 ($355 late)</td>
<td>Not Available</td>
<td>$ 25 ($25 late)</td>
<td>$ 25 ($25 late)</td>
</tr>
<tr>
<td>Retired Association Member</td>
<td>$ 55 ($55 late)</td>
<td>$ 25 ($25 late)</td>
<td>$ 55 ($55 late)</td>
<td>FREE</td>
<td>$ 50 ($60 late)</td>
<td>$ 50 ($60 late)</td>
</tr>
<tr>
<td>One Day Registration</td>
<td>$ 215 ($240 late)</td>
<td>$ 25 ($25 late)</td>
<td>$ 330 ($355 late)</td>
<td>Not Available</td>
<td>$ 50 ($60 late)</td>
<td>$ 50 ($60 late)</td>
</tr>
<tr>
<td>Children 15 & Over (Names):</td>
<td></td>
<td></td>
<td>$ 75 ($85 late)</td>
<td>$ 105 ($115 late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children 14 & Under (Names):</td>
<td></td>
<td></td>
<td>$ 50 ($55 late)</td>
<td>$ 75 ($85 late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awards Banquet not included</td>
<td></td>
<td></td>
<td>$ 75 ($85 late)</td>
<td>$ 75 ($85 late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW IAFP FOUNDATION FUNDRAISERS:</td>
<td></td>
<td></td>
<td>$ 75 ($85 late)</td>
<td>$ 75 ($85 late)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murder Mystery Dinner at the Deane House</td>
<td>$ 130 ($140 late)</td>
<td></td>
<td>$ 130 ($140 late)</td>
<td>Not Available</td>
<td>$ 130 ($140 late)</td>
<td>$ 130 ($140 late)</td>
</tr>
<tr>
<td>Dinner at The Ranch</td>
<td>$ 145 ($155 late)</td>
<td></td>
<td>$ 145 ($155 late)</td>
<td>Not Available</td>
<td>$ 145 ($155 late)</td>
<td>$ 145 ($155 late)</td>
</tr>
<tr>
<td>DAYTIME EVENTS - Lunch included</td>
<td></td>
<td></td>
<td>$ 135 ($145 late)</td>
<td>Not Available</td>
<td>$ 135 ($145 late)</td>
<td>$ 135 ($145 late)</td>
</tr>
<tr>
<td>Golf Tournament (Saturday, 8/12)</td>
<td></td>
<td></td>
<td>$ 130 ($140 late)</td>
<td>Not Available</td>
<td>$ 130 ($140 late)</td>
<td>$ 130 ($140 late)</td>
</tr>
<tr>
<td>The Best of Lake Louise and Banff (Saturday, 8/12)</td>
<td>$ 105 ($115 late)</td>
<td></td>
<td>$ 105 ($115 late)</td>
<td>Not Available</td>
<td>$ 105 ($115 late)</td>
<td>$ 105 ($115 late)</td>
</tr>
<tr>
<td>The Complete Calgary Tour (Sunday, 8/13)</td>
<td>$ 115 ($125 late)</td>
<td></td>
<td>$ 115 ($125 late)</td>
<td>Not Available</td>
<td>$ 115 ($125 late)</td>
<td>$ 115 ($125 late)</td>
</tr>
<tr>
<td>Drumheller and the Badlands (Monday, 8/14)</td>
<td>$ 42 ($52 late)</td>
<td></td>
<td>$ 42 ($52 late)</td>
<td>Not Available</td>
<td>$ 42 ($52 late)</td>
<td>$ 42 ($52 late)</td>
</tr>
<tr>
<td>Art Walk – Lunch not included (Tuesday, 8/15)</td>
<td>$ 90 ($100 late)</td>
<td></td>
<td>$ 90 ($100 late)</td>
<td>Not Available</td>
<td>$ 90 ($100 late)</td>
<td>$ 90 ($100 late)</td>
</tr>
<tr>
<td>Yoga and Cooking Class (Wednesday, 8/16)</td>
<td>$ 82 ($92 late)</td>
<td></td>
<td>$ 82 ($92 late)</td>
<td>Not Available</td>
<td>$ 82 ($92 late)</td>
<td>$ 82 ($92 late)</td>
</tr>
<tr>
<td>Outdoor Adventure in Kananaskis (Thursday, 8/17)</td>
<td>$ 130 ($140 late)</td>
<td></td>
<td>$ 130 ($140 late)</td>
<td>Not Available</td>
<td>$ 130 ($140 late)</td>
<td>$ 130 ($140 late)</td>
</tr>
<tr>
<td>Optional: Select one activity per person</td>
<td>Qty.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biking</td>
<td>$ 93 ($103 late)</td>
<td></td>
<td>$ 93 ($103 late)</td>
<td>Not Available</td>
<td>$ 93 ($103 late)</td>
<td>$ 93 ($103 late)</td>
</tr>
<tr>
<td>Canoe Ride</td>
<td>$ 56 ($66 late)</td>
<td></td>
<td>$ 56 ($66 late)</td>
<td>Not Available</td>
<td>$ 56 ($66 late)</td>
<td>$ 56 ($66 late)</td>
</tr>
<tr>
<td>Hiking</td>
<td>$ 51 ($61 late)</td>
<td></td>
<td>$ 51 ($61 late)</td>
<td>Not Available</td>
<td>$ 51 ($61 late)</td>
<td>$ 51 ($61 late)</td>
</tr>
<tr>
<td>Horseback Riding</td>
<td>$ 57 ($67 late)</td>
<td></td>
<td>$ 57 ($67 late)</td>
<td>Not Available</td>
<td>$ 57 ($67 late)</td>
<td>$ 57 ($67 late)</td>
</tr>
<tr>
<td>Rafting</td>
<td>$ 61 ($71 late)</td>
<td></td>
<td>$ 61 ($71 late)</td>
<td>Not Available</td>
<td>$ 61 ($71 late)</td>
<td>$ 61 ($71 late)</td>
</tr>
</tbody>
</table>

PAYMENT OPTIONS:

☐ Check Enclosed

Credit Card #: ____________________________

Expiration Date __________________________

Name on Card _____________________________

Signature ________________________________

☐ Check box if you are a technical, poster, or symposium speaker.

TOTAL AMOUNT ENCLOSED

☐ Check box if you are a technical, poster, or symposium speaker.

JOIN TODAY AND SAVE!!!

(Attach a completed Membership application)

EXHIBITORS DO NOT USE THIS FORM

MAY 2006 | FOOD PROTECTION TRENDS 343
WORKSHOP 1
Saturday, August 12
8:00 a.m. to 5:00 p.m.

Developing and Improving
Your Food Microbiology
Laboratory

WORKSHOP 2
Saturday, August 12
8:00 a.m. to 5:00 p.m.

Methods, Methods Everywhere
but Which is Right for Me?
Selection and Verification of
Methods

WORKSHOP 3
Friday, August 11
Saturday, August 12
8:00 a.m. to 5:00 p.m.

Global Food Standards:
Food Safety Auditing

Workshop 1 - Developing and Improving Your Food Microbiology Laboratory

This workshop will present ways to operate a food microbiology laboratory more effectively and efficiently. You will learn in a friendly and interactive environment, the critical elements of a food microbiology testing laboratory. Also, laboratory layout as it applies to efficiency and data quality will be addressed. Workshop participants will learn how to build technical competence through training and the three pillars of quality. Analysis of variables to be considered when determining whether to build or upgrade an internal microbiology laboratory including a review of experiences and challenges with in-house testing will be presented. The workshop will include time for a round-table discussion and a binder of information to reinforce the practical experience gained during the workshop for future use.

Topics:
- Critical Elements of Food Microbiology Testing Laboratories
- Building Technical Competency: Training and the Three Pillars of Quality
- Laboratory Layout Considerations
- Developing an In-House Microbiology Laboratory? Factors to Consider

Intended Audience
Laboratory personnel or microbiologists in small to medium sized laboratories or companies

Instructors:
Donna Christensen, Canadian Food Inspection Agency, Calgary, Alberta, Canada
Dave Evanson, Silliker Inc., Homewood, IL, USA
Timothy Freier, Cargill Corporate Food Safety and Regulatory Affairs, Minneapolis, MN, USA
Jeffrey Kornacki, Ph.D., Kornacki Food Safety Associates, LLC, McFarland, WI, USA

Organizers:
Jeffrey Kornacki, Ph.D., Kornacki Food Safety Associates, LLC, McFarland, WI, USA
Pamela Wilger, M.S., Cargill, Wayzata, MN, USA
Workshop 2 - Methods, Methods Everywhere but Which is Right for Me? Selection and Verification of Methods

Selecting the analytical tool(s) for microbiological analysis that best meets your needs is a critical task. With so many choices, how do you decide? This workshop will teach you everything that you ever wanted to know about selecting a microbiological method that is “fit for purpose.” You will experience a demonstration of an AOAC “on-line” learning center and get a better understanding of the various international approaches to method validation schemes. Speakers will address practical considerations in method selection both for large corporate labs, as well as for single manufacturing site labs. The concept of uncertainty of measurement as a key component of method verification will be addressed from a microbiologist’s viewpoint. Using the Mexican and Canadian experiences, expectations of accrediting authorities for method verification will also be detailed. There will be ample time provided for open discussion and each of the presentations will include a list of available resources to help the attendees with the decision making process.

Topics:
- Worldwide Method Validation – Have It Your Way – The AOAC RI Learning Center Approach
- Death, Taxes and Uncertainty…A Simple Microbiologist’s View
- How to Choose a Method: Practical Considerations
- Expectations of an Accrediting Body – A Canadian Perspective
- Expectations of an Accrediting Body – A Mexican Perspective

Instructors:
Michael Brodsky, Brodsky Consultants, Thornhill, Ontario, Canada
Donna Christiansen, Canadian Food Inspection Agency, Calgary, Alberta, Canada
Armida Zuniga-Estrada, Public Health State Laboratory, Pachuca City, Hidalgo, Mexico
Robin Kalinowski, National Center for Food Safety and Technology, Summit Argo, IL, USA
Deborah McKenzie and Maria Nelson, AOAC Research Institute, Gaithersburg, MD, USA

Intended Audience
Microbiologists, Lab supervisors and managers, QA personnel and analysts or anyone responsible for selecting laboratory methods in a food production, processing or analytical environment

Organizers:
Christine Aleski, Ann Arbor, MI, USA
George Wilson, BD Diagnostics, Sparks, MD, USA

Workshop 3 - Global Food Standards: Food Safety Auditing

In today’s global food market it is vital that there are food safety standards in place that can be used by companies in determining a supplier base for their foodstuffs. To this end there has been an increase in the development and evolution of Global Food Safety Standards. The recently launched ISO 22000 Standard is the latest in the range of standards. Currently, the most widely used is the British Retail Consortium (BRC) Global Standard–Food. This is used by approved Certification Bodies as the standard to audit against in ensuring a consistent, safe food supply. The Standard covers a wide range of topics including, HACCP, Quality Management Systems, Factory Environment Standards, Product Control, Process Control and Personnel. One of the problems with auditing is ensuring consistency between auditors. This workshop will cover all aspects of both the Standard and auditing techniques to guarantee consistency.

This course is certified by the British Retail Consortium and is recognized as the required Internal Auditor training for any company seeking certification. Successful delegates will receive a recognized certificate.

Topics:
- Summary of the standard
- Global food standard audit concepts
- Types of audit
- The auditor
- Auditor skills
- Audit report writing
- Reporting audit results to management

Instructors:
Gordon Hayburn, University of Wales Institute, Cardiff, UK
Louise Fielding, University of Wales Institute, Cardiff, UK
David Lloyd, University of Wales Institute, Cardiff, UK

Intended Audience
Quality/Technical managers, Internal Systems auditors, consultants, food safety professionals and academics

Organizer:
Gordon Hayburn, University of Wales Institute, Cardiff, UK
IAFP 2006 Workshop Registration Form

- Workshop 1 – Developing and Improving Your Food Microbiology Laboratory – Saturday, August 12
- Workshop 2 – Methods, Methods Everywhere but Which is Right for Me? Selection and Verification of Methods – Saturday, August 12
- Workshop 3 – Global Food Standards: Food Safety Auditing – Friday and Saturday, August 11–12

First Name (will appear on badge)

Last Name

Company

Job Title

Address

City

State/Province

Country

Postal Code/Zip +4

Area Code & Telephone

Fax

E-mail

Check Enclosed

Account Number

Member #

Total Amount Enclosed

Signature

Expiration date

* REGISTRATION *

Payment must be received by July 21, 2006 to avoid late registration rates.

<table>
<thead>
<tr>
<th>WORKSHOP 1</th>
<th>WORKSHOP 2</th>
<th>WORKSHOP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Rate</td>
<td>Late Rate</td>
<td>Early Rate</td>
</tr>
<tr>
<td>IAFP Member</td>
<td>$295.00 $370.00</td>
<td>IAFP Member</td>
</tr>
<tr>
<td>NonMember</td>
<td>$395.00 $470.00</td>
<td>NonMember</td>
</tr>
</tbody>
</table>

GROUP DISCOUNT:
Register 3 or more people from your company and receive a 15% discount. Registrations must be received as a group.

Refund/Cancellation Policy
Registration fees, less a $50 administrative charge, will be refunded for written cancellations received by July 28, 2006. No refunds will be made after that date; however, the registration may be transferred to a colleague with written notification. Refunds will be processed after August 21, 2006. The workshop may be cancelled if sufficient enrollment is not received by July 21, 2006.

For further information, please contact the Association office at 800.369.6337; 515.276.3344; Fax: 515.276.8655; E-mail: jcattanachi@foodprotection.org.

* 4 Easy Ways to Register *

To register, complete the Workshop Registration Form and submit it to the International Association for Food Protection by:

Online: www.foodprotection.org

Phone: 800.369.6337; 515.276.3344

Fax: 515.276.8655

Mail: 6200 Aurora Avenue, Suite 200W, Des Moines, IA 50322-2864, USA
REQUEST FOR ACCOMMODATIONS

INTERNATIONAL ASSOCIATION FOR FOOD PROTECTION
93rd ANNUAL MEETING
August 13 - 16, 2006
Calgary, Alberta, Canada

INSTRUCTIONS

Online housing will open on December 1, 2005.

INTERNET:
Visit the International Association for Food Protection website at www.foodprotection.org to make your reservation.

FAX:
Only fully completed forms will be accepted by fax at 403-262-3809. Use one form per individual request.

MAIL:
Housing forms can be mailed to:
Tourism Calgary |AFP Housing
#200, 238-11 Ave. SE
Calgary, Alberta, Canada T2G 0X8

REQUEST FOR ACCOMMODATIONS
INTERNATIONAL ASSOCIATION FOR FOOD PROTECTION
93rd ANNUAL MEETING
August 13 - 16, 2006
Calgary, Alberta, Canada

GUEST INFORMATION

For best availability, make your reservation via internet (www.foodprotection.org) or by fax (403) 262-3809.

Arrival Date _______________ Departure Date _______________

Attention Exhibitors:
NOTE: Change of exhibit hours. Exhibit hall will close at 6:00 PM on Tuesday with teardown immediately following.

☐ Mr. ☐ Ms. ☐ Mrs.

First Name: ___________________________ Last Name: ___________________________

Address: ____________________________ City/State/Province: ____________________________ Zip/Postal Code: ____________________________ Country: ____________________________

Email address: ____________________________ Daytime Ph: () Fax: ()

HOTEL SELECTION

Please select hotel from list below in order of preference (ie. 1st, 2nd, 3rd choice etc.).

<table>
<thead>
<tr>
<th>CHOICE</th>
<th>HOTEL</th>
<th>RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calgary Marriott</td>
<td>$174.00 CAD</td>
</tr>
<tr>
<td></td>
<td>Fairmont Palliser</td>
<td>$195.00 CAD</td>
</tr>
<tr>
<td></td>
<td>Hyatt Regency</td>
<td>$175.00 CAD</td>
</tr>
</tbody>
</table>

of Occupants in room ______ List Occupants Names: __

of Beds Requested

(Note: extra charges will apply for more than two people in a room)

Special Room Requirements:

☐ & Disability requiring special services
☐ Non-smoking
☐ Smoking

DEPOSIT INFORMATION

A first night's deposit is mandatory to guarantee rooms. (See instructions & information for other payment options.)

☐ VISA ☐ American Express ☐ Diner's Club ☐ Mastercard

Card Number: ____________________________ Expiry Date: ____________________________

Name on Credit Card: ____________________________

Cardholder's Signature*: ____________________________

*Necessary to process reservations

Complete and return this form by fax or mail to:
Tourism Calgary - Calgary Convention & Visitors Bureau
200, 238 11 Ave. S.E., Calgary, AB Canada T2G 0X8
Tel: (403) 263-8510 • Fax: (403)262-3809
For more information on Calgary visit:
www.tourismcalgary.com

MAY 2006 | FOOD PROTECTION TRENDS 347
IAFP 2006 Sponsors
as of April 3, 2006

3M Microbiology
BD Diagnostics
bioMérieux, Inc.
Bio-Rad Laboratories
Cargill, Inc.
Deibel Laboratories, Inc.
DuPont Qualicon
Ecolab, Inc., Food and Beverage Division
F & H Food Equipment Company
Wilbur Feagan
Fisher Scientific
Food Products Association
Food Safety Net Services, Ltd.
IAFP Foundation
International Life Sciences Institute, N.A. (ILSI, N.A.)

International Packaged Ice Association (IPIA)
JohnsonDiversey
Kraft Foods
Nasco International, Inc.
National Alliance for Food Safety and Security
Nelson-Jameson, Inc.
NSF International
Orkin Commercial Services
PepsiCo
Quality Flow Inc.
Springer New York LLC
Strategic Diagnostics Inc.
Texas A&M Agriculture, Department of Animal Science, Food Safety
Weber Scientific
Zep Manufacturing Company
IAFP 2006 Exhibitors

as of April 3, 2006

3-A Sanitary Standards, Inc.
3M Microbiology
Advanced Instruments, Inc.
Aerotech P&K Laboratories
AES – Chemunex, Inc.
American Association for Laboratory Accreditation (A2LA)
American Proficiency Institute
Ameritek USA
AnzenBio, LLC
AOAC International
ASI Food Safety Consultants, Inc.
ATCC
BD Diagnostics
BioControl Systems, Inc.
Biolog, Inc.
bioMérieux, Inc.
Bio-Rad Laboratories
Biotrace International Inc.
Blackwell Publishing
BSI Management Systems
Canadian Federation of Agriculture—Canadian On-Farm Food Safety Working Group (COFFSWG)
Canadian Meat Business
Center for Food Safety and Applied Nutrition, US FDA
Charm Sciences, Inc.
Copan Diagnostics, Inc.
CRC Press - Taylor & Francis Group LLC
Decagon Devices, Inc.
Deibel Laboratories
DSM Food Specialties USA, Inc.
DuPont Qualicon
Ecolab, Inc.
Elisa Systems
EMD Chemicals Inc.
Eurofins Scientific, Inc.
Fisher Scientific
Food Allergy Research and Resource Program, University of Nebraska
Food Quality Magazine
Food Safety Magazine
Food Safety Net Services, Ltd.
FoodHandler
FOSS North America
GOJO Industries
Guelph Food Technology Centre
HiMedia Laboratories Pvt. Ltd
Idaho Technology, Inc.
IEH–Warren Analytical Laboratories
International Association for Food Protection
International Association for Food Protection – Student PDG
International Food Hygiene
International Food Information Council Foundation
Joint Institute for Food Safety and Applied Nutrition (JIFSAN)
MATRIX MicroScience, Inc.
Medallion Laboratories
Med-Ox Diagnostics, Inc.
Meritech, Inc.
Michelson Laboratories, Inc.
Microbial-Vac Systems, Inc.
MicroBioLogics, Inc.
Microbiology International
National Food Safety and Toxicology Center, Michigan State University
Nelson-Jameson, Inc.
Neogen Corporation
Neutec Group, Inc
Nice-Pak Products, Inc.
NSF International
Orkin Commercial Services
Oxoid Canada
Polar-Tech Industries, Inc.
Q Laboratories, Inc.
Quality Assurance & Food Safety Magazine
Quality Flow Inc.
R&F Products
Randox Laboratories Ltd.
R-Biopharm, Inc.
REMEL, Inc.
rtech™ laboratories
Silliker Inc.
Smiths Detection
Society for Applied Microbiology
Springer
The Steritech Group, Inc.
Strategic Diagnostics Inc.
Sword Diagnostics
Thermor Ltd.
TrainCan, Inc.
Warnex Diagnostics Inc.
Weber Scientific
You may have heard about “Bird Flu” or Avian Influenza in the news…but is it in our food? No.

The H5N1 highly pathogenic avian influenza strain does not exist today in the United States. One reason is that the U.S. government and poultry industry have safeguards in place to keep it out.

As a food safety advocate, it is important for you to know that there are no reported cases of avian influenza attributed to the consumption of cooked poultry products. Safe cooking of poultry and eggs would inactivate the virus if it were present in poultry meat or eggs. As with other foodborne pathogens (like *Salmonella* and *E. coli O157:H7*) it is important, always, to follow safe handling practices to reduce the risk of foodborne illness caused by bacteria and viruses. Using a food thermometer is the only way to know whether food has reached a high enough internal temperature to destroy foodborne pathogens.

The Partnership reminds consumers to always:

CLEAN: wash hands with warm water and soap for twenty seconds before and after handling food.

SEPARATE: keep raw meat, poultry, seafood and their juices away from other foods.

COOK: cook eggs and poultry products thoroughly and use a food thermometer to measure internal temperature: whole birds, drumsticks, thighs and wings should be cooked to 180°F, breasts to 170°F, ground turkey and ground chicken to 165°F. Cook eggs until both the yolk and the white are firm.

CHILL: refrigerate or freeze meat, poultry, eggs and other perishables as soon as you get them home from the store.
Zep Manufacturing Company, a leader in food and beverage sanitation, proudly announces a revolutionary breakthrough in chemical sourcing alternatives – Apex. The Apex line is designed specifically for the discerning buyer who is searching for value-added programs that deliver continuous improvement. Call 1-877-I-BUY-ZEP (1-877-428-9937) then dial 5, 2, and “5173#”, or email zepfood@zepmfg.com for a free “value-check” sanitation audit, or contact your local ZepRep for more information.

Apex – Stay at the top of the food chain without hurting your bottom line.
Purchasing an IAFP 2006 T-shirt or Polo Shirt from the Student PDG to help raise money in support of our Students. Pre-ordered T-shirts are $20.00 and Polo shirts are $30.00. Shirts will be available for pick-up from the SPDG booth throughout IAFP 2006. All order forms are due by July 1, 2006.

If you choose to pay by credit card, make sure you include the amount to be charged. If you are paying by check, make checks payable to IAFP and enclose the check with your order form. Please mail order forms for receipt by July 1, 2006 for pre-orders.

Please return order form to:

International Association for Food Protection
6200 Aurora Avenue, Suite 200W
Des Moines, IA 50322-2864, USA
Phone: 800.369.6337 • 515.276.3344
Fax: 515.276.8655
E-mail: info@foodprotection.org
Web site: www.foodprotection.org

<table>
<thead>
<tr>
<th>IAFP SPDG Shirt Order Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Mailing Address</td>
</tr>
<tr>
<td>City</td>
</tr>
<tr>
<td>Telephone</td>
</tr>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>Polo shirts</td>
</tr>
<tr>
<td>PAYMENT OPTIONS:</td>
</tr>
<tr>
<td>□ Check or Money Order Enclosed</td>
</tr>
<tr>
<td>Credit Card #</td>
</tr>
<tr>
<td>Name on Card</td>
</tr>
<tr>
<td>Signature</td>
</tr>
</tbody>
</table>
Contribute to the Ninth Annual
IAFP Foundation Silent Auction Today!

The Foundation of the International Association for Food Protection will hold its Annual Silent Auction during IAFP 2006, the Association’s 93rd Annual Meeting in Calgary, Alberta, Canada, August 13–16, 2006. The Foundation supports:

- Student Travel Scholarships
- Ivan Parkin Lecture
- John H. Silliker Lecture (Funded through a contribution from Silliker, Inc.)
- Travel support for exceptional speakers at the Annual Meeting
- Audiovisual Library
- Developing Scientist Competition
- Shipment of JFP and FPT journals to developing countries through FAO

Support the Foundation by donating an item today. A sample of items donated last year included:

- 3-Month Membership
 - "Cheese of the Month Club"
- Mickey Mouse Statue
- PepsiCo Gift Bag
- Assorted Wines
- Cow Parade Figurines
- Food Microbiology Fundamentals and Frontiers
- Godiva Chocolate Gift Basket
- Pearl Necklace
- McCormick Spice Rack
- Train Set

Complete the form and send it in today.

<table>
<thead>
<tr>
<th>Description of Auction Items</th>
<th>Estimated Value</th>
<th>Name of Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company (if relevant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mailing Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Please specify: ☐ Home ☐ Work)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td>State or Province</td>
</tr>
<tr>
<td>Postal Code/Zip + 4</td>
<td></td>
<td>Country</td>
</tr>
<tr>
<td>Telephone #</td>
<td></td>
<td>Fax #</td>
</tr>
<tr>
<td>E-mail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to:
Donna Gronstal
International Association for Food Protection
6200 Aurora Avenue, Suite 200W
Des Moines, IA 50322-2864, USA
800.369.6337; 515.276.3344
Fax: 515.276.8655
E-mail: dgronstal@foodprotection.org
Today's Dairy Farmers Require Accurate Milk Sampling For Maximum Profits

You work hard to run a clean and healthy dairy operation. Get maximum profits for all that effort by using the QMI Line and Tank Sampling System. The benefits are:

- Precise composite sampling to aid in mastitis control
- Contamination-free sampling resulting in accurate bacterial counts
- Reliable sampling to measure milk fat and protein

As you know, your testing is only as good as your sampling.

For more information, contact:

QMI
426 Hayward Avenue North
Oakdale, MN 55128
Phone: 651.501.2337
Fax: 651.501.5797
E-mail address: qmi2@aol.com

For more information, visit our website at www.qmisystems.com or the University of Minnesota website at http://mastitislab.tripod.com/index.htm

Quality Management, Inc.
COMING EVENTS

JUNE

- 5-6, Brazil Association for Food Protection Meeting, Anfiteatro do Conselho Regional de Quimica. For more information, call Maria Teresa Destro at 55.113.091.2199; E-mail: mtdestro.usp.br.
- 6-8, Penn State Food Microbiology Short Course, Penn State Berks Campus, Reading, PA. For more information, contact Hassan Gourama at 610.396.6121; E-mail: hxg7@psu.edu.
- 13, Ontario Food Protection Association Meeting, Springer Golf Course, Guelph, Ontario, Canada. For more information, contact Gail Seed at 519.463.5674; E-mail: seed@golden.net.
- 15, Basics: Processing Foods Safely, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, call Marlene Inglis at 519.821.1246; E-mail: gftc@gftc.ca.
- 17-21, The Association of Food and Drug Officials (AFDO) 110th Annual Educational Conference, Crowne Plaza Albany Hotel, Albany, NY. For more information, call Leigh Ann Stambaugh at 717.757.2888; E-mail: lstambaugh@afdo.org.
- 22-23, Doing It Right: Winning at New Products in the Food Industry, Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, call Marlene Inglis at 519.821.1246; E-mail: gftc@gftc.ca.
- 24-28, IFT Annual Meeting, Orange County Convention Center, Orlando, FL. For more information, contact James Klapthor at 312.782.8424 ext. 231; E-mail: jklapthor@ift.org.
- 26-28, New Zealand Association for Food Protection Meeting, Sky City Convention Centre, Auckland, New Zealand. For more information, contact Roger Cook at 64.4.463.2523; E-mail: roger.cook@nzfsa.govt.nz.

AUGUST

- 10-11, Certified HACCP Auditor (ASQ), Guelph Food Technology Centre, Guelph, Ontario, Canada. For more information, call Marlene Inglis at 519.821.1246; E-mail: gftc@gftc.ca.
- 10-13, Better Process Control Schools, Louisiana State University, Baton Rouge, LA. For more information, call Dr. Michael Moody at 225.578.5207; Fax: 225.578.5300.
- 14-21, XXVI International Workshop/Symposium on Rapid Methods and Automation in Microbiology, Manhattan, KS. For more information, contact Daniel Y.C. Fung at 785.532.1208; E-mail: dfung@ksu.edu.
- 16-19, 43rd Annual Florida Pesticide Residue Workshop, Hilton Walt Disney World, Orlando, FL. Submission for oral presentations is May 15 and posters is June 1. For more information, contact Gail Parker at 850.410.3057; E-mail: parkerg@doacs.state.fl.us.
- 16-19, 8th Annual Foodborne Pathogen Analysis Conference, Hilton Walt Disney World, Orlando, FL. Submission deadline is June 8th. For more information, contact Yvonne Hale at 850.414.0408; E-mail: haley@doacs.state.fl.us.
- 18, United Kingdom Association for Food Protection Second Annual Meeting, J Sainsbury Place, London. For more information, contact Gordon Hayburn at 02920 816456; E-mail: ghayburn@uwic.ac.uk.
- 24-26, Microbiology and Engineering of Sterilization Processes, University of Minnesota, St. Paul, MN. For more information, contact Ann Rath at 612.626.1278.

SEPTEMBER

- 5-9, China Brew & Beverage 2006, China International Exhibition Centre, Beijing, China. For more information, call 852.2865.2633; E-mail: elaine@bifu.com.hk.
- 19-21, New York State Association for Food Protection Annual Meeting, Wyndham Hotel, Syracuse, NY. For more information, contact Steve Murphy at 607.255.2893; E-mail: sc4m@cornell.edu.
- 19-21, 3rd International Symposium Milk Genomics & Human Health, Brussels, Belgium. For more information, contact Jennifer Giamboni at 322.733.9888; E-mail: info@cdrf.org.

OCTOBER

- 14-17, 26th Food Microbiology Symposium, University of Wisconsin-River Falls, River Falls, WI. For more information, call 715.425.3704 or go to www.uwrf.edu/food-science.
- 18-19, Iowa Association for Food Protection Annual Meeting, Quality Inn, Ames, IA. For more information, contact Phyllis Borer at 712.754.2511 ext. 33; E-mail: borerp@ampi.com.

IAFP UPCOMING MEETINGS

AUGUST 13-16, 2006
Calgary, Alberta, Canada

JULY 8-11, 2007
Lake Buena Vista, Florida

AUGUST 3-6, 2008
Columbus, Ohio

JULY 12-15, 2009
Grapevine, Texas
Quality Leader

With overall responsibility for the quality function, this position offers the opportunity to perform a variety of activities, including USDA compliance, developing and implementing GMP's, product formulations, lab testing, maintaining product standards, and resolving quality issues. BS in Food Science preferred, with effective written and interpersonal communications and outstanding attention to detail.

Plainville Farms produces a premier line of all natural, fresh meat and deli turkey items. We are located in upstate New York, in the beautiful Finger Lakes region. We offer a very attractive compensation package.

Check out our website at www.plainvillefarms.com.

Plainville Farms is an Equal Opportunity Employer

Advance Food Company is a dynamic organization that has accomplished double-digit growth every year over the past 10 years. We have accomplished this by hiring the highest quality management team to fulfill our vision. We are currently constructing a new state-of-the-art RTE facility in Enid, Oklahoma. With this in mind, we are accepting resumes for the following positions:

- Food Safety Director
- Food Safety Managers (RTE & Raw)
- Food Safety Supervisor

All applicants require college degree in related field and/or experience in the meat processing industry.

To learn more about these and other opportunities and/or apply, please visit our web site http://www.advf.com or send your resume to Careers@advf.com.

CAREER HOTLINE 580-213-4777

Advance Food Company is an Equal Opportunity Employer. All qualified applicants shall receive consideration for employment without regard to age, color, creed, handicap condition, marital or parental status, national origin, race, sex, veteran status, or political opinion or affiliation.

IAFP Members

Did you know that you are eligible to place an advertisement if you are unemployed and looking for a new position? As a Member benefit, you may assist your search by running an advertisement touting your qualifications.
FOOD AND ENVIRONMENTAL HYGIENE DEPARTMENT
(Non-civil Service Vacancy)

Food Safety Officer (Salary: HK$77,435/ about US$9,920 per month)

Entry Requirements:
(a) a university degree and higher qualification(s) in Food Science / Food Technology / Nutritional Science / Dietetics / Food Toxicology / Food Microbiology / Food Biotechnology, or related subjects from a Hong Kong University, or equivalent;
(b) at least 10 years' relevant post-graduate experience in food safety and related field, including designing and conducting total diet studies and exposure assessment; 5 years of which should be in a position with supervisory responsibilities; and
(c) have Grade E or above in English Language (Syllabus B) in the Hong Kong Certificate of Education Examination, or equivalent;

(Note: Preference will be given to candidates with a Master of Public Health or related discipline with training in Epidemiology and Biostatistics at a post-graduate level and Chinese language proficiency.)

Duties: Lead a team with scientific and research staff to plan, organize and conduct risk assessment studies, including total diet studies, nutritional risk assessment studies, studies on food consumption and dietary habits; and maintain related database; develop a computerized exposure assessment system; provide technical advice for formulating policies and measures relating to food safety and nutrition; develop, review and recommend food safety standards, codes of practice, quality control guidelines and legislation relating to food control; and enhance liaison with international and national food authorities, other government departments and food industry on subjects under his/her purview.

Terms of Appointment: Successful candidates will be appointed on non-civil service contract terms for a period of two years.

Gratuity: A gratuity up to about HK$254,766/about US$3,660 may be granted upon satisfactory completion of the contract with consistently high standard of performance and conduct. The amount of gratuity will be the sum which, when added together with the Government’s contribution to the Mandatory Provident Fund Scheme, equals to 150% of the total basic salary drawn during the contract period. (Note: At current rates, salaries tax does not exceed 16% of gross income.)

Fringe Benefits: In addition to rest days, statutory holidays (or substituted holidays), maternity leave and, sickness allowance, granted in accordance with the provisions in the Employment Ordinance, 14 days paid annual leave will be granted under a continuous contract of employment for every 12 months.

How to Apply: Interested parties can visit the website of the Food and Environmental Hygiene Department at http://www.fehd.gov.hk. Application forms (G.F.340 (Rev. 1/2004)) can be downloaded from the Civil Service Bureau's Internet web site (http://www.csb.gov.hk). Completed application forms together with copies of the relevant supporting documents should reach the following address on or before 31 May 2006 with the envelope clearly marked “Application for the job of Food Safety Officer.” On-line application can also be made through the Civil Service Bureau’s website at http://www.csb.gov.hk. Candidates who are selected for interview will normally receive an invitation in about six weeks from the closing date for application. Those who are not invited for interview may assume that their applications are unsuccessful.

Address and Enquiry Tel.: Executive Officer (Appointments) 3, Appointments Section, Food and Environmental Hygiene Department, 44/F., Queensway Government Offices, 66 Queensway, Hong Kong (Fax: (852) 2869 0015). For enquiries, please call (852) 2867 5079 or e-mail to ssmchung@fehd.gov.hk.

Closing Date for Application: 31 May 2006

General Notes:
(a) Non-civil service vacancies are not posts on the civil service establishment. Candidates appointed are not on civil service terms of appointment and conditions of service. Candidates appointed are not civil servants and will not be eligible for posting, promotion or transfer to any posts in the Civil Service.
(b) The terms of appointment and conditions of service to be offered are subject to the provisions prevailing at the time the offer of appointment is made.
(c) Holders of academic qualifications other than those obtained from Hong Kong institutions/Hong Kong Examinations and Assessment Authority may also apply but their qualifications will be subject to assessments on equivalence with the required entry qualifications. They should submit copies of their official transcripts and certificates by mail to the above enquiry address, by fax to (852) 2869-0015 or by e-mail to ssmchung@fehd.gov.hk.
(d) It is Government policy to place people with a disability in appropriate jobs wherever possible. If a disabled candidate meets the entry requirements, he/she will be invited to attend the selection interview/written examinations without being subject to any further shortlisting criteria.
(e) Non-civil service vacancies information contained in this column is also available on the following Internet web sites: http://www.info.gov.hk of the HKSAR Government Information Centre and http://www.fehd.gov.hk of the Food and Environmental Hygiene Department.
Two Industry Leaders Join Forces
3-A Sanitary Standards Inc., a leader in standards for food sanitation and hygiene, has joined forces with Techstreet, a leader in online information delivery services, to bring you 3-A SSI standard subscriptions online — an economical, efficient way to provide your whole company with just the standards you need — precisely when and where you need them.

The Benefits to You
• Company-wide, multi-user access to all 3-A SSI standards in electronic PDF format
• Always up-to-date — new and revised editions are automatically included
• Immediate access, 24×7×365, from any worldwide location with internet access
• Customized subscriptions let you buy just the standards you need
• Comprehensive reporting of usage and performance
• No IT integration required, no new software or hardware is necessary

The Value to Your Organization
• Increase productivity and efficiency
• Shorten product time to market
• Decrease internal and external costs
• Facilitate better and faster decision-making
• Improve quality and safety
• Eliminate redundant spending
• Guarantee current information and eliminate rework from using outdated information

To learn more, obtain price quotes, or register for the 3-A SSI subscriptions service, please contact Techstreet at 800.699.9277 or send E-mail to subscriptions@techstreet.com. Outside the US and Canada, call 734.302.7801 or fax your request to 734.302.7811.

Don't forget to visit the 3-A Online Store at www.3-a.org/standards/standards.htm, where you can search, order and download from thousands of standards and other technical documents.
The Table of Contents from the Journal of Food Protection is being provided as a Member benefit. If you do not receive JFP, but would like to add it to your Membership contact the Association office.

Journal of Food Protection®

Vol. 69 April 2006 No. 4

Growth of Salmonella Enteritidis Phage Type 36 in Almond Hull and Shell Samples and Survival in Drying
Adolfo Hulla, Anne R. Uesugi and Lisa J. Harris 712

Inhibition of Salmonella enteritidis by Plant-Associated Pseudomonads in vitro and on Sprouting Alfalfa Seed
William F. Parti .. 716

Identifying the Components in Eggshell Membranes Responsible for Reducing the Heat Resistance of
Bacterial Pathogens: Gail Amsden and Brian M. Satterfield 729

Detection of Multiple antibiotic-Resistant Salmonella enterica Serovar Typhimurium DT104 by Phage
Recombination—Competitive Enzyme-Linked Immunosorbent Assay
Aamer Gau, Maria Cao, William Harris, Ryan Canons, Philip Amuso, and Jacqueline Colten 732

Comparison of Antibiotic Susceptibility Profiles and Molecular Typing Patterns of Clinical and Environmental
Salmonella enterica Serovar Newport: Ana Pitaluga, Kristy Poon, William Ingold, Franco Bassa, Robert
Quantification of Campylobacter on the Surface and in the Mascle of Chicken Legs at Retail: Kate
Schwab, Dylan Betelle, Sonja Stolz, and Gail Heilmann 737

Reduction of Campylobacter jejuni on Chicken Wings by Chemical Treatment: Yong Zhao and Michael P.
Dorsey ... 762

Adhesion to and Invasion of Human Intestinal Spheroidal Cells by Campylobacter jejuni and Campylocobacter
coloni from Retail Meat Products: Xin Zheng, Jianghong Meng, Shaohua Zhou, Ruiy Wang, and Xiaojun Song ...

Amplified Fragment Length Polymorphism, Serotyping, and Quinolone Resistance of Campylobacter jejuni
and Campylocobacter coli Smears from Chlorine-Related Samples and Humans in Japan: Shu W. Fang, Cheng J. Yang, Dan Y. C. Sitt, Cheong D. Choy, and Redu C. Yu 771

Inhibition of Salmonella enterica and Escherichia coli and O157 on Roasted Turkey by Edible Whey Protein
Creams Incorporating the Lactoperoxidase System: Sheryl M. Kelly and John M. Knight 794

Validation of a Traditional Indian-Dahi-Style Fermenting Process for Control of Salmonella and Listeria

Deaths of Salmonella, E. coli O157:H7, and Listeria monocytogenes in Shell-Steamed, Dairy-Based, Foodable Sausage Dressings: Larry R. Buchta, Jean-Rom Pius, Barbara R. Kindle, and M. David Hanson 801

Prevalence and Typing of Listeria monocytogenes in Raw Gestalt Pikles: Chunyang Cheo, Jason L. Sills, and Chris Whiting 815

Growth of Listeria monocytogenes in Fresh-Cut Cucumis as Affected by Storage Condition and Insulation:
M. Y. M. Singh, Antonio Benes, Dileeta Cemzione, Donald O. Amos, and Maha Rosel Colles 820

Formation of Biofilms by Rootless Lactobacillus Species to Listeria monocytogenes: James P. Hill, Gregory P. Sprague, and Joseph F. Frank 825

Molecular Typing To Trace Listeria monocytogenes Isolated from Cold-Season Fish to a Contamination
Source: Tsuyoshi Nakashima, Tatsuki Tokuda, Ayumi Sono, Tomoka Koyama, and John Gaginosa 828

Comparison of Listeria monocytogenes Mililolds in a Mock Retail: Kazue Takahashi, Hana Miyazawa, Shogo
Lambert, Margaret Coleman, Michael P. Doyle, and Mary A. Smith 846

Influence of Type of Food on theKinetics and Overall Predomination of Bacillus cereus Genotypes:
Andrew Colombini, Maia Stoppini, Spagna-Moreno, and Brian W. Sheldon 857

Combined Pressure-Thermal Induction Kinetics of Turkey Comminuted and Ground Turkey in Egg Patty Mixes
S. Raju, A. Ahn, V. M. Babu, and A. E. Hasselfoot 863

Antimicrobial Efficacies of Lysozyme Imobilized on Polypropylene-Based Film Against
Alkonydoubacillus acidoterrestris, Anaerobic, Munea Sinigaglia, and Muteo Alessandra Del Nobile 866

Inactivation of Lysozyme on Polypropylene-Based Films for Active Packaging Applications: A. Cortes, G. S. Bucurenci, F. A. Benachoua, M. Striggal, and Ed M. J. Hugel 886

Bihabilitation Spectrum Isolated from Animal Feeds and from Soil and Pork Meat: F. Garcia, V. Robecchi,
K. Kaping, J. S. Florindo, I. Baranes, C. Sinigaglia, and M. Upponi 891

Growth of Rhizobacterium (lminium subsp. pararhizobium in the Presence of Hexadecylpyridinium Chloride,

Spectral Distribution of Ochratoxin A in Yeasted and Sampling Design To Assess Most Compartmentalized
Pasteurization: Carlos Barbano, Vittorio Rossi, Terenzio Bertuzzi, and Amedeo Pietri 904

Application of Quantitative Real-Time PCR to the Detection of Phocys Genus-Specific Species-Related DNA
Sequencettes in Animal Bodies and Freefoods: Patrizia Bellangero, Sergio Comeglio, Luca Pertosi, Viola Valva,
and Wim M. Minnik ... 909

Formation of Histoamine and Bacterial Amines in Cold-Stored Tuna: An Investigation of Psychrotolerant
Bacteria from Samples Isolated in Cases of Histoamine Fish Poisoning: J. L. Mattison and Pen Davidson 907

Effect of Ionomycin Coating of Broiler Chicken Carnealls in Monochloramine on Lipid OXidation and
Acetylated Residual Compound Formation: Stephen P. Astley, Stead M. Russell, and boil Barrows 907

Combination of Hot-Mixer Surface Pasteurization of Whole Fruit and Low-Energy Gamma Irradiation of
Friesian Cuts of Provenance: Kyoji Takefuchi, Yasuhiro Kondo, Kimiyoshi K. Shintzuku, Takeshi Kato, and
James R. Matha, and Hisahide Yamauchi ... 913

Research Notes

Detection, Occurrence, and Characterization of Enterotoxigenic and O157:H7 from Retail Evis Head in Spain:
Irina Caro, Victor M. Fernando-Bento, Ana Alonso-Llamas, and Maria Rosario Garcia-Armesto 920

Salmonella serotype in Superficial Centrally (Pineapple) and Stintedakening Noodle of Slaughtered Pigs
Peter S. Barbier, Claudia Snyder, and Latifa M. Omar 925

Three-Day Surveillance Program Examining the Prevalence of Campylobacter and Salmonella in Whole

Molecular Localization of Campylobacter jejuni from Poutry Meat: Sjogard Kris Anderson, Nassim M. Shalit,
Jianghong Meng, and Peter Saltford ... 932

Prevalence and Concentration of Listeria monocytogenes in Ready-to-Eat Lunch Meat in the Hellenic
Retail Market: Apostolos S. Angelidis and Konstantinos Koutsoumanis 935

Effect of High-Bacterial Packaging films with Different Oxygen Transmission Rates on the Growth of
Lactobacillus sp. on Mozzarella: T. S. Taga, and G. J. C. Nellis 936

Coating Minutes with Different polymer polymeric or Non-toxic amyloid protein: Dry Edumatis Does Not Destoy the Infectivity of Cryptosporidium parvum: Hidro Tse-Seuss, Fernando Menino-fermax, Jose Antonio Castro-Hernandez, and Elisa Ares-Mazas 946

Intervention of Mils with Guadalupe Lactacid County in a Model Protein System and Meat: Virginia A. Stegus, Linda V. Thomas, and Martin R. Adams 951

Review

Inactivation of Foodborne Viruses of Significance by High Pressure and Other Processes: Stephen F. Grove,
Alan Lee, Tom Lewis, Cynthia M. Stewart, Hang Tran, and Sid BB and Howard 957

* Asterisk indicates author for correspondence.
How is this publication thinking about the future?

By becoming part of the past.
We’d like to congratulate this publication for choosing to be accessible with Bell & Howell Information and Learning.
It is available in one or more of the following formats:

- Online, via the ProQuest® information service
- Microform
- Electronically, on CD-ROM and/or magnetic tape

For more information, call 800-521-0600 or 734-761-4700, ext 2888
www.infolearning.com
IAFP Offers
"Guidelines for the Dairy Industry"
from
The Dairy Practices Council®

This newly expanded Four-volume set consists of 70 guidelines.

1. Planning Dairy Freestall Barns
2. Effective Installation, Cleaning, and Sanitizing of Milking Systems
3. Selected Personnel in Milk Sanitation
4. Installation, Cleaning, & Sanitizing of Large Parlor Milking Systems
5. Directory of Dairy Farm Building & Milking System Resource People
6. Natural Sanitation for Dairy Tie Stall Barns
7. Sampling Fluid Milk
8. Good Manufacturing Practices for Dairy Processing Plants
9. Fundamentals of Cleaning & Sanitizing Farm Milk Handling Equipment
10. Maintaining & Testing Fluid Milk Shelf-Life
11. Sediment Testing & Producing Clean Milk
12. Tunnel Ventilation for Dairy Tie Stall Barns
13. Environmental Air Control and Quality for Dairy Food Plants
14. Clean Room Technology
15. Milking Center Wastewater
16. Handling Dairy Products from Processing to Consumption
17. Prevention of & Testing for Added Water in Milk
19. Raw Milk Quality Tests
20. Control of Antibacterial Drugs & Growth Inhibitors in Milk and Milk Products
21. Preventing Rancid Flavors in Milk
22. Troubleshooting High Bacteria Counts of Raw Milk
23. Cleaning & Sanitation Responsibilities for Bulk Pickup & Transport Tankers
24. Dairy Manure Management From Barn to Storage
25. Troubleshooting Residual Films on Dairy Farm Milk Handling Equipment
26. Cleaning & Sanitizing in Fluid Milk Processing Plants
27. Potable Water on Dairy Farms
28. Composition & Nutritive Value of Dairy Products
29. Fat Test Variations in Raw Milk
30. Brucellosis & Some Other Milkborne Diseases
31. Butterfat Determinations of Various Dairy Products
32. Dairy Plant Waste Management
33. Dairy Farm Inspection
34. Planning Dairy Stall Barns
35. Preventing Off-Flavors in Milk
36. Grade A Fluid Milk Plant Inspection
37. Controlling Fluid Milk Volume and Fat Losses
38. Milkrooms and Bulk Tank Installations
39. Stray Voltage on Dairy Farms
40. Farm Tank Calibrating and Checking
41. Gravity Flow Gutters for Manure Removal in Milking Barns
42. Dairy Odor Management
43. Cooling Milk on the Farm
44. Preventing Rancid Flavors in Milk
45. Pre- & Postmilking Teat Disinfectants
46. Farm Bulk Milk Collection Procedures
47. Controlling the Accuracy of Electronic Testing Instruments for Milk Components
48. Vitamin Fortification of Fluid Milk Products
49. Selection of Elevated Milking Parlors
50. Construction Materials for Milking Parlors
51. Dairy Product Safety (Pathogenic Bacteria) for Fluid Milk and Frozen Dessert Plants
52. Raw Milk Quality Tests
53. Preparing and Regulating Quality Dairy Goat Milk
54. Troubleshooting Microbial Defects: Product Line Sampling & Hygiene Monitoring
55. Frozen Dessert Processing
56. Resources For Dairy Equipment Construction Evaluation
57. Controlling The Quality And Use Of Dairy Product Rework
58. Control Points for Good Management Practices on Dairy Farms
59. Installing & Operating Milk Precoolers Properly on Dairy Farms
60. Planning A Dairy Complex - "100+ Questions To Ask"
61. Abnormal Milk - Risk Reduction and HACCP
62. Farmers Guide To Somatic Cell Counts In Sheep
63. Farmers Guide To Somatic Cell Counts In Goats
64. Layout of Dairy Milk Houses for Small Ruminant Operations
65. Biosecurity for Sheep and Goat Dairies
66. Food Allergen Awareness In Dairy Plant Operations
67. Bottling Water in Fluid Milk Plants
68. Food Safety in Farmstead Cheesemaking
69. Approving Milk and Milk Product Plants for Extended Runs

IAFP has agreed with The Dairy Practices Council to distribute their guidelines. DPC is a non-profit organization of education, industry and regulatory personnel concerned with milk quality and sanitation throughout the United States. In addition, its membership roster lists individuals and organizations throughout the world.

For the past 34 years, DPC's primary mission has been the development and distribution of educational guidelines directed to proper and improved sanitation practices in the production, processing, and distribution of high quality milk and milk products.

The DPC Guidelines are written by professionals who comprise six permanent task forces. Prior to distribution, every guideline is submitted for approval to the state regulatory agencies in each member state. Should any official have an exception to a section of a proposed guideline, that exception is noted in the final document.

The guidelines are renowned for their common sense and useful approach to proper and improved sanitation practices. We think they will be a valuable addition to your professional reference library.

If purchased individually, the entire set would cost $327. We are offering the set, packaged in four looseleaf binders for $245.00. Information on how to receive new and updated guidelines will be included with your order.

To purchase this important source of information, complete the order form below and mail or fax (515-276-8655) to IAFP.

Please enclose $245 plus $17 shipping and handling for each set of guidelines within the U.S. Outside U.S., shipping will depend on existing rates. Payment in U.S. $ drawn on a U.S. bank or by credit card.

Name: ___________________________ Phone No.: ___________________________
Company: ________________________
Street Address: ____________________
City, State/Province, Code: ____________
VISA/MC/AE No.: __________________ Exp. Date: ____________
The use of the Audiovisual Library is a benefit for Association Members only. Limit your requests to five videos. Material from the Audiovisual Library can be checked out for 2 weeks only so that all Members can benefit from its use.

Member #

First Name ___________________________ M.I. ___________________________ Last Name ___________________________

Company ___________________________ Job Title ___________________________

Mailing Address

Please specify: ☐ Home ☐ Work ___________________________

City ___________________________ State or Province ___________________________ Postal Code/Zip + 4 ___________________________

Telephone # ___________________________ Fax # ___________________________

E-Mail ___________________________ Date Needed ___________________________

PLEASE CHECK BOX NEXT TO YOUR VIDEO CHOICE

(Allow 4 weeks minimum from date of request.)

DAIRY
☐ 210 2 Close Encounters of the Real Kind - Inanimate Object Perception and Decision Making Technologies for Dairy
☐ 211 2 Controlling Cheese Molds in Small and Medium - and Dairy Products Establishment
☐ 212 2 Controlling Dairy Allergens in the Plant - Detection and Application
☐ 213 2 Controlling Food Allergens in Small - and Medium - and Dairy Products Establishment
☐ 214 2 Controlling Food Allergens in Small - and Medium - and Dairy Products Establishment - Prevention

ENVIROMENTAL
☐ 215 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers
☐ 216 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers I: New Kneads Cooking
☐ 217 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers II: Tools of Trade
☐ 218 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers III: Working to Prevent Injury
☐ 219 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers IV: Controlling Salmonella Strategies That Work
☐ 220 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers V: For Goodness Sake Keep Food Cool

FOOD
☐ 221 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers VI: Food Safety in the Business World Video Series - Tape 1: Food Safety Zone: Basic Microbiology
☐ 222 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers VI: Food Safety in the Business World Video Series - Tape 2: Food Safety Zone: Cross Communication
☐ 223 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers VI: Food Safety in the Business World Video Series - Tape 3: Food Safety Zone: Personal Hygiene Practices
☐ 224 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers VI: Food Safety in the Business World Video Series - Tape 4: Food Safety Zone: Sanitation Practices
☐ 225 2s Food Safety Begins in the Farm - Implementation and Control for Institutional Food Service Workers VI: Food Safety in the Business World Video Series - Tape 5: Food Safety Zone: Supervision and Control Strategies

FOOD PROTECTION TRENDS | MAY 2006
BOOKLET ORDER FORM

SHIP TO:

Member # ___________________________ M.I. __________ Last Name ___________________________

Company ___________________________ Job Title ___________________________

Mailing Address ___________________________

Please specify: Home __________ Work __________

City ___________________________ State or Province ___________________________

Postal Code/Zip + 4 ___________________________ Country ___________________________

Telephone # ___________________________ Fax # ___________________________

E-Mail ___________________________

BOOKLETS:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedures to Investigate Waterborne Illness—2nd Edition</td>
<td>$12.00</td>
<td>$24.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures to Investigate Foodborne Illness—5th Edition</td>
<td>12.00</td>
<td>24.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — $3.00 (US) $5.00 (Outside US) Each additional booklet $1.50

Multiple copies available at reduced prices. Phone our office for pricing information on quantities of 25 or more.

OTHER PUBLICATIONS:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>DESCRIPTION</th>
<th>MEMBER OR GOVT PRICE</th>
<th>NON-MEMBER PRICE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*International Food Safety Icons CD</td>
<td>$25.00</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pocket Guide to Dairy Sanitation (minimum order of 10)</td>
<td>$.75</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before Disaster Strikes...A Guide to Food Safety in the Home (minimum order of 10)</td>
<td>.75</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before Disaster Strikes...Spanish language version—(minimum order of 10)</td>
<td>.75</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Safety at Temporary Events (minimum order of 10)</td>
<td>.75</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Safety at Temporary Events—Spanish language version—(minimum order of 10)</td>
<td>.75</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Annual Meeting Abstract Book Supplement (year requested)</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*IAFP History 1911-2000</td>
<td>25.00</td>
<td>25.00</td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING — per 10— $2.50 (US) $3.50 (Outside US)

*Includes shipping and handling

PAYMENT:

Payment must be enclosed for order to be processed **US FUNDS on US BANK**

- [] Check or Money Order Enclosed
- [] Credit Card
 - [] Visa
 - [] MasterCard
 - [] American Express
 - [] Discover
 - [] []

CREDIT CARD # ___________________________

EXP. DATE ___________________________

SIGNATURE ___________________________

INTERNATIONAL ASSOCIATION FOR FOOD PROTECTION

4 EASY WAYS TO ORDER

- PHONE 800.369.6337; 515.276.3344
- FAX 515.276.8655
- MAIL 6200 Aurora Ave., Suite 200W
 Des Moines, IA 50322-2864, USA
- WEB SITE www.foodprotection.org
MEMBERSHIP APPLICATION

MEMBERSHIP DATA:
Prefix (Prof. Dr. Mr. Ms.):
First Name: M.I.: Last Name:
Company: Job Title:
Mailing Address:
Please specify: Home Work
City: State or Province:
Postal Code/Zip + 4: Country:
Telephone #: Fax #:
E-Mail:

IAFP occasionally provides Members' addresses (excluding phone and E-mail) to vendors supplying products and services for the food safety industry. If you prefer NOT to be included in these lists, please check the box.

MEMBERSHIP CATEGORIES:

<table>
<thead>
<tr>
<th>MEMBERSHIPS</th>
<th>US</th>
<th>Canada/Mexico</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership with JFP & FPT — BEST VALUE!</td>
<td>$185.00</td>
<td>$220.00</td>
<td>$265.00</td>
</tr>
<tr>
<td>12 issues of the Journal of Food Protection and Food Protection Trends</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>add JFP Online</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$36.00</td>
</tr>
<tr>
<td>Membership with FPT</td>
<td>$100.00</td>
<td>$115.00</td>
<td>$130.00</td>
</tr>
<tr>
<td>12 issues of Food Protection Trends</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>add JFP Online</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$36.00</td>
</tr>
<tr>
<td>*Student Membership with JFP Online (no print copy)</td>
<td>$48.00</td>
<td>$48.00</td>
<td>$48.00</td>
</tr>
<tr>
<td>*Student Membership with JFP & FPT</td>
<td>$92.50</td>
<td>$127.50</td>
<td>$172.50</td>
</tr>
<tr>
<td>*Student Membership with JFP</td>
<td>$50.00</td>
<td>$70.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>*Student Membership with FPT</td>
<td>$50.00</td>
<td>$65.00</td>
<td>$80.00</td>
</tr>
<tr>
<td>add JFP Online</td>
<td>$36.00</td>
<td>$36.00</td>
<td>$36.00</td>
</tr>
</tbody>
</table>

*Must be a full-time student. Student verification must accompany this form.

SUSTAINING MEMBERSHIPS
Recognition for your organization and many other benefits. JFP Online included.

<table>
<thead>
<tr>
<th>SUSTAINING MEMBERSHIPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>SILVER</td>
<td>$2,500.00</td>
</tr>
<tr>
<td>SUSTAINING</td>
<td>$750.00</td>
</tr>
</tbody>
</table>

PAYMENT:
Payment must be enclosed for order to be processed. *US FUNDS on US BANK

<table>
<thead>
<tr>
<th>CREDIT CARD #</th>
<th>TOTAL MEMBERSHIP PAYMENT $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Enclosed</td>
<td></td>
</tr>
</tbody>
</table>

All prices include shipping and handling
Prices effective through August 31, 2006

4 EASY WAYS TO JOIN

PHONE 800.369.6337; 515.276.3344
FAX 515.276.8655
MAIL 6200 Aurora Ave., Suite 200W Des Moines, IA 50322-2864, USA
WEB SITE www.foodprotection.org

364 FOOD PROTECTION TRENDS | MAY 2006
IAFP 2006

Join colleagues from around the world to discuss the latest topics in food safety. Original research, panel discussions, new technology and product displays are waiting for you. If you can attend only one conference, make it IAFP 2006.

Expand your knowledge and professional network by registering today at www.foodprotection.org

August 13-16, 2006
Telus Convention Centre
Calgary, Alberta, Canada
What would you say to pathogen testing that’s advanced and simple?

Think it would be great to get advanced testing without complexity? Strategic Diagnostics Inc. offers food safety testing products that simplify your whole testing program. Our tests are technically advanced. And they give you simple, accurate, fast solutions that hold up under real-world conditions. There’s no need for capital expense or extensive training. That means you’ll get accurate results and a lower overall cost.

So give us a call. We’ve got what you’re looking for.

Strategic Diagnostics Inc.
111 Pencader Drive Newark, DE 19702
Phone: 1-800-544-8881 www.sdix.com