After nine years of research, development and field testing and with the full cooperation of leading universities, bulk tank manufacturers, and dairy farmers, Pennsalt takes pride in announcing PENNSAN... a bulk tank sanitizer, based upon an entirely new principle.

PENNSAN gives you all these extras:

NON-CORROSIVE... PENNSAN will not corrode... it actually brightens stainless steel.

EFFECTIVE IN ALL WATER... PENNSAN works fast even in hard water at all ordinary temperatures!

COMPLETELY SOLUBLE... makes clear solutions, leaves no film!

CONTROLS MILKSTONE... no more milkstone build-up that requires special periodic removal when PENNSAN is used according to directions.

ECONOMICAL... 1 ounce of PENNSAN to 1 gallon of water makes an efficient solution.

CONVENIENT... new PENNSAN container is handy... just the right size for handling. Measuring cup and full directions in every carton.

For full information write B-K Dept. 465.

* PENNSAN is also an excellent cleaner in addition to its outstanding sanitizing characteristics. For cleaning, use one ounce PENNSAN to one gallon of water. Brush surfaces with solution. PENNSAN prevents both milkstone and hard water build-up. NEW PENNSAN comes in 3/4 gallon bottles, 2 to the carton; 4 cartons to the case.

PENNSAN IS A TRADE-MARK OF PENNSALT CHEMICALS CORP.
TIPS TO SANITARIANS

The producer's Best Milk Check
a RAPID-FLO® check-up
For Mastitis and Sediment

One way to help producers get greater return from their milk production, and avoid loss, is to advise regular Rapid-Flo Check-ups for Mastitis and sediment. His one requirement, for a reliable check-up is to use genuine Rapid-Flo Fibre-Bonded Filter Disks.

The Rapid-Flo Check-up is a common sense program for improving milk quality and increasing profit. Recommend this procedure to your producers.

At the next milking:

1. Filter the milk from 4 cows through a Rapid-Flo Single Faced Disk. IMPORTANT—Slow filtration is a danger signal. Something is wrong.

2. Carefully remove used disk and lay it on a piece of heavy paper. Rinse the strainer, put in a new Rapid-Flo disk and proceed with the next 4 cows, keeping track of which cows' milk is filtered through each disk.

3. After the foam disappears, examine each disk. When you see goaret or foreign matter, filter the milk from each cow in that group individually at the next milking.

Examination of these disks will indicate which cow is causing trouble.

This Rapid-Flo every cow Check-up will also indicate sources of extraneous matter and the precautionary steps necessary to produce clean milk and increase profit.

Rapid-Flo Single Faced Filter Disks are engineered for safe filtration, plus the extra benefit of a reliable Rapid-Flo Check-up. Johnson & Johnson's exclusive Fibre-Bonding process makes Rapid-Flo Milk Filters more retentive.

Johnson & Johnson

4949 West 65th Street Chicago 38, Illinois

Copyright, 1957, Johnson & Johnson, Chicago
Is this your

Yes

Ma'am!
MORE DAIRIES ARE TODAY GOING TO STANDARDIZED MILK PACKAGING THAN EVER BEFORE!

Many years of close, personal acquaintance-ship with dairymen all over the country have proved to us that any dairyman's adoption of Pure-Pak (when and to what extent) is strictly a matter for his own judgment.

We do find, however, that the decision to go into Pure-Pak, and eventually to expand its use in the interest of maximum plant efficiency and economy, is being given more favorable consideration today than ever before.

Adoption of paper used to be quite a radical move, and limited operations just to meet competition were usually the rule. Not so today. 100% paper operation is now natural and logical. Paper is the only container it is possible to standardize on today.

We asked one dairyman recently just how he switched over to Pure-Pak, and in complete honesty, he answered, "All I did was just tell my drivers that they could offer it. They did, and now we're 100% Pure-Pak. I'm glad of it now because I just didn't realize how much more efficient our operation could be."
Vitex Laboratories Provides This Assurance

- All vitamin ingredients used in Vitex vitamin concentrates for milk are tested for purity before they are used.
- All vitamin ingredients used in Vitex vitamin concentrates are tested and retested for potency before they are used; every lot is code identified.
- Every can of processed canned Vitex vitamin concentrate for milk is identified by a permanent code identification.
- Every lot of Vitex vitamin concentrate containing vitamin D is tested biologically and every lot containing vitamin A is tested both chemically and spectrophotometrically to assure its claimed potency before it is released for distribution.
- Every lot of Vitex vitamin concentrate is certified for its potency by assay reports available to all sanitarians.
- A record is kept of the distribution of every can of Vitex vitamin concentrate.

Vitex Provides Assurance

VITEX LABORATORIES
A Division of NOPCO CHEMICAL COMPANY
Harrison, N.J. • Richmond, Calif.

Pioneer Producers of a Complete Line of Vitamin Concentrates for the Dairy Industry

IOSAN®
PREVENTS MILKSTONE!

LOWERS BACTERIA COUNT!

BOTH CLEANS AND SANITIZE!

Made by Lazarus Laboratories Inc. Available from our dairy specialist in your territory • Your hauler or local dealer • Or Lazarus Laboratories Inc., Division of West Disinfecting Co., 42-16 West St., Long Island City, N. Y.

CLASSIFIED ADS

FOR SALE: Single service milk sampling tubes. For further information and a catalogue, please write: Bacti-Kit Co. P. O. Box 101, Eugene, Oregon.
Executive Board
Paul Corash
Harold B. Robinson
Franklin Barber
William V. Hickey
H. H. Wilkowske
Harold S. Adams
I. E. Parkin

Publication Board
Dr. J. C. Olson, Jr.
H. L. Thomasson
H. H. Wilkowske

Editors
Dr. J. C. Olson, Jr., Associate Editor.
Dept. Dairy Husbandry, University of Minn., St. Paul 1, Minn.

H. L. Thomasson, Executive Secretary and Managing Editor, Box 437, Shelbyville, Indiana.

Associate Editors
C. A. Abele Chicago, Ill.
M. P. Baker Ames, Iowa
F. W. Barber Oakland, N. Y.
F. C. Baselt New York, N. Y.
L. A. Boyd Cincinnati, Ohio
F. A. Clark Auburn, Ala.
C. R. Fellers Amherst, Mass.
J. C. Flake Chicago, Ill.
R. W. Hart Kansas City, Mo.
M. D. Howlett Los Angeles, Calif.
C. A. Hunter Topeka, Kansas
C. K. Johns Ottawa, Canada
C. G. Leonard Columbia, So. Carolina
W. S. Muehler Amherst, Mass.
K. G. Weckel Madison, Wis.
G. H. Wilster Corvallis, Ore.

The Journal of Milk and Food Technology (including Milk and Food Sanitation) is issued monthly beginning with January number. Each volume comprises 12 numbers. Published by the International Association of Milk and Food Sanitarians, Inc., with executive offices of the Association, Blue Ridge Rd., P. O. Box 437, Shelbyville, Ind., Entered as second class matter at the Post Office at Shelbyville, Ind., March 15, 1929, under the Act of March 3, 1879.

EDITORIAL OFFICES: J. C. Olson, Jr., Associate Editor, Dept. Dairy Husbandry, University of Minn., St. Paul, Minn.; H. L. Thomasson, Managing Editor, P. O. Box 437, Shelbyville, Ind.

MANUSCRIPTS: Correspondence regarding manuscripts and other reading material should be addressed to J. C. Olson, Jr., Associate Editor, Dept. Dairy Husbandry, University of Minn., St. Paul, Minn.

"Instructions to Contributors" can be obtained from the Editor for the use of contributors of papers.

COPYRIGHT, 1957 INTERNATIONAL ASSOCIATION OF MILK AND FOOD SANITARIANS, INC.
KLENZADE SODIUM HYPOCHLORITE SANITIZERS

SAFE for finest stainless steel surfaces. 25 years of daily use in thousands of plants prove it conclusively.
Klenzade X-4, Klenzade XY-12, and Klenzade Tri-Chloro-Cide have the highest germicidal power of all chlorine-bearing sanitizers on the market. Comparative test data on request.
Most economical, too. Always ready for use... no "settling out"... no residual film... exceptionally long in-plant keeping quality.

Service Throughout America
KLENZADE PRODUCTS, INC.
BELOIT, WISCONSIN

FOR 25 YEARS

STANDARD METHODS* MILK PLATING MEDIA

for total counts
BBL #298 Plate Count Agar
(M-PH Medium)

for coliform counts
BBL #114 Desoxycholate
Lactose Agar

Folder #298 Sent on Request

10th ed. Standard Methods — Dairy Products

Baltimore Biological Laboratory, Inc.
A Division of Becton, Dickinson & Co.
Baltimore 18, MD.

AerVoidS provide...
Sanitary Vacuum Insulation -
A positive Health Safeguard!

Today's "Modern" trend toward centralization of food preparation is a milestone toward Economy, Better Quality and Higher Sanitary Standards.

Into this new picture nothing fits like AerVoid's Portable, Stainless-Steel, High-Vacuum Insulated, Food, soup and liquid Carrier-Dispensers. AerVoidS alone provide the proven quality and durability to survive under rough usage, spreading their cost over a long period of uninterrupted service. All AerVoid Equipment, so indicated in our specifications is "In Compliance" with the sanitary construction requirements of the U. S. Public Health Service Ordinances and Codes.

Write for FREE literature Kit MFT-01
Our Consulting Service is also FREE

Vacuum Can Company
19 South Hoyne Avenue, Chicago 12, Illinois

AERVOID Vacuum Insulated
Hot or Cold Food, Soup, Milk,
Coffee and Beverage Carrier-Dispensers
To protect milk purity...

trust HEIL quality

Heil leadership in sanitary design includes such firsts as...

- removable snap-on door gaskets for easier cleaning
- 3-compartment cabinet for sanitation by isolation
- Frigid-Lite plastic tanks, newest and most advanced design in the industry

Other improved features for better sanitation include a wall-mounted pump to simplify cleaning of compartment floor, clamp-type valve that's easy to remove for daily cleaning, and single gasket and locking device to seal the manhole and dust cover.

Heil takes pride in doing its part to help sanitarians keep milk pure all the way to the consumer.

THE HAYNES SPRAY

U.S.P. LIQUID PETROLATUM SPRAY
U.S.P. UNITED STATES PHARMACEUTICAL STANDARDS
CONTAINS NO ANIMAL OR VEGETABLE FATS. ABSOLUTELY NEUTRAL. WILL NOT TURN RANCID—CONTAMINATE OR TAINT WHEN IN CONTACT WITH FOOD PRODUCTS.

SANITARY—PURE

ODORLESS—TASTELESS

NON-TOXIC

The Modern HAYNES-SPRAY Method of Lubrication
Conforms with the Milk Ordinance and Code
Recommended by the U.S. Public Health Service

The Haynes-Spray eliminates the danger of contamination which is possible by old fashioned lubricating methods. Spreading lubricants by the use of the finger method may entirely destroy previous bactericidal treatment of equipment.

PACKED 6-12 oz. CANS PER CARTON
SHIPPING WEIGHT—7 LBS.

THE HAYNES MANUFACTURING CO.
709 Woodland Avenue • Cleveland 15, Ohio

HAYNES SNAP-TITE FITTINGS

"FORM-FIT" WIDE FLANGE
HUGS STANDARD BEVEL
SEAT FITTINGS

DESIGNED TO
SNAP INTO
FITTINGS

DURABLE GLOSSY SURFACE

LOW COST... RE-USABLE
LEAK-PREVENTING

NEOPRENE GASKET for Sanitary Fittings

Check these SNAP-TITE Advantages

Tight joints, no leaks, no shrinkage
Sanitary, unaffected by heat or fats
Non-porous, no seams or crevices
Odorless, polished surfaces, easily cleaned
Withstand sterilization

Time-saving, easy to assemble
Self-centering
No sticking to fittings
Eliminate line blocks
Help overcome line vibrations
Long life, use over and over

Available for 1", 1 1/2", 2", 2 1/4" and 3" fittings.
Packed 100 to the box. Order through your dairy supply house.

THE HAYNES MANUFACTURING CO.
709 Woodland Avenue • Cleveland 15, Ohio
Procedure for
The Investigation
of
Foodborne Disease
Outbreaks

Recommended by
INTERNATIONAL ASSOCIATION OF MILK AND FOOD
SANITARIANS, INC.

COPIES OBTAINABLE FROM
International Association of Milk and Food Sanitarians, Inc., Box 437, Shelbyville, Indiana

Price: Single copies, 50 cents each; 25-100 copies, 45 cents each;
100 or more copies, 35 cents each

Certified Bulk Milk pick-up Tanks

America's Finest

This photograph shows the separate stainless steel compartments arranged for the fast, convenient, and sanitary handling of bulk milk.

Every Certified tank is custom designed and engineered to the specific requirements of each operator. Each is individually balanced for proper weight distribution on the truck chassis of the buyer's selection, assuring legal operation in the states in which the unit will operate.

Send for Bulletin No. PUT-1. Information also available on our complete line of milk transport and storage tanks.

STAINLESS & STEEL PRODUCTS CO.
1000 Berry Avenue • MIdway 6-8833 • St. Paul 14, Minnesota
PROFESSIONAL STATUS FOR THE SANITARIAN

The Directors of Full Time Local Health Departments of the State of Michigan, have recently endorsed and recommended to the Commissioner of Health of that State the recognition of a two year course at the technician's level for persons who may be interested in the field of environmental sanitation. This group would be known as "Sanitarian Technicians".

The training course in question is to be conducted by the Ferris Institute, a State sponsored college in Michigan which has been expanding the areas of training available to prospective students.

Surveys made by the Institute had indicated that many positions in the field of environmental sanitation in local health departments of the State of Michigan were being filled by persons having limited scholastic training. Apparently on the basis that half a loaf is better than none, the Directors of Full Time Local Health Departments are hoping to solve their personnel problems in the environmental sanitation services by advocating the acceptance of persons who have had only two years of technical training.

There is no intention here to cast aspersions on the Ferris Institute or any part of its curriculum. It is our understanding that the Institute has made exceptional strides in expanding its facilities and educational programs since it became a part of the educational system of the State of Michigan. Nor is it our desire to brush aside the difficulties with which the health officers are faced in attempting to recruit technical personnel possessing adequate professional training to meet the needs of a modern environmental sanitation program. The inadequate salary scales prevailing for this type of work and the attendant problems of filling vacancies have been with us too long to make us indifferent to the difficulties.

However, the proposed solution seems to offer only a dubious answer at best. Our highly industrialized way of life is becoming more and more complicated with each passing day, and the health problems involving our environment can be dealt with, if at all, only by those possessing the highest degree of technical skill and training. For purposes of illustration, we have but to consider the dangers resulting from the atmospheric pollution in our large industrial areas, the hazards arising from radiation in our flowering atomic age and the depletion of our potable water resources because of contamination.

It would seem obvious that solutions to such problems can be found only through the aid of the most highly trained rather than through those who have merely been granted a short introduction on a technician's level. A willingness to accept a second best expedient may be easier but it will hardly prove satisfactory in the long run.

The Executive Board of the International Association of Milk and Food Sanitarians wishes to make known its opposition to a training course for Sanitation personnel that does not encompass at least four years of academic training at the college or university level leading to a Bachelor's degree.

A report published on the "Educational and other Qualifications of Public Health Sanitarians," by a Sub-Committee on Professional Education of the American Public Health Association substantiates this position.

The Executive Board of this Association believes that the plan now under consideration by the Ferris Institute of Michigan and endorsed by the Directors of Full Time Local Health Departments in that State is contrary to the principle of seeking better professional training of persons entering the public health field.

Furthermore, it is the Board's opinion that the current shortage of qualified professional sanitation personnel is no more acute than is the case of laboratory personnel, public health nurses, sanitary engineers or medical officers.

It is hoped that those who are responsible will re-examine the course of action which has been contemplated for we cannot believe that advancement in any professional field will be realized if basic standards are lowered.

Paul Corash, President, International Association of Milk & Food Sanitarians, Inc.
A BACTERIOLOGICAL SURVEY OF COMMERCIALY FROZEN BEEF, POULTRY AND TUNA PIES

WARREN LITSKY, I. S. FAGERSON AND C. R. FELLERS

Departments of Bacteriology and Food Technology
University of Massachusetts, Amherst, Massachusetts

(Received for publication April 8, 1957)

The results of a bacteriological survey of commercially packed tuna, chicken, turkey, and beef frozen pies on a nationwide scale is reported. Samples were collected at the retail store level and examined for total count, enterococci, coliform and Salmonella type organisms. It is proposed that the total count be used as a sanitary index. An initial bacteriological standard of 100,000 organisms per gram is recommended on a tentative basis.

The manufacture of frozen "heat and serve" items is a relatively new and rapidly growing industry. Although no major outbreaks of food poisoning attributed to commercially packed frozen pot pies have been reported, the fact that these products can become easily contaminated and offer a fertile medium for bacteriological growth made them of particular interest. While it is true that the heating of these products according to the directions furnished by the processor will likely destroy the majority of the microorganisms present, sterility is likely not achieved. Infection from heatstable toxins formed by staphylococci always remains a possibility.

There is ample evidence in the literature (1) to show that while there is often a rapid reduction in viable cells during the early periods of exposure and storage at subfreezing temperatures, viable organisms can usually be recovered even after long storage periods. In addition, the problem of maintaining the proper low temperatures in the distribution chain between producer and consumer has been of concern to the industry and public health authorities for some time. A second aspect of the problem has been that of assessing the sanitary quality of the product in terms of the numbers and kinds of non-pathogenic types which may reflect factory sanitary conditions and subsequent handling.

With the above in mind, a survey has been conducted of the various types of frozen pot pies, beef, chicken, turkey, and tuna. Since the primary objective of this investigation was to determine the condition of these products as they are available to the consumer, the pies were purchased from the frozen food cabinets of markets in the larger cities across the country. Only the nationally advertised brands were sampled because of their volume and wide distribution.

Sampling and Collection

Paired samples, six pairs of each of 15 brands were purchased in different stores and in most cases in different cities of the United States. The samples were immediately packed in dry ice and shipped air express to a central point for consolidation. These samples were then repacked in dry ice and shipped to this laboratory. Upon arrival, the samples were transferred to mechanically refrigerated storage rooms where they were held (at -5°F.) until the analyses were made. Half of the samples (6 packages) of each brand were taken for bacteriological analysis while the remainder were examined for general quality and organoleptic evaluation. In all cases the samples were solidly frozen upon arrival in Amherst.

Materials and Samples

Samples of the pies for the bacteriological study were obtained by the use of sterile one inch stainless steel core borers. The samples were taken at the center of the pie to insure a representative distribution of its ingredients and crust. The core was forced out of the borer by a sterile plunger and placed into a sterile counter-balanced Waring Blender container into which water was added in quantities so as to obtain a 1 to 10 dilution. This was then blended for three minutes and the resulting suspension was used for bacteriological analysis.

Standard plate counts were obtained by ordinary serial dilution plating using tryptone glucose extract.

3 Contribution No. 1100 University of Massachusetts, College of Agriculture Experiment Station, Amherst, Mass.

Dr. Warren Litsky received the B. A. degree from Clark University in 1945; The M. S. degree from the University of Massachusetts in 1948; and the Ph. D. degree in Bacteriology from Michigan State University in 1951. In 1951 Dr. Litsky joined the staff of the Department of Bacteriology and Public Health, University of Massachusetts, where he presently holds the rank of Research Professor. He is a member of the Committee on Research Needs and Application, IAMFS.
ag as the medium. The plates were made in duplicate and counted after 48 hours incubation at 37°C.

The number of coliforms was likewise obtained by serial plating techniques using violet red bile agar as the medium with an overlay of nutrient agar. Characteristic colonies were counted after a 24-hour incubation at 37°C as prescribed by "Standard Methods," (3).

The most probable number (MPN) of enterococci were determined by serial dilution, using sets of five replicate azide dextrose broth tubes as the presumptive test. For the confirmation test three loops were transferred into ethyl violet azide broth tubes after 48 hours incubation.

The test for Salmonella was made by the primary enrichment method, using selenite-F enrichment broth. After 18 hours incubation at 37°C, streak plates were made on MacConkey's agar, bismuth sulfite agar, and deoxycholate agar from the enrichment broth. After these plates were incubated for 24-48 hours, typical colonies were picked and subjected to agglutination tests with polyvalent serum. Further bacteriological analyses were undertaken wherever the agglutination results indicated.

Results

The combined results of this survey are shown in Tables 1, 2, 3, and 4.

Tuna

Of the two brands of (six pies in each brand) frozen tuna pies tested, the total bacterial count per gram ranged from 2,200 to 14,000. The coliform count ranged from 0 to 125, and the enterococci MPN ranged from 0 to 4.5. There was no apparent correlation between the three determinations since the highest total count was accompanied by zero enterococci MPN while the highest coliform count was accompanied by zero enterococci MPN and one of the lowest total counts.

Chicken

Of the six brands of chicken pies tested, three (C-2, C-4, C-6), had total counts under 100,000 per gm. One brand, C-3, was found to have one out of six above 100,000 (C-3D). Brand C-1 showed two of the six pies above 100,000 (C-1B and C-1G). Brand C-5 showed five out of six pies having a count above 100,000, of which three (C-5A, C-5D, and C-5F) were above 1,000,000 per gram. As in the case of the tuna pies, the enterococci and coliform counts showed no correlation with the total counts. However, in brand C-5 the enterococci MPN were consistently higher than the other brands and a correlation is suggested.

Table 1. Summary of Bacterial Counts of Frozen Precooked Tuna Pies

<table>
<thead>
<tr>
<th>Code</th>
<th>Total count</th>
<th>Enterococci (MPN)</th>
<th>Coliform count</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1A</td>
<td>9,500</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>F1B</td>
<td>7,400</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>F1C</td>
<td>9,600</td>
<td>0.36</td>
<td>0</td>
</tr>
<tr>
<td>F1D</td>
<td>3,000</td>
<td>0.36</td>
<td>14</td>
</tr>
<tr>
<td>F1E</td>
<td>5,500</td>
<td>0.36</td>
<td>41</td>
</tr>
<tr>
<td>F1F</td>
<td>6,400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F2A</td>
<td>8,900</td>
<td>9.3</td>
<td>24</td>
</tr>
<tr>
<td>F2B</td>
<td>14,000</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>F2C</td>
<td>5,500</td>
<td>0.32</td>
<td>12</td>
</tr>
<tr>
<td>F2D</td>
<td>2,600</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>F2E</td>
<td>2,200</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>F2F</td>
<td>4,000</td>
<td>4.50</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2. Summary of Bacterial Counts of Frozen Precooked Chicken Pies

<table>
<thead>
<tr>
<th>Code</th>
<th>Total count</th>
<th>Enterococci (MPN)</th>
<th>Coliform count</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1A</td>
<td>65,000</td>
<td>132</td>
<td>19</td>
</tr>
<tr>
<td>C1B</td>
<td>150,000</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>C1C</td>
<td>110,000</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>C1D</td>
<td>52,000</td>
<td>13.2</td>
<td>17</td>
</tr>
<tr>
<td>C1E</td>
<td>54,000</td>
<td>116</td>
<td>50</td>
</tr>
<tr>
<td>C1F</td>
<td>21,000</td>
<td>85</td>
<td>154</td>
</tr>
<tr>
<td>C2A</td>
<td>48,000</td>
<td>8.9</td>
<td>50</td>
</tr>
<tr>
<td>C2B</td>
<td>24,000</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>C2C</td>
<td>56,000</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>C2D</td>
<td>37,000</td>
<td>37.5</td>
<td>0</td>
</tr>
<tr>
<td>C2E</td>
<td>16,000</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>C2F</td>
<td>26,000</td>
<td>36.4</td>
<td>14</td>
</tr>
<tr>
<td>C3A</td>
<td>53,000</td>
<td>1280</td>
<td>4.5</td>
</tr>
<tr>
<td>C3B</td>
<td>20,000</td>
<td>80</td>
<td>21</td>
</tr>
<tr>
<td>C3C</td>
<td>24,000</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>C3D</td>
<td>50,000</td>
<td>122.6</td>
<td>39</td>
</tr>
<tr>
<td>C3E</td>
<td>15,000</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>C3F</td>
<td>43,000</td>
<td>146</td>
<td>9</td>
</tr>
<tr>
<td>C4A</td>
<td>12,000</td>
<td>41</td>
<td>4</td>
</tr>
<tr>
<td>C4B</td>
<td>27,000</td>
<td>87</td>
<td>55</td>
</tr>
<tr>
<td>C4C</td>
<td>98,000</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>C4D</td>
<td>91,000</td>
<td>136</td>
<td>82</td>
</tr>
<tr>
<td>C4E</td>
<td>16,000</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>C4F</td>
<td>12,000</td>
<td>250</td>
<td>25</td>
</tr>
<tr>
<td>C5A</td>
<td>1,200,000</td>
<td>1270+</td>
<td>9</td>
</tr>
<tr>
<td>C5B</td>
<td>140,000</td>
<td>450</td>
<td>0</td>
</tr>
<tr>
<td>C5C</td>
<td>270,000</td>
<td>275</td>
<td>5.5</td>
</tr>
<tr>
<td>C5D</td>
<td>1,500,000</td>
<td>1270+</td>
<td>9</td>
</tr>
<tr>
<td>C5E</td>
<td>37,000</td>
<td>1000</td>
<td>23</td>
</tr>
<tr>
<td>C5F</td>
<td>1,500,000</td>
<td>1000</td>
<td>82</td>
</tr>
<tr>
<td>C6A</td>
<td>35,000</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>C6B</td>
<td>13,000</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>C6C</td>
<td>13,000</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>C6D</td>
<td>6,200</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>C6E</td>
<td>66,000</td>
<td>79</td>
<td>460</td>
</tr>
<tr>
<td>C6F</td>
<td>67,000</td>
<td>37</td>
<td>29</td>
</tr>
</tbody>
</table>
A Bacteriological Survey

Table 3. Summary of Bacterial Counts of Precooked Frozen Beef Pies

<table>
<thead>
<tr>
<th>Code</th>
<th>Total count</th>
<th>Enterococci (MPN)</th>
<th>Coliform count</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1A</td>
<td>15,000</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>B1B</td>
<td>370,000</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>B1C</td>
<td>6,600</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>B1D</td>
<td>650,000</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>B1E</td>
<td>14,000</td>
<td>136</td>
<td>54</td>
</tr>
<tr>
<td>B1F</td>
<td>5,000</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>B2A</td>
<td>130,000</td>
<td>1000</td>
<td>655</td>
</tr>
<tr>
<td>B2B</td>
<td>10,000</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>B2C</td>
<td>10,000</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>B2D</td>
<td>13,000</td>
<td>21</td>
<td>104</td>
</tr>
<tr>
<td>B2E</td>
<td>59,000</td>
<td>210</td>
<td>1380</td>
</tr>
<tr>
<td>B2F</td>
<td>13,000</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>B3A</td>
<td>6,200,000</td>
<td>375</td>
<td>TN TC</td>
</tr>
<tr>
<td>B3B</td>
<td>4,200</td>
<td>-23</td>
<td>0</td>
</tr>
<tr>
<td>B3C</td>
<td>5,900</td>
<td>-25</td>
<td>0</td>
</tr>
<tr>
<td>B3D</td>
<td>480,000</td>
<td>680</td>
<td>2160</td>
</tr>
<tr>
<td>B3E</td>
<td>20,000</td>
<td>-22</td>
<td>7</td>
</tr>
<tr>
<td>B3F</td>
<td>11,000,000</td>
<td>14,000</td>
<td>695</td>
</tr>
<tr>
<td>B4A</td>
<td>4,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B4B</td>
<td>11,000</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>B4C</td>
<td>5,000</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>B4D</td>
<td>32,000</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>B4E</td>
<td>2,200</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B4F</td>
<td>3,000</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>B5A</td>
<td>6,400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B5B</td>
<td>4,100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B5C</td>
<td>5,000</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>B5D</td>
<td>5,700</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B5E</td>
<td>6,600</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>B5F</td>
<td>2,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B6A</td>
<td>27,000</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>B6B</td>
<td>10,000</td>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td>B6C</td>
<td>5,000</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>B6D</td>
<td>23,000</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>B6E</td>
<td>7,100</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>B6F</td>
<td>2,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B7A</td>
<td>5,900</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B7B</td>
<td>2,100</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>B7C</td>
<td>3,200</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B7D</td>
<td>7,400</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>B7E</td>
<td>5,000</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>B7F</td>
<td>7,800</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>

between the MPN and the total count. It must be added that the total count of this brand was far above the total count for the average in this study.

BEEF

Four of the seven brands of beef pies tested indicated total counts well below 100,000 (B-4, B-5, B-6, and B-7). One brand, B-2, showed one of the six pies exceeding a total count of 100,000; brand B-1, two out of six; and brand B-5, three out of six, of which two ('B-3A, B-3F) exceeded 1,000,000 per gram. It is of interest to note that in brands B-4, B-5, B-6 and B-7, the enterococci MPN and the coliform counts were extremely low, suggesting some correlation with the extremely low total counts of these samples. Also in brand B-3 the enterococci MPN and coliform count suggests some correlation with the high total count, however, in brands B-1 and B-2 there is no indication of any correlation between the three determinations.

Turkey

Three out of the seven brands of turkey pies examined showed no total count exceeding 100,000.

Table 4. Summary of Bacterial Counts of Precooked Frozen Turkey Pies

<table>
<thead>
<tr>
<th>Code</th>
<th>Total count</th>
<th>Enterococci (MPN)</th>
<th>Coliform count</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1A</td>
<td>53,000</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>T1B</td>
<td>83,000</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>T1C</td>
<td>31,000</td>
<td>41</td>
<td>640</td>
</tr>
<tr>
<td>T1D</td>
<td>6,000</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>T1E</td>
<td>43,000</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>T1F</td>
<td>390,000</td>
<td>1400+</td>
<td>120</td>
</tr>
<tr>
<td>T2A</td>
<td>26,000</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>T2B</td>
<td>6,000</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>T2C</td>
<td>81,000</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>T2D</td>
<td>5,400</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>T2E</td>
<td>13,000</td>
<td>3</td>
<td>71</td>
</tr>
<tr>
<td>T2F</td>
<td>76,000</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>T3A</td>
<td>TN TC</td>
<td>TN TC</td>
<td>TN TC</td>
</tr>
<tr>
<td>T3B</td>
<td>36,000</td>
<td>-28</td>
<td>4.5</td>
</tr>
<tr>
<td>T3C</td>
<td>38,000</td>
<td>7900</td>
<td>0</td>
</tr>
<tr>
<td>T3D</td>
<td>33,000</td>
<td>6200</td>
<td>8</td>
</tr>
<tr>
<td>T3E</td>
<td>120,000</td>
<td>1500</td>
<td>5</td>
</tr>
<tr>
<td>T3F</td>
<td>73,000</td>
<td>1300</td>
<td>118</td>
</tr>
<tr>
<td>T4A</td>
<td>3,500</td>
<td>450</td>
<td>0</td>
</tr>
<tr>
<td>T4B</td>
<td>15,000</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>T4C</td>
<td>8,800</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>T4D</td>
<td>18,000</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>T4E</td>
<td>2,500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4F</td>
<td>18,000</td>
<td>168</td>
<td>92</td>
</tr>
<tr>
<td>T5A</td>
<td>32,000</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>T5B</td>
<td>680,000</td>
<td>14,000+</td>
<td>20</td>
</tr>
<tr>
<td>T5C</td>
<td>97,000</td>
<td>137</td>
<td>5</td>
</tr>
<tr>
<td>T5D</td>
<td>44,000</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>T5E</td>
<td>370,000</td>
<td>116,000+</td>
<td>0</td>
</tr>
<tr>
<td>T5F</td>
<td>790,000</td>
<td>1,000+</td>
<td>TN TC</td>
</tr>
<tr>
<td>T6A</td>
<td>9,300</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>T6B</td>
<td>6,400</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>T6C</td>
<td>6,500</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td>T6D</td>
<td>130,000</td>
<td>1,100</td>
<td>105</td>
</tr>
<tr>
<td>T6E</td>
<td>10,000</td>
<td>21</td>
<td>62</td>
</tr>
<tr>
<td>T6F</td>
<td>15,000</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>T7A</td>
<td>13,000</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>T7B</td>
<td>6,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7C</td>
<td>9,100</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>T7D</td>
<td>3,800</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>T7E</td>
<td>17,000</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>T7F</td>
<td>2,000</td>
<td>0</td>
<td>21</td>
</tr>
</tbody>
</table>

* Too numerous to count.
brands (T-1 and T-6) showed one exceeding 100,000 per gram, one brand (T-3) showed two pies exceeding the 100,000 count, and one brand (T-5) showed three of the six pies above the 100,000 per gram total count. It is of interest to note that of the seven individual pies which showed a total count of above 100,000, all seven pies had a correspondingly high enterococci MPN while only two had a high coliform count.

Of the 132 individual pies examined the presence of Salmonella could not be demonstrated. Of the thirteen cultures isolated which gave a weakly positive agglutination test, all were found to be of the paracolon group.

Discussion

By virtue of composition and pH, precooked frozen meat pies (beef, chicken, turkey, and tuna) offer fertile media for growth of many types of microorganisms. In addition, there are many possibilities of contamination during the manufacture of these products. Even under the best of sanitary conditions during manufacture, it is a fairly safe assumption that these pies are not sterile prior to freezing. While it is recognized that there is destruction of microorganisms during frozen storage, it is also recognized that sterility is usually not achieved during this process. Under ideal conditions, the pies would be held at low temperature (0°F to 10°F) until heated for serving. Under such conditions, one would expect a relatively low microbial population particularly after the recommended heating times and temperatures. If, on the other hand, the pies are allowed to thaw prior to heating for serving, one might logically expect increases in the numbers of microorganisms present, the increases being somewhat proportional to the length of time of exposure to higher temperatures. Since enterotoxigenic strains of microorganisms are prevalent enough in areas of food preparation, it is safe to assume that they may be present in any low-acid foods such as the products under discussion. Once the enterotoxin is formed, it is resistant to destruction by both freezing and cooking even though the microorganisms themselves are reduced in numbers or completely destroyed. This condition may not be detectable organoleptically. In almost all cases, organoleptic tests on duplicate samples showed no correlation with high total counts. The fact that the product has been frozen, and is then heated prior to serving, is no assurance that it is safe.

Since over 70 per cent of the pies examined had total counts under 50,000 per gram, and almost 60 per cent showed total counts of under 25,000 per gram (including crust), the indications are that pies with low total counts can be obtained under commercial conditions. Certainly, manufacture under good, sanitary conditions should permit production of such products. However, it is generally recognized by the industry that abuses in handling during distribution are fairly widespread. It is quite likely that the findings of higher counts may be largely due to this. It is the authors’ contention that the manufacturer should do everything in his power to protect his product until it is consumed. This means not only preparation under optimum sanitary conditions, but also proper handling and storage during distribution. It is also suggested that a vigorous educational program be pursued on a national level to inform distributors and consumers that they are dealing with a highly perishable product and that proper precautions in handling must be exercised.

Conclusions

On the basis of the work reported herein, it was found that 84 per cent of the commercially produced pies had total counts lower than 100,000 per gram. In fact, almost 60 per cent had such counts lower than 25,000 per gram. Therefore, it is suggested that frozen meat pies can be produced and distributed having a lower count than 100,000 per gram. It is proposed that this count be chosen as a tentative standard for the present. A total count of 100,000 per gram is excessive in view of the high sanitary standards now employed in modern packing procedures. The industry must also be considered and should not be penalized too severely at the start of such a program. If a standard such as the one proposed is accepted, then eventually it could be reduced by voluntary action on the part of the industry on the basis of continued improvements. The proposed standard of 100,000 per gram appears to be reasonable and should not cause any large scale readjustment on the part of industry. Once such a recommendation is accepted and the industry has had the experience of operating under such a standard, the standards then might easily be reduced if warranted.

In support of this recommendation, Fitzgerald (2) as early as 1947 recommended an upper limit of 100,000 colonies per gram in frozen foods although he felt that higher counts might be permitted. Weiser (4) has discussed the problem and has mentioned the standard of 100,000 viable bacteria per gram of frozen precooked foods already suggested by the Quartermaster Food and Container Institute. The results of the present survey independently confirm these suggestions as realistic and workable.

References

Although the program of the National Conference on Interstate Milk Shipments was initiated some eight years ago, and some six National Conferences have been held in furtherance of its objectives, there has been to date no summary evaluation of the extent of its use. The constitutional procedure of the Conference program does not provide mechanics by which either the numbers, frequency, origin, destination, nor amounts of the shipments can be recorded for summary tabulation. In a previous study of this subject (1) it was ascertained that in virtually all states no provision existed whereby either the originating or received shipments were tabulated, or summary information about them recorded. It was apparent, in the current study, that extensive use of the program was being made through official knowledge and approval of shipments in origin and in receipt, and through numerous requests for survey ratings. Participation in the program is evident from the observation that the Conferences regularly have been attended by 150 to 250 persons, including 20 to 30 regulatory people representing the various states in official delegation of the Conference procedures. The current list of sources of milk in the “Sanitation Compliance Ratings of Interstate Milk Shippers” (2) includes approximately 530 dairy plants in 34 states and the District of Columbia. Participants to the Conference, including state and local regulatory agencies, and industry and educational groups obviously expend considerable sums of money in furtherance of the Conference program. One of the prime objectives of the Conference program is to reduce the costs of procurement of quality milk in interstate shipment. The U. S. Public Health Service currently is investing heavily in the making of survey ratings upon request of the states, and in the periodic publication of the list of sources having compliance rating.

In the light of need for information, the Executive Board of the National Conference on Interstate Milk Shipments, approved at its interim meeting in Augusta, Georgia on October 7, 1955, the making of a survey to ascertain the extent of use of the Conference program by the survey method. A questionnaire was developed having only but few specific objectives: (a) determination of the numbers of shipments actually made according to the procedures of the program; (b) establishing information on the amounts of milk shipped, and the periods in which it was shipped in the year 1955, and for the year 1954; and (c) commentary on the program.

Procedure

A questionnaire, subsequently described, was accompanied by the following statement, and sent to the plant manager of every plant in the lists of plants with sanitation compliance ratings under date of January 1, 1956.

July 10, 1956

To the Manager of the plant listed in the U. S. Public Health Service Report of January 1, 1956.

Dear Sir:

"The National Conference on Interstate Milk Shipments has been in operation since 1950. Through this program, receiving
areas are provided with ratings of potential milk supplies in other areas. The last quarterly list issued by the U. S. Public Health Service contained the ratings of 457 dairy plants located in 34 states and the District of Columbia. The use of the Conference Agreements has facilitated reciprocal approval of interstate transfer of milk."

"The extent of use of the Conference Agreements has never been determined. A great deal of effort, time and money is regularly invested by industry, government and educational groups in the reciprocal agreement program for interstate shipment of milk. It is essential that the use of the program be known in the light of the effort invested in it."

"The Executive Board of the National Conference on Interstate Milk Shipments has requested that such an evaluation be made. A Committee has been assigned this job. It is, therefore, submitting to each plant listed in the U. S. P. H. S. report of January 1, 1956, and designated as a source of approved milk, a brief questionnaire. Your plant is listed in this report."

"Three answers are sought in this questionnaire to determine the use of the program in 1955: how many separate interstate shipments were made; in what months were they made; and how much milk was shipped? From the replies, the results of the work of the National Conference on Interstate Milk Shipments should become known."

"A concise questionnaire is attached to this letter. The Committee will appreciate your filling it in promptly so that it may report the facts to the Board, and to the next Conference to be held in April, 1957. The information in the replies will be used only as in a consolidated report. If there should be desired information about interpreting the questions, please write to me for further clarification. Thank you for your cooperation."

Sincerely,
For the Executive Board
National Conference on Interstate Milk Shipments

A total of 196 replies were received. In a large number of instances the individual replies represented the collective data of several of the operating divisions of an organization. Reference to the compliance list indicates a large number of multiple plant organizations. An appraisal of the responses indicates the replies included an estimated 60-70 per cent of the plants to which the questionnaire was submitted. In a few instances involving significant groups of plants, information specifically was withheld on the basis of correspondence apparently for competitive reasons.

The questionnaire form, with a summary tabulation of the data provided in the 1956 replies is presented as follows:

NATIONAL CONFERENCE ON INTERSTATE MILK SHIPMENTS QUESTIONNAIRE

Your plant is listed in the report of the U. S. Public Health Service, under date of January 1, 1956, as having milk available for shipment in conformity with the Agreements of the National Conference on Interstate Milk Shipments. The information presented in this questionnaire is needed in order to determine the extent of use of the Conference Agreements in Interstate Shipments of Milk. Your assistance in filling out the questionnaire and returning it will be very much appreciated.

Question 1. Please write in the following table the shipments of milk made in accordance with the Interstate Milk Shippers' Conference Agreements.

<table>
<thead>
<tr>
<th>Month in which shipment was made</th>
<th>Number of shipments made in the month</th>
<th>Total pounds of milk shipped in the month</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,654</td>
<td>44,973,603</td>
</tr>
<tr>
<td>February</td>
<td>1,633</td>
<td>42,071,728</td>
</tr>
<tr>
<td>March</td>
<td>1,726</td>
<td>46,585,105</td>
</tr>
<tr>
<td>April</td>
<td>1,627</td>
<td>43,740,977</td>
</tr>
<tr>
<td>May</td>
<td>1,563</td>
<td>41,497,147</td>
</tr>
<tr>
<td>June</td>
<td>1,574</td>
<td>40,476,000</td>
</tr>
<tr>
<td>July</td>
<td>1,928</td>
<td>49,970,497</td>
</tr>
<tr>
<td>August</td>
<td>2,610</td>
<td>77,416,025</td>
</tr>
<tr>
<td>September</td>
<td>3,458</td>
<td>95,050,650</td>
</tr>
<tr>
<td>October</td>
<td>2,941</td>
<td>79,500,284</td>
</tr>
<tr>
<td>November</td>
<td>2,777</td>
<td>76,543,074</td>
</tr>
<tr>
<td>December</td>
<td>2,136</td>
<td>59,508,688</td>
</tr>
<tr>
<td>Total, 1955</td>
<td>25,627</td>
<td>697,333,966</td>
</tr>
</tbody>
</table>

For 1954

<table>
<thead>
<tr>
<th>Number of shipments made during entire year</th>
<th>Total pounds milk shipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,856</td>
<td>488,809,100</td>
</tr>
</tbody>
</table>

RESULTS

A total of 86 replies of the 196 received provided data on shipments made in the year 1955. A total of 110 replies indicated no shipments were made in 1955. All but 9 of the plants that shipped milk in 1955 also shipped milk in 1954. Only 2 of the plants that did not make shipments in 1955 made shipments in milk in 1954. The range in numbers of shipments made per month during 1955 was from 1,563 to 3,458, representing a volume of milk ranging from 40,476,000 to 95,050,000 pounds. The total number of shipments in 1955 was 25,627 and the total pounds of milk represented was 697,333,966.

A number of the replies received included data of intracompany shipments of milk across state borders. This information was not included in the list tabulations as representing interstate shipments. A number of replies indicated either or both raw milk and bottled pasteurized milk was shipped locally intercompany and intracompany across state borders. These data likewise were excluded from the tabulations.

The survey questionnaire requested further information on, (a) the effect of the Conference program on frequency of inspection of milk supplies, (b) on costs
of inspection work, and (c) upon the inspection services of the company organization.

Twenty six of 93 organizations responding to the question indicated that frequency of inspections had been reduced, and that multiple inspections of various regulatory agencies had decreased. Twenty eight organizations indicated frequency of inspections had not decreased. In a number of the latter instances several factors were cited as qualifying the responses: (a) in the period indicated (specifically 1955) there had occurred a great shift from individual patron to bulk tank hauling of milk from farm to plant along with increased production of milk on the farms necessitating considerable supervisory work by both plant and regulatory sanitation services; (b) the mere consolidation and expansion of Grade A milk production and processing facilities had required even an increase in inspection activity; (c) although plants were listed as having compliance ratings, several receiving areas required approval of the shippers supplies by one or more of various specific local area city or state agencies thus involving multiple inspection; (d) a very significant number of the responses indicated no change in frequency of inspection had been involved because the inspection previously regularly had been made by city or state agencies which had continued to be the basis of acceptance in the specific export market.

Eleven replies indicated specifically that costs of inspection work had been reduced through use of the Conference program, and 21 indicated there had been no change in inspection costs. Two replies indicated the program resulted in better quality milk, four cited improved definition of responsibility for quality in their organizations, and three cited greater efficiency in inspection work through use of the program. Others indicated no change, or offered no comment, to the question.

A very surprising result of the sending of the questionnaire to the managers of the plants was the development of a large number of inquiries as to the meaning of the program of the National Conference on Interstate Milk Shipments (3) (4), what its procedure was, and how it functioned. This may have been due in part to continuing change in plant management personnel not otherwise informed by a parent organization. On the other hand, the inquiries were directed by several executive officials of organizations having at least several plants on the compliance list. Presumably the latter should know about the functions of the Conference. There appears to be an area of considerable scope in which informative work of the aims of the Conference better can be made known. This needs the assistance of all people interested in interstate milk shipments.

Summary

In the year 1955, at least 25,000 shipments of milk were made according to the agreements of the National Conference on Interstate Milk Shipments. The shipments accounted for transfer of 697 million pounds of milk. In 1954 at least 20,000 shipments were made representing 488,000,000 pounds of milk.

REFERENCES

AN EVALUATION OF MILK QUALITY AS INFLUENCED BY DAILY VS. EVERY-OTHER-DAY PICKUP OF MILK COOLED IN FARM BULK TANKS

H. V. Atherton and Alec Bradfield
Animal and Dairy Husbandry Department, University of Vermont, Burlington

(Received for publication January 12, 1957)

Bulk cooled milk obtained from farms using approved sanitation practices can be gathered on an every-other-day (EOD) schedule and maintain satisfactory raw quality during a normal period of holding prior to pasteurization. The quality of raw milk cooled in farm bulk tanks has been compared for daily vs. EOD pickup by several generally applied laboratory tests. Bulk cooled milk collected on an EOD schedule appears to have as good quality and as good storageability as milk obtained on daily pickup.

Bulk milk cooling at the farm has become a firmly established practice throughout the country. The available literature, overwhelmingly of popular nature, is quite generally agreed that milk cooling has improved so markedly under the bulk handling system that it is now possible to alter can-cooling practices without lowering milk quality. The general tone of this literature from industry sources suggests that every-other-day (EOD) pickup is one of the inherent economic advantages of bulk handling and assumes that milk quality is as good or better than previously, even with less frequent collection from the farm (6, 7, 8).

Confirmatory evidence from non-industry sources is limited. The authors, in earlier publications (2, 3, 4), found improvement in over-all milk quality under bulk milk handling but that bacteria counts and flavor scores on individual farms were frequently worse than with can cooling systems. Marth et al. (12) and Smith et al. (15) showed that EOD pickup of milk did not lower bacteriological quality of the milk obtained from bulk tanks. These results, however, were obtained on samples from their University Farm as the sole source of supply. It was reported in the Proceedings of the 1954 Milk Industry Foundation Convention (13) that the plant at Pennsylvania State University had some farms where milk was being picked up on a 72-hour schedule with satisfactory results.

Despite industry attitudes that EOD pickup of bulk cooled milk does not lower milk quality, some Health Departments have not yet approved the principle of EOD pickup. A recent survey in Ohio (11) showed the 11% of the local Health Departments answering the questionnaire said their code would not permit EOD pickup. It is known that other Health Depart-

ments are now evaluating available evidence in order to take a position in the matter.

The Burlington plants of two major milk companies in the northeast receive milk from farms daily for part of the year and EOD at times when the tanks will hold at least four milkings. Since EOD pickup is considered an integral part of bulk handling by workers in industry and in view of the scarcity of pertinent information from the State Experiment Stations, a study was planned which would investigate the comparative quality of bulk tank milk under daily and EOD pickup systems.

The study has been divided into three parts. The first was a study of the quality of fresh milk samples collected after each milking of an EOD pickup system. The second was an evaluation of changes in quality during laboratory storage of raw milk samples collected on daily vs. EOD schedules. This was accomplished by taking samples at the second and fourth milkings from farm tanks on EOD pickup. The third was a determination of the ability of milk samples

1Journal Series Paper Number 68 of the Vermont Agricultural Experiment Station.
from EOD pickup to withstand several days of raw storage. In the latter study, the samples were taken at a receiving station from a tank car of milk collected from approximately 60 farms on the EOD schedule.

Part I

Experimental Procedure

Samples of well-agitated milk, from farms on an EOD pickup schedule, were collected from the bulk milk cooling tanks after the completion of cooling of each milking. Sterile dippers and sterile ground-glass stoppered bottles of approximately 250-ml. capacity were used for sampling. Samples were iced until returned to the laboratory and then immediately analyzed. Standard plate counts (32 °C.), laboratory pasteurized counts (32 °C.) and psychrophilic plate counts were made in accordance with *Standard Methods* (1) using Difco plate count agar. Test tubes holding approximately 10 ml. of milk for the laboratory pasteurized count were flamed above the milk line before being heated in a water bath at 145 °F. for 30 minutes. Results are expressed as the logarithmic average of individual sample counts. Protein stability was determined by the method described by Storrts (16). The percent of acid-forming colonies was obtained according to the procedure of Wade et al. (17). The work of Watrous et al. (18) showed that the bromocresol purple and CaCO$_3$ used in this method had no effect on the total plate count. The volume percent of cream layer was divided by the Babcock fat test to give the creaming factor (14).

Results and Discussion

Twenty-four series of determinations made on the milk from five producers obtained during the summer and fall of 1954 are summarized in Table 1. These samples were obtained from a group of farmers using production methods representative of those used in the area. The plate counts indicated a wide range of bacteriological quality. The tanks were of two makes, both direct expansion, with capacities ranging from 60-300 gallons.

Table 1 shows that bacteria counts were almost identical for each of the four milkings. Furthermore not only did the averages for all samples remain almost constant, but the results on individual farms also showed the same uniformity. Also, the same pattern was demonstrated for the standard plate count, the laboratory pasteurized count, and the psychrophilic count and whether the milk was of excellent or poor bacterial quality. In only one instance (psychrophilic counts for farm C) was a noticeable increase shown but this increase cannot be considered significant from a bacteriological standpoint. The percentage of acid-forming colonies on the plates indicated no evident change in type of bacteria present in the samples of milk from different milkings under the EOD pickup system.

Part II

Experimental Procedure

Because the number of sources of milk was somewhat restricted in the early studies owing to the limited number of bulk tanks then in the area, a further study was planned after more tanks had been installed. Since the results of Part I showed such minor variation in bacteria counts for each milking under the EOD pickup system, it was decided to collect samples only after the second and the fourth milkings had been added to the tank and cooled. In this way, it would be possible to conduct the investigation without causing excessive use of time and materials.

Samples were obtained in the same manner as in Part I with the exception that they were collected from farms on EOD pickup only after the second and the fourth milkings rather than after each milking. Bottles holding the second milking samples were stored in the refrigerator at 38 °F. (3.3 °C.) so that analyses could be run on samples after the second and the fourth milkings at the same time. This was done in order that the milk from the first and the second milkings in the bottle would be the same age at plating time as the portion of milk from the first and the second milkings which was combined with the third and the fourth milkings in the tank. At the time of analyses, each sample was divided in three or five parts so tests could be repeated after three and five days of additional storage. Replicates of the first nine samples were stored at 41 °F. (5 °C.) in the remainder of the series, samples were divided so two replicates could be stored at 38 °F. (3.3 °C.) and two at 41 °F. (5 °C.). Laboratory pasteurized counts were determined on the fresh samples, and on the first nine samples after storage for five days at 41 °F. (5 °C.). Since no change was observed in laboratory pasteurized counts after holding the first nine samples for five days, this analysis was not made on aged samples during the remainder of the study.

Standard plate counts, laboratory pasteurized counts, psychrophilic counts, and protein stability tests were made on fresh and aged samples as in Part I. Resazurin dye reduction time was obtained following procedures in *Standard Methods* (1) with results reported as the time (hours) required for complete decolorization.
Reduced samples were held in the incubator to observe the character of the resultant curd. Flavor was recorded when sufficient sample remained for tasting by two or three judges.

Results and Discussion

Five series, comparing 60 samples (30 trials), were obtained to evaluate the keeping quality of bulk milk samples collected from the tanks after the second and fourth milkings. The results are summarized in Table 2. The 18 tanks included in this study were of six different makes, both ice bank and direct expansion, ranging in size from 150-1000 gallons capacity.

The data presented in Table 2 indicate that the conclusions made in Part I of the study were quite valid. Standard plate counts, laboratory pasteurized counts and psychrophilic counts were nearly identical for fresh samples removed from the bulk tanks after the second and the fourth milkings of an EOD pickup system. Protein stability as judged by the Storrs stability test was equally comparable with the results in Part I. Individual samples, with fresh Total Plate Counts which ranged from a few thousand per ml. to hundreds of thousands per ml. again showed the same

<table>
<thead>
<tr>
<th>Farm</th>
<th>SPC</th>
<th>Number of milkings in sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>SPC</td>
<td>310T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.78</td>
</tr>
<tr>
<td>B</td>
<td>SPC</td>
<td>140T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.61</td>
</tr>
<tr>
<td>C</td>
<td>SPC</td>
<td>130T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.96</td>
</tr>
<tr>
<td>D</td>
<td>SPC</td>
<td>6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.42</td>
</tr>
<tr>
<td>E</td>
<td>SPC</td>
<td>51T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.84</td>
</tr>
<tr>
<td>Average</td>
<td>SPC</td>
<td>71T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.72</td>
</tr>
</tbody>
</table>

T = Thousands
SPC = Standard plate count per ml. at 32°C.
TABLE 2 – EFFECT OF DAILY VS. EOD PICKUP ON THE STORAGE OF BULK TANK MILK

<table>
<thead>
<tr>
<th>Series</th>
<th>No. of trials</th>
<th>Milkings in tank</th>
<th>Storage (days and temperature)</th>
<th>0</th>
<th>3(38°F)</th>
<th>3(41°F)</th>
<th>5(38°F)</th>
<th>5(41°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/25/55</td>
<td>SPC</td>
<td>2</td>
<td>40T</td>
<td>320T</td>
<td>320T</td>
<td>42M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>56T</td>
<td>390T</td>
<td>240T</td>
<td>42M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Past.</td>
<td>2</td>
<td>420</td>
<td>300T</td>
<td>340</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>420</td>
<td>270T</td>
<td>500</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychro.</td>
<td>2</td>
<td>230</td>
<td>310T</td>
<td>45M</td>
<td>45M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>250</td>
<td>270T</td>
<td>18M</td>
<td>18M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs value</td>
<td>2</td>
<td>63</td>
<td>54</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>59</td>
<td>58</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/31/55</td>
<td>SPC</td>
<td>2</td>
<td>69T</td>
<td>3.2M</td>
<td>16M</td>
<td>16M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>65T</td>
<td>880T</td>
<td>17M</td>
<td>17M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Past.</td>
<td>2</td>
<td>1900</td>
<td>1700</td>
<td>760</td>
<td>760</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1800</td>
<td>760</td>
<td>22M</td>
<td>22M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychro.</td>
<td>2</td>
<td>190</td>
<td>2.2M</td>
<td>22M</td>
<td>22M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>340</td>
<td>900T</td>
<td>18M</td>
<td>18M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs value</td>
<td>2</td>
<td>68</td>
<td>62</td>
<td>61</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>65</td>
<td>59</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/27/56</td>
<td>SPC</td>
<td>2</td>
<td>16T</td>
<td>180T</td>
<td>9.2M</td>
<td>9.2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>20T</td>
<td>120T</td>
<td>9.4M</td>
<td>9.4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Past.</td>
<td>2</td>
<td>59</td>
<td>190T</td>
<td>9.0M</td>
<td>9.0M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>85</td>
<td>190T</td>
<td>9.0M</td>
<td>9.0M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychro.</td>
<td>2</td>
<td>60</td>
<td>160T</td>
<td>17M</td>
<td>17M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>63</td>
<td>76T</td>
<td>15M</td>
<td>15M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs value</td>
<td>2</td>
<td>66</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>66</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/14/56</td>
<td>SPC</td>
<td>2</td>
<td>24T</td>
<td>4.8M</td>
<td>90M</td>
<td>90M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>51T</td>
<td>5.1M</td>
<td>90M</td>
<td>90M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Past.</td>
<td>2</td>
<td>43</td>
<td>5.8M</td>
<td>90M</td>
<td>90M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>50</td>
<td>4.4M</td>
<td>90M</td>
<td>90M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychro.</td>
<td>2</td>
<td>1700</td>
<td>1.0M</td>
<td>>10M</td>
<td>>10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1700</td>
<td>1.0M</td>
<td>>10M</td>
<td>>10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs value</td>
<td>2</td>
<td>66</td>
<td>65</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>66</td>
<td>65</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/15/56</td>
<td>SPC</td>
<td>2</td>
<td>22T</td>
<td>1.5M</td>
<td>98M</td>
<td>98M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>20T</td>
<td>1.5M</td>
<td>98M</td>
<td>98M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Past.</td>
<td>2</td>
<td>500</td>
<td>540T</td>
<td>98M</td>
<td>98M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>350</td>
<td>>10M</td>
<td>98M</td>
<td>98M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychro.</td>
<td>2</td>
<td>680</td>
<td>300T</td>
<td>>10M</td>
<td>>10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>410</td>
<td>280T</td>
<td>>10M</td>
<td>>10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs value</td>
<td>2</td>
<td>63</td>
<td>60</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>66</td>
<td>60</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPC = Standard plate count per ml. at 32°C.
Past. = Laboratory pasteurized count per ml.
Psychro. = Psychrophilic plate count per ml.
T = Thousands
M = Millions
milkings was able to withstand three days additional storage at 38°F (3.3°C) without extensive bacterial multiplication. The few individual samples which did not conform to this general pattern nearly always had a relatively high psychrophilic count before aging. Considerable growth was observed when milk was stored for three additional days at 41°F (5°C). Five of the 21 daily samples and seven of the EOD samples stored at 38°F (3.3°C) for five days gave counts of 200,000/ml. or lower. All samples, regardless
of original bacteriological quality, had counts in the millions after five days of storage at 41°F (5°C).

When psychrophilic and standard plate counts on individual samples were compared there was practically no difference in samples held for three and five days at either temperature. The summaries presented in Table 2 are somewhat misleading since dilutions made for the standard plate count on the samples held for five days at 41°F (5°C) were frequently too low to prevent crowded plates and quite inadequate estimates. It is interesting, however, to note that when storage temperatures of 38°F (3.3°C) and 41°F (5°C) are compared, significantly higher counts were obtained on the samples held at 41°F (5°C) with both Psychrophilic and Standard Plate Counts.

Resazurin reduction tests were of little value in evaluating storage deterioration of these milk samples. The one sample which did show relatively rapid reduction (<3 hours) after three days storage at either 38°F (3.3°C) or 41°F (5°C) had an extremely high population of psychrophiles on the fresh sample and these had multiplied to millions per ml. by the third day at either temperature of holding. However, other samples showed equivalent psychrophilic growth but failed to show any faster reduction of the dye. Aside from the one exception mentioned above, only a few samples (9 of 30) reduced the dye in less than three hours and all these had been held at 41°F (5°C) for five days. Many samples gave satisfactory dye reduction time when other tests showed them unsuitable for consumption. These results agree closely with earlier studies on psychrophilic activity in com-

Table 3 — Changes during Storage of Milk from a Combined Supply of Bulk Tank Milk Obtained for Five Consecutive Days from Approximately 60 Farms on EOD Pickup

<table>
<thead>
<tr>
<th>Date</th>
<th>Storage time (hours)</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/15/56</td>
<td>SPC</td>
<td>22T</td>
<td>22T</td>
<td>35T</td>
</tr>
<tr>
<td></td>
<td>Lab. past. count</td>
<td>320</td>
<td>320</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Psychrophiles per ml.</td>
<td>300</td>
<td>2100</td>
<td>4700</td>
</tr>
<tr>
<td></td>
<td>Flavor — Raw</td>
<td>39 feed</td>
<td>39 feed</td>
<td>39 feed</td>
</tr>
<tr>
<td></td>
<td>Past. (no Cu)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Past. (with Cu)</td>
<td>40</td>
<td>40</td>
<td>39 chalky</td>
</tr>
<tr>
<td>4/16/56</td>
<td>SPC</td>
<td>26T</td>
<td>24T</td>
<td>51T</td>
</tr>
<tr>
<td></td>
<td>Lab. past. count</td>
<td>240</td>
<td>220</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Psychrophiles per ml.</td>
<td>2200</td>
<td>2700</td>
<td>23T</td>
</tr>
<tr>
<td></td>
<td>Flavor — Raw</td>
<td>39 feed</td>
<td>39 feed</td>
<td>39 feed</td>
</tr>
<tr>
<td></td>
<td>Past. (no Cu)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Past. (with Cu)</td>
<td>40</td>
<td>40</td>
<td>39 chalky</td>
</tr>
<tr>
<td>4/17/56</td>
<td>SPC</td>
<td>24T</td>
<td>18T</td>
<td>38T</td>
</tr>
<tr>
<td></td>
<td>Lab. past. count</td>
<td>570</td>
<td>520</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>Psychrophiles per ml.</td>
<td>2000</td>
<td>4200</td>
<td>12T</td>
</tr>
<tr>
<td></td>
<td>Flavor — Raw</td>
<td>39 feed</td>
<td>39 feed</td>
<td>39 feed</td>
</tr>
<tr>
<td></td>
<td>Past. (no Cu)</td>
<td>40</td>
<td>40</td>
<td>39 chalky</td>
</tr>
<tr>
<td></td>
<td>Past. (with Cu)</td>
<td>40</td>
<td>39 chalky</td>
<td>40</td>
</tr>
<tr>
<td>4/18/56</td>
<td>SPC</td>
<td>21T</td>
<td>29T</td>
<td>43T</td>
</tr>
<tr>
<td></td>
<td>Lab. past. count</td>
<td>150</td>
<td>310</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Psychrophiles per ml.</td>
<td>2800</td>
<td>4300</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td>Flavor — Raw</td>
<td>39 feed</td>
<td>39 feed</td>
<td>39 feed</td>
</tr>
<tr>
<td></td>
<td>Past. (no Cu)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Past. (with Cu)</td>
<td>39 chalky</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>4/19/56</td>
<td>SPC</td>
<td>29T</td>
<td>38T</td>
<td>42T</td>
</tr>
<tr>
<td></td>
<td>Lab. past. count</td>
<td>200</td>
<td>140</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Psychrophiles per ml.</td>
<td>2100</td>
<td>3400</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>Flavor — Raw</td>
<td>39 feed</td>
<td>39 feed</td>
<td>39 feed</td>
</tr>
<tr>
<td></td>
<td>Past. (no Cu)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Past. (with Cu)</td>
<td>39 chalky</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

SPC = Standard plate count per ml. at 32°C.
T = Thousands
* = 0.25 ppm copper added before pasteurizing sample.
mercially pasteurized and bottled milk (5). Thus it would appear that the resazurin reduction test has very limited value as a quality test for bulk cooled milk and is of no use in evaluating differences (if any) in quality between milk collected on a daily or EOD pickup system.

Only one of the 32 samples, tasted after five days storage at 38°F (3.3°C), failed to retain its normal flavor. This was one of the samples collected after the second milking. On the other hand, 35 of the individual samples from the 26 pairs tasted after storage for five days at 41°F (5°C) gave pronounced off-flavors. It is interesting to note that 18 of the 35 were collected after the second milking and 17 were obtained after the fourth milking. It was also observed that off-flavor development was frequently more pronounced on the samples taken after the second milking than on the comparative sample collected following the fourth milking.

This phase of the study was started in the spring of 1955. It was then necessary to postpone further action temporarily but work was resumed in the spring of 1956, following an investigation and study of farm utensil and bulk tank cleaning problems. Thus the data for 1955 and 1956 show a rather interesting comparison. Although many of the tanks and much of the milking equipment used on the farms had some visible accumulation of milkstone during the 1955 studies while the tanks and equipment were clean in 1956, the data in Table 2 indicate that this change had little, if any, effect on the rate of multiplication of the bacteria in the milk during storage in the laboratory. Although data were not obtained during the 1955 trials on the population increases during storage at 38°F (3.3°C), bacteria counts on samples held for three and five days at 41°F (5°C) during the spring of 1955 followed nearly the same pattern as the samples obtained during the spring and summer of 1956. This would indicate that, regardless of the state of cleanliness in the milkhouse, milk must be cooled and held at a temperature lower than 41°F (5°C) if the bacteria count is to remain satisfactory during several days storage of the raw milk prior to pasteurization. It would also indicate that there is some question concerning the value of bacteria counts on fresh samples of milk as a sole criterion of the sanitary quality of milk from farm bulk milk cooling tanks.

These results serve to again emphasize the importance of the work done on the effect of delayed cooling of milk more than 25 years ago by Frayer (10) in which he concluded that milk must be cooled immediately to 40°F or below and held there for “the most consistently beneficial results.” His further comment (9) that “the longer cooling is delayed, the poorer — bacteriologically speaking — will be the milk when it is a day or two old and this is true no matter how low was its bacterial content when fresh,” is equally true of milk in the bulk tank era.

The data obtained in the second part of this study thus substantiate the results of Part I to the effect that little, if any, real difference can be noted between samples obtained after the second and the fourth milkings of an EOD collection system.

Part III

Experimental Procedure

Samples were obtained for five consecutive days from a country plant which collected milk from tanks on an EOD pickup schedule for the Boston market. Each sample was obtained from a filled tank car holding approximately 38,000 pounds of milk and represented the combined deliveries of nearly 60 farms.

Three replicate samples were obtained from the filled tank car. They were aseptically collected in half-pint milk bottles which had been washed in the plant bottle washer, then conveyed to the bottle capper and capped. These bottles were taken to the receiving station and samples collected. They were iced until delivery to the laboratory where they were stored in the refrigerator at 38°F (3.3°C).

One replicate was removed for analysis after storage for 24 hours, the second after storage for 48 hours and the third after 72 hours of refrigerated storage. Standard plate counts, laboratory pasteurized counts, and psychrophilic counts were made in conformity with Standard Methods (1) as in Part I. Three flavor determinations — one on raw milk, one on a portion pasteurized at 145°F (62.8°C) for 30 minutes, and the third on a portion to which 0.25 ppm of Cu (as CuSO4) had been added prior to pasteurization at 145°F (62.8°C) for 30 minutes — were made by three experienced judges.

Results and Discussion

A study of keeping quality of a combined supply of milk collected from farms on an EOD pickup schedule again seems to justify this plan of operation. Samples of milk received for five consecutive days from nearly 60 farms on EOD collection were all of excellent quality, even after 72 hours of additional laboratory storage.

Table 3 shows that bacteria counts, after three days of laboratory holding, were well within established limits for fresh milk. No flavor deterioration was evident, even when copper was added prior to pasteurization.
This milk originated on farms producing for a Grade A market, but it would appear that the original quality should be readily attainable on any properly managed farm supplying bulk tank milk.

Summary

The quality of the milk obtained by two local milk plants from 19 farms on an EOD pickup schedule has been evaluated by a number of generally accepted quality tests. Results support the opinion of milk plant operators that less frequent farm collection does not produce any lowering of quality.

Fresh samples of milk obtained after each milking of an EOD pickup system gave almost identical standard plate, laboratory pasteurized and psychrophilic counts. Protein stability was lowered slightly but not enough to seem important. Some changes were noted in creaming ability but this did not appear to be caused by EOD pickup.

The storage quality of milk also did not appear to be affected by less frequent collection of the farm supply. Results demonstrated that milk must be held below 40°F for successful raw storage life but this was equally true for daily or EOD delivery.

Results obtained on samples of a combined plant supply gave evidence that milk, produced on farms where recommended sanitation methods are practiced, can be collected on an EOD plan and maintain satisfactory raw quality during a normal period of transportation or holding prior to pasteurization.

Reference

The filtration efficiency of various materials used in pipeline filters showed that the best filtration was secured using bonded non-woven cotton discs, followed in order by flannel fabric, muslin fabric, and flannel fabric after use in four milkings. However, bag filters of flannel and muslin gave inadequate filtration. The tests were made using a milk flow splitting apparatus, dividing milk equally between two kinds of filter materials, and by measuring the number and size of sediment particles found in one square centimeter areas of Lintine sediment testing discs after drawing samples from bulk tanks. Best uniformity in numbers of particles was secured when testing one gallon portions.

Pipeline milking installations as an accessory to bulk milk tanks are increasing. Filtration of the milk is a part of the system. The effectiveness of such filtration is not generally known. The study reported herein was made to determine the practicality of various filters for pipeline milkers and to ascertain the milk filtering ability of three different kinds of filter material used. No previous study concerning these filtering problems has been reported.

Filtering milk produced by pipeline milking systems must be confined to some kind of in-line filter. Three kinds of such milk filter systems, using several kinds of filtering material are available. These include: (a) cylinder, with woven fabric bag; (b) dome, with non-woven fabric disc; and (c) a unit filter either with a disc or with a non-woven square fabric wrap.

Most research shows that filtering of milk does not improve its keeping properties. However, Marquardt (3) reported deterioration in flavor quality with retention of dirt in milk. Other important reasons exist for removing sediment. Sommer (4) directs attention to a "natural and decent impulse to remove dirt promptly, if any finds its way into milk" and to the use of sediment testing as a criterion of milk quality.

The 1953 edition of the U. S. Public Health Service "Milk Ordinance and Code" (5) states: "When milk is strained, strainer pads shall be used and shall not be reused." The code further states: "... in order to maintain products of high quality, it is recommended that each plant or receiving station make tests of each producer's milk, including odor, temperature ... sediment" and that "tests should be made monthly or oftener, and plants should reject milk of abnormal odor ... or milk found unsatisfactory by ... sediment tests. Follow up inspections should be made ... to discover and correct the cause."

Filtering media serve useful purposes in revealing care in milking practices and abnormal appearing milk. Some types of filter media or filtering units make it possible to observe the amount and nature of materials removed from milk better than others. A clean and effective filter unit should indicate that no extraneous material or abnormal milk entered the milk supply.

Filtering efficiency is measured by the completeness of extraneous matter removal, which, in turn, is indirectly related to the speed of straining. As a rule, speed of milk filtration increases directly with the size of the openings of the filtering material. However, completeness of filtration increases as the size of the openings become smaller. Dahlberg and Marquardt (1) found that the largest particle of sand which could pass through a milk filter was 30 to 40 microns in diameter. Thus, they concluded the filter pore size should be somewhat smaller than those dimensions. Also, these investigators observed that filter pores became plugged with fat when the openings were minute, for example, the size of fat globules (10 to 12 microns).

Procedures

Milk from the university dairy barn pipeline milker was filtered using three kinds of filters; (a) the unit filter, (b) the bag cylinder, and (c) the dome filter with disk. Filter (a) was located in the milk tube near the claw of the milking machine and filters, (b) and (c) were in the pipe near the bulk tank. Filters in the unit filter consisted of a fibre-bonded non-woven fabric square, those in the cylinder of a 56 x 56 thread count muslin bag weighing 3.6 ounces per square yard, or a 46 x 42 thread count flannel bag weighing 4.1 ounces per square yard; whereas those in the dome filter were of fibre-bonded, double faced gauze non-woven fabric in disc form. The bag and unit filters, encased in cylinders, were so connected that the milk entered the filter bags through the outer wall. The single filter-disc used in the dome filter was supported by a multi-perforated stainless steel plate, with the milk flowing downward to the holding tank. Each of the filters was tested alone.

1Michigan Agricultural Experiment Station General Article No. 2057.
2Presently employed by Quartermaster Food & Container Institute, 1819 Pershing Road, Chicago 9, Illinois.
Table 1 — The Efficiency of Various Filters in Removing Sediment From Pipeline, Bulk-Tank Milk.

<table>
<thead>
<tr>
<th>No. of trials</th>
<th>Kind and method of using filter material</th>
<th>Amounta of sediment taken from filtered bulk milk when various quantities were tested:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Non-woven disc</td>
<td>0.5 qt. 1.0 qt. 2.0 qt. 3.0 qt. 4.0 qt.</td>
</tr>
<tr>
<td>3</td>
<td>Flannel bag only</td>
<td>5 8 9 12 17</td>
</tr>
<tr>
<td>3</td>
<td>Used flannel bag only</td>
<td>6 26 42 77 86</td>
</tr>
<tr>
<td>11</td>
<td>Muslin bag only</td>
<td>35 71 98 242 275</td>
</tr>
<tr>
<td>7</td>
<td>Non-woven disc in dome and non-woven square in unit-filter</td>
<td>5 6 9 8 15</td>
</tr>
<tr>
<td>3</td>
<td>Flannel bag and non-woven square in unit-filter</td>
<td>13 35 62 108 121</td>
</tr>
</tbody>
</table>

*Number of particles per sq. cm. on standard 1.25 inch Lintine sediment discs.

and in combinations as shown later in Table 1.

The cows were prepared for milking by washing, massaging and drying the teats and udders just prior to milking. The cows were bedded with shavings and were milked with long-tube pipeline milker units. On occasions, teat cups dropped off during milking causing wood shavings to be drawn into the milk line.

Split-flow-testing

A special milk-flow divider was used to compare filtration efficiencies of different filtering materials. As the milk was discharged from the pipeline, a milk-flow splitting apparatus (Figure 1) divided the milk so that equal quantities passed through each of two kinds of filter materials described above. The apparatus was equipped with a 2.25 inch diameter Lintine sediment tester disc at each filter outlet to collect any sediment remaining in the milk filtered through the test filter media. Pressure gauges were used to measure the pressure build-up on each Lintine disc. Some filter efficiency tests were made, limiting the pressure build-up to 5 p.s.i.

Other comparisons were made using the time required to filter definite quantities of milk. By calculation, 23.4 pounds of milk filtered through a 2.25 inch Lintine disc was equivalent to filtering 8.6 pounds through a standard 1.25 inch Lintine disc.

Bulk tank testing

Sediment tests of milk from the bulk tank were made by pumping portions of milk through a standard 1.25 inch Lintine disc by means of a motor-driven tubing pump fitted with a standard sediment tester disc holder. The milk was stirred continuously for at least three minutes before and during sampling. No attempt was made to control the position of the tube inlet, which thus provided a random sample from the stirred milk. To facilitate pumping the cold milk through the Lintine sediment testing disc, a portion of the coiled suction tube was submerged in a pail of hot water.

The amount of sediment collected on the Lintine discs was determined by actual count: (a) of the particles present on a 1 sq. cm. center area, under a binocular with 6x magnification; and/or (b) under a 13.2x magnification of a slightly smaller area. All data were resolved to a 1 sq. cm. area basis.

Results

Comparative efficiency of muslin bag and cotton disc filters with split-flow filtering.

An attempt was made to evaluate the efficiency of filter materials according to the number of sediment particles found on Lintine sediment discs obtained from split-flow filtered milk. However, counting the particles on the sediment discs was not feasible because of their great number and minute size. Also, many of the smaller particles were actually imbedded within the Lintine discs.

The sediment discs indicated that a decided difference existed between the ability of muslin bags and gauze-faced non-woven fabrics discs to remove sediment from pipeline milk. Photographs of these sediment discs obtained after 23.4 pounds of milk had been filtered through each material, and after continuous filtration had built up a pressure of 5 p.s.i. on either of the discs, are presented in Figures 2 and 3, respectively. Here, the sediment test discs show the relative amounts of sediment in milk which had been filtered through muslin bags (series A, several trials) and through non-woven discs (series B, several trials). The amount of milk passing through each sediment test disc was identical in every case, in A discs as in B discs with the same number. The heavier discoloration of the A discs indicate efficient filtration with cylindrical muslin bags than with non-woven discs in pipeline milk filtration. Results shown in Figure 3 substantiate this observation. In this case, the sediment tests were made of the milk after an internal pressure of 5 p.s.i. had been built up on one of the filter lines. This pressure was, in all trials, reached only in the chamber in which the milk had passed through the muslin-filter. The pictures actually show pressure spots on the sediment disc taken from this milk (series A).

Obviously, the reason for pressure build-up in one unit and not in the other was the more efficient filtration obtained through the non-woven disc than
Figure 1. A milk flow splitting apparatus with pumps 1 and 2 used to divide the milk equally between two types of filters: (a) bag-in-cylinder; and (b) disc-in dome, indicated by 3 and 4. Lintine discs were placed down stream in unions 5 and 6. Pressure taps 7 and 8 indicated pressure build-up from sediment deposition on Lintines. (Provided through courtesy of Johnson & Johnson.)
Figure 2. Differences in sediment density between discs in series A, after filtering through muslin fabric, and in series B after filtering through bonded gauze discs, after several 24.7 lb. runs per strainer.

That through the muslin-bag. Thus, the partially churned or clustered fat globules and sediment particles were screened from the milk, leaving it in a condition to flow through the Lintine discs without building up pressure. Incidentally, the most rapid pressure buildup after filtering through muslin, occurred when conditions favored churning in the line. Prominent among these conditions were, exposure of the pipelines to cold air, thereby partially cooling the milk, and turbulence of milk at risers in the milk line. For these and other reasons (2) most of the risers were omitted from the line.

Comparative efficiency of various materials routinely used in pipeline, bulk-tank production.

The materials used in this phase of the study included cotton flannel, gauze faced non-woven fabric discs, and muslin with some variants as shown in Table 1. From three to eleven trials were made on each material. The filtering abilities of these materials were evaluated on the basis of their respective abilities to render the milk free of sediment. Data relative to the number of sediment particles found on a specific area of standard sediment discs obtained from various quantities of filtered milk are presented in Table 1. A single filter of each of the types studied was used in the first four test series, whereas double filtration with two filters were used simultaneously in the last series as shown.

Non-woven discs filtered the milk more effectively than did other materials tested, regardless of the quantity of milk examined. Flannel and muslin bags were second and third best, respectively. However, reused cotton flannel was ineffective as a filter, judged by the comparatively high numbers of sediment particles retained in the milk.

The data show a consistent relationship between the size of sample tested and the sediment particle count, the highest count being observed in tests from the 4-quart samples and the lowest from those taken from the 1-pint sample. Better consistency in the number of particles per square cm. of area was obtained when 3 and 4 quart samples were used than with lesser quantities.

The most complete filtration was obtained using the bonded non-woven disc either with or without the unit filter. Only 15 and 17 sediment particles, respectively were noted per sq. cm. on sediment discs.

Figure 3. Differences in sediment density between discs in series A after filtering through muslin fabric and in series B after filtering through bonded gauze discs, after several runs when flow was continued until 5 p.s.i. was reached on one of the discs.
taken from four quarts of milk so filtered. Flannel bag plus non-woven square in unit-filters yielded a sediment particle count of 29 from the same quantity of milk, thus rating under the cotton discs in effectiveness. The flannel and muslin bags, yielding 86 and 121 sediment particles per sq. cm. in four quarts of milk, respectively, were even less effective as filters than the flannel.

Reuse of the cotton flannel bag gave poor filtration. A sediment test of four quarts of milk filtered through a cotton flannel bag used four times showed an average count of 275 sediment particles per sq. cm.

Size of sediment particles found in milk filtered through different filter materials

Sediment particles on Lintine test discs, taken from 4-quart samples of milk filtered through various materials, were selected at random and measured. The particles found in milk filtered through the non-woven disc filter were smaller on the average, 45 x 60 microns, than those from milk going through the flannel and muslin bag filters. The largest particle noted in tests from the non-woven disc filter measured 116 x 125 microns, whereas those examined from milk filtered through a new and a 4-time used cotton-flannel bag measured 125 x 249 and 71 x 1273 microns, respectively. The largest particle found in the milk filtered with the muslin bag were of the dimensions of 400 x 1600 microns. These data seem to be consistent with those showing the relative efficiencies of filter material (Figs. 2 and 3, Table 1). There were more particles of a larger size in the milk in the tank when flannel or muslin were used in the in-line filters than when the non-woven disc filter was used.

DISCUSSION

During this investigation, day-to-day sediment contamination of the pipeline milk varied considerably. Apparently, some contamination could never be entirely avoided. Despite more-than-usual care taken to have the stables clean and the udders and teats washed free of soil immediately before milking, some foreign particles did get into the milk.

As pointed out under "Procedure" teat cups dropped off cattle occasionally during milking permitting the entrance of wood shavings. This condition should be avoided by supporting the teat cup assembly when cups drop off the teats.

Even under the finest conditions of pipeline milk production, some sediment will find its way into milk. Filtration is desirable to remove the sediment particles as rapidly and completely as possible.

The choice of filtering material should be made on the basis of the completeness of sediment removal rather than on the speed of filtration. High-speed filtration is usually associated with high porosity and inadequate removal of sediment particles. This study proved bonded non-woven fabric disc filters superior to muslin or flannel bags for pipeline filtration of milk. Flannel, used once in in-line bags or in unit filters gave much better sediment removal than muslin bags. Cotton flannel bags, used, then washed and reused as many as four times, were ineffective in sediment removal. Obviously, the filtering efficiency decreased as the downy cotton flannel nap became compacted or removed with wear.

Sediment testing of bulk-tank milk must be done under conditions which are quite different than those which are encountered in sediment testing of milk received in cans. The bulk-tank milk represents a larger volume of milk at a lower temperature, usually, around 40° F. This temperature is not conducive to quick tests by the present methods of sediment testing. If the present sediment standards, based on bottom-of-can samples, are to apply to bulk tank milk, then it is necessary to test a much larger mixed-milk sample than now used. For that reason, quantities of mixed milk ranging from one to four quarts were tested for sediment. The data from Table 1 show that the sediment particle count was very consistent when three and four-quart portions of the stirred milk were tested. Such consistency was absent when the pint, quart and 2-quart portions were tested. It is therefore suggested that testing equipment should be employed that will rapidly sample 1-gallon portions of milk.

While unit filters, inserted in the milk line between the individual milker and the main pipeline, have the advantage of immediate filtration of cow-warm milk and of excluding sediment particles that enter milk at the point of milking, they do not exclude particles that may enter from within the line. This latter may be quite objectionable. In one instance during this study, pipeline contamination consisted of rubber particles from the diaphragm pump. In other instances, churned butter granules, resulting from excessive agitation caused by air intake and pipeline risers, were noted. Thus, a filter at the inlet to the bulk tank would appear to be advisable, in addition to unit filters.

Counting sediment particles on Lintine discs obtained in split-flow milk filtration was not satisfactory. Too many particles were present and too many were imbedded deeply in the fabric to make this measurement of filtration efficiency feasible. Rather, viewing the overall discs and noting the dark discoloration which reflected density of sediment was preferred.
One of the striking observations made during this study was the rapid build-up of pressure against the Lintine sediment test filter after the milk was filtered through muslin, without a similar rise in pressure against the Lintine when non-woven filters were used. One apparent reason for the higher pressure build-up was inadequate filtration of the partially churned butter granules by the muslin strainer. When conditions responsible for churning in the pipeline were removed, the pressure build-up on the muslin-filter side of the split flow was not so rapid, but still occurred, even though no butterfat granules were present. Thus, it was obvious that the greater number of particles of sediment deposited on the Lintine, downstream from the muslin, accounted for the more rapid rise in pressure on the Lintine than on the Lintine downstream from the non-woven fabric.

Bag filters were inadequate for the removal of the sediment particles normally found to enter milk during milking, shown by filtration tests involving the use of milk flow-splitting apparatus, as well as by counting sediment particles from tank-drawn samples. Reuse of bags for filtration appeared to add greatly to this inefficiency while also adding to the hazard of bacterial contamination.

Summary and Conclusion

The quality of four milk filtering materials was measured by filtering milk through these materials, then refiltering through standard Lintine sediment testing discs. The materials tested were: (a) bonded non-woven discs, (b) flannel fabric (c) muslin fabric, and (d) flannel fabric reused four times, each use followed by washing. Differences in quality of filtration were secured by observing the density of sedimentation on Lintine discs when using two of the filtering materials in a flow-splitting apparatus, and by measuring the size of sediment particles and the number of particles that were found in one square centimeter areas when various sized samples were drawn from a bulk tank. Best performance was secured with the bonded non-woven discs, followed in order by flannel fabric, muslin fabric, and flannel fabric after four times used. Bag filters of flannel and muslin fabric gave inadequate filtration.

Sediment testing of bulk tank milk required the filtering of one-gallon portions in order to secure the best uniformity of particle counts from stirred milk.

The dome filter disc made possible the means for an immediate observation of the cleanliness of the milking operation.

Acknowledgements

Acknowledgement is due E. V. Painter and G. L. Weir of Johnson and Johnson Company, Chicago, Illinois, for assisting in operating apparatus used in this study and the Johnson and Johnson Company for a grant for this study, for the use of a milk flow-splitting machine, and for a bulk tank sediment test device.

References

PROGRAM

FORTY-FOURTH ANNUAL MEETING
INTERNATIONAL ASSOCIATION OF MILK AND FOOD SANITARIANS, INC.
BROWN HOTEL
LOUISVILLE, KENTUCKY — OCTOBER 7 TO 10, 1957

OFFICERS
President: Paul Corash, New York, N. Y.
President Elect: Harold B. Robinson, Washington, D. C.
First Vice President: Franklin W. Barber, Oakdale, L. I., New York
Second Vice President: William V. Hickey, New York, N. Y.
Secretary-Treasurer: Howard H. Wilkowske, Gainesville, Fla.
Executive Secretary: H. L. Thomasson, Shelbyville, Indiana

EXECUTIVE BOARD
Ivan E. Parkin
Harold S. Adams
Paul Corash
H. L. Thomasson, Ex-officio
Howard H. Wilkowske
Harold B. Robinson
Franklin W. Barber
William V. Hickey
H. L. Delozier

JOURNAL OF MILK AND FOOD TECHNOLOGY
Associate Editor, Dr. J. C. Olson, Jr., St. Paul, Minnesota
Managing Editor, H. L. Thomasson, Shelbyville, Indiana

PROGRAM COMMITTEE
Harold B. Robinson, Chairman
Howard Wilkowske
Franklin W. Barber
William V. Hickey
H. L. Delozier

PUBLICITY COMMITTEE
Thomas L. Jones, Chairman, Washington, D. C.

LOCAL ARRANGEMENTS COMMITTEE
H. L. Delozier, Chairman
Edmund H. Stoy, Co-Chairman
Louis E. Smith, Co-Chairman and Reception
Clarence Taylor, Finance
Joseph W. Dubbin, Films
Carl Jones, Registration
A. P. Bell, Entertainment
Burke Casper, Door Prizes
Harvey G. McAndrews, Publicity and Attendance
James C. Barringer, Steering

SPECIAL ACTIVITIES PROGRAM
Kentucky and Indiana State Associations

MONDAY, OCTOBER 7, 1957
9:00 A.M.—12 Noon—Meeting of Executive Board with Local Arrangements Committee
1:30 P.M.—5:00 P.M.—Individual Committee Meetings
1:30 P.M.—3:00 P.M.—Meeting of Journal Editors with Executive Board
3:00 P.M.—5:00 P.M.—Meeting of Council with Executive Board
2:00 P.M.—7:00 P.M.—Registration
7:00 P.M.—9:00 P.M.—Informal Reception South Room—Brown Hotel

TUESDAY MORNING — OCTOBER 8, 1957
Harold B. Robinson, President-Elect IAMFS Presiding
8:00 A.M.—Registration
10:00 A.M.—Invocation
10:05 A.M.—Address of Welcome:
Hon. Andrew Broaddus, Mayor
Louisville, Kentucky
Introduced by Russell E. Teague, M. D.
Commissioner of Health, Commonwealth of Kentucky
10:20 A.M.—Presidential Address:
Mr. Paul Corash, President
New York City Department of Health
New York, N. Y.
Appointment of Nominating Committee
Charge to the Committee
10:45 A.M.—"The International Association of Milk and Food Sanitarians, Inc., Its Youth, Adolescence, and Maturity, with the Twentieth Anniversary of the Journal of Milk and Food Technology"
Dr. John H. Shrader
Waterville, Vermont
Introduced by Mr. F. C. Baselet
American Can Co., New York, N. Y.
11:15 A.M.—"The Report of the Committee on Applied Laboratory Methods"
Mr. J. C. McCaffrey, Chairman
Illinois Department of Public Health
Chicago, Illinois
11:30 A.M.—"Containers, Insulation and Refrigeration for Split Milk Samples"
Mr. Cecil B. Donnelly and Dr. Luther A. Black
U. S. Public Health Service

Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio

12 Noon — Announcements

LUNCHEON RECESS

TUESDAY AFTERNOON — OCTOBER 8, 1957

A. P. Bell, Director of Sanitation
Louisville — Jefferson County Health Department
Presiding

1:45 P.M.—Film
2:00 P.M.—Door Prize Drawing
2:15 P.M.—"Report of Committee on Research Needs and Applications"
 Dr. Sam H. Hopper, Chairman
 University of Indiana Medical Center
 Indianapolis, Indiana

2:30 P.M.—"The Clean Milk Program of the Food and Drug Administration"
 Mr. Robert S. Roe, Director
 Bureau of Biological and Physical Sciences, Food and Drug Administration

3:00 P.M.—"The Report of the Committee on Dairy Farm Methods"
 Dr. Robert Metzger, Chairman
 Dairymen’s League Cooperative Assoc., Inc., New York, N. Y.

3:15 P.M.—"Virginia’s Tourist Establishment Sanitation Program"
 Mr. James W. Smith, Director
 Tourist Establishment Sanitation
 Commonwealth of Virginia Department of Health, Richmond, Va.

3:45 P.M.—Local Tours
7:00 P.M.—Smorgasbord

7:00 P.M.—Tri-Cities Dairy Technology Society Monthly Dinner Meeting:
 Plantation Room — Sheraton-Seelbach Hotel
 Speaker: Dr. C. K. Johns, Ottawa, Canada
 Subject: "Some Observations on Milk Sanitation in Europe"

WEDNESDAY MORNING — OCTOBER 9, 1957

F. W. Barber, 1st Vice President IAMFS
Presiding

9:00 A.M.—Film
9:15 A.M.—Door Prize Drawing
9:25 A.M.—Report of Nominating Committee
9:30 A.M.—"The Responsibility of the Dairy Industry to the Consumer"
 Dr. J. C. Flake

Evaporated Milk Association
Chicago, Illinois

10:00 A.M.—"Report of the Committee on Food Equipment"
 Mr. David E. Hartley, Co-Chairman
 Indiana State Board of Health
 Indianapolis, Indiana

10:15 A.M.—"Some Forms of Adulteration in Dairy Products."
 Dr. A. H. Robertson
 State Food Laboratory
 Department of Agriculture and Markets
 Albany 1, New York

10:45 A.M.—"Report of the Committee on Sanitary Procedure"
 Mr. C. A. Abele, Chairman
 Diversey Corporation
 Chicago, Illinois

11:00 A.M.—"The Use of Plastics in the Milk and Food Industry"
 Dr. D. F. Siddall, Director
 Research and Development
 U. S. Stoneware Co.
 Akron, Ohio

11:30 A.M.—"The Cleanability of Materials in Contact with Milk"
 Mr. C. L. Hayes, Supervisor
 Bacteriological Group
 Technical Service Division
 American Can Company
 Maywood, Illinois

12 Noon — Announcements

LUNCHEON RECESS

WEDNESDAY AFTERNOON — OCTOBER 9, 1957

Sarah Vance Dugan, Director
Food and Drug Division
Kentucky Department of Public Health
Presiding

1:45 P.M.—Film
2:00 P.M.—Door Prize Drawing
2:15 P.M.—"Strontium 90 Measurements in Food"
 Dr. Merrill Eisenbud, Manager
 New York Operations Office
 U. S. Atomic Energy Commission
 New York, N. Y.

2:45 P.M.—"Report of the Committee on Frozen Foods"
 Mr. Frank E. Fisher, Chairman
 Indiana State Board of Health
 Indianapolis, Indiana

3:00 P.M.—"Radiation Processing of Food"
 Mr. G. F. Garnatz, Director
 Kroger Food Foundation
 Cincinnati, Ohio

3:30 P.M.—"Report of the Committee on Communi-
cable Diseases Affecting Man"
Dr. R. J. Helvig, Chairman
U. S. Public Health Service
Washington, D. C.

3:45 P.M.—“Report of the Committee on Education and Professional Development”
Dr. John J. Scheuring, Chairman
University of Georgia, Athens, Georgia

4:00 P.M.—“Useful Techniques in the Development of a Food Sanitation Program”
Mr. Clyde Eller, Director
Sanitation Division
Tulsa City-County Health Department
Tulsa, Oklahoma

4:30 P.M.—“Current Status of Sanitarian Registration Legislation in the United States”
Mr. Karl K. Jones
Indiana State Board of Health
Indianapolis, Indiana

7:00 P.M.—Banquet
Crystal Ballroom — Brown Hotel
Master of Ceremonies, Dr. C. K. Johns
Dairy Technology Research
Canadian Dept. of Agriculture
Science Service Bldg.
Ottawa, Ontario, Canada
Banquet Speaker: Hon. A. B. Chandler, Governor, Commonwealth of Kentucky
Presentation of Past President Certificate to H. S. Adams by Paul Corash, President
Presentation of Citation Award and Sanitarian’s Award* by Ivan E. Parkein,
Chairman, Committee on Recognition and Awards
*The Sanitarians Award is supported jointly by the Diversey Corporation,
Klenzade Products, Inc., Oakite Products, Inc., Olin Mathieson Chemical Corporation,
and Pennsalt Chemical Co. and is administered by the International Association of Milk and Food Sanitarians, Inc.

THURSDAY MORNING — OCTOBER 10, 1957
William V. Hickey, 2nd Vice President IAMFS
Presiding

8:45 A.M.—Film
9:00 A.M.—Door Prize Drawing
9:15 A.M.—“Report of Committee on Membership”
Mr. Harold Wainess, Chairman
Harold Wainess and Associates
Chicago, Illinois
9:30 A.M.—“Development and Present Status of Dairy Waste Disposal”
Dr. H. G. Harding

Research Laboratories Division
National Dairy Products Corp.
Oakdale, L. I., New York

10:00 A.M.—“Report of the Committee on Baking Industry Equipment”
Mr. Vincent T. Foley, Chairman
Kansas City Health Department
Kansas City, Missouri

10:15 A.M.—“Food Sanitation at the 1957 Boy Scout Jamboree”
Mr. Archie B. Freeman
U. S. Public Health Service
New York, New York

10:45 A.M.—“Report of the Committee on Ordinances and Regulations”
Mr. Don H. Race, Chairman
Dairy Products Improvement Institute
Ithaca, New York

11:00 A.M.—“The Sanitary Aspects of Automatic Vending of Foods and Beverages”
Mr. David E. Hartley, Chief
Retail Food Section
Indiana State Board of Health
Indianapolis, Indiana

11:30 A.M.—“Current Status of 3A Symbol Utilization”
Mr. C. A. Abele, Secretary
3A Symbol Administrative Council

11:45 A.M.—“Driver Training and Laboratory Problems in the Bulk Tank Pickup Operation”
Dr. W. C. Lawton, Director
Quality Control Laboratory of Minneapolis-St. Paul
St. Paul, Minnesota

12:15 P.M.—Announcements

LUNCHEON RECESS
THURSDAY AFTERNOON — OCTOBER 10, 1957
Paul Corash, President IAMFS
Presiding

1:45 P.M.—Film
2:00 P.M.—Door Prize Drawing
2:15 P.M.—Business Meeting
Election of Officers
Report of Executive Secretary, Mr. H. L. Thomasson, Shelbyville, Indiana
Report of Secretary-Treasurer
Dr. Howard H. Wilkowske, Gainesville, Fla.
Report of Resolution Committee:
Mr. H. S. Adams, Chairman
University of Indiana Medical Center
Indianapolis, Indiana
Installation of Officers

ADJOURNMENT
AFFILIATES OF

International Association of Milk and Food Sanitarians

<table>
<thead>
<tr>
<th>Pres.</th>
<th>Joseph Medina Bernalillo, N. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st. Vice-Pres.</td>
<td>Thomas J. Stevens</td>
</tr>
<tr>
<td>2nd. Vice-Pres.</td>
<td>John Adams</td>
</tr>
<tr>
<td>Sec.-Treas.</td>
<td>Frank C. Estes</td>
</tr>
<tr>
<td>Auditor</td>
<td>Verlyn Owen</td>
</tr>
</tbody>
</table>

ARIZONA ASSOCIATION OF MILK AND FOOD SANITARIANS

<table>
<thead>
<tr>
<th>Pres.</th>
<th>George R. Griffin Douglas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec.-Treas.</td>
<td>Perry J. Kluemp Phoenix</td>
</tr>
<tr>
<td>Sec.-Treas.</td>
<td>Henry Ware, 2237 N. 14th Place, Phoenix.</td>
</tr>
</tbody>
</table>

EXECUTIVE BOARD

- O. V. Cooper Phoenix
- Hiram Shouse Phoenix
- Associated ILLINOIS MILK SANITARIANS
- Paul N. Hanger Springfield
- Pres.-Elect, Stephen F. Conway, Chicago
- 1st. Vice Pres., Robert W. Cee |
- 2nd Vice Pres., Gilbert G. Gibson Chicago
- Sergeant-at-Arms & Recorder, Edward McGuire Chicago

EXECUTIVE BOARD MEMBERS

- C. A. Abele Evanston
- Harry Cohen Chicago
- Norman F. Cree Chicago
- Louis Pickles Peoria
- California ASSOCIATION OF DRARY AND MILK SANITARIANS
- Pres., E. R. Eickner San Francisco
- 1st Vice Pres., W. N. Wedell Riverside
- 2nd Vice-Pres., H. H. Herspring Oakland
- Sec.-Treas., E. L. Sanders San Jose City Health Dept.
- 285 S.E. Market St., San Jose, Calif.

REGIONAL DIRECTORS

- T. C. Christenson Fresno
- B. J. Dobbs Sacramento
- Past Pres., S. Gaviria Los Angeles

CONNECTICUT ASSOCIATION OF DAIRY & FOOD SANITARIANS

<table>
<thead>
<tr>
<th>Pres.</th>
<th>Eaton E. Smith Hartford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice-Pres., Orrin P. Snow Wallingford Secure, H. Clifford Goslee.</td>
<td>256 Palm St., Hartford</td>
</tr>
</tbody>
</table>

DARY SANITARIANS ASSOCIATION OF THE DEL-MAR-VA PENNSYLVANIA

Pres., Dr. Harry G. Ricker, Jr.	Rehoboth Beach, Del.
Vice-Pres., Carlton Parker	Greensboro, Md.
Treas., Dr. J. M. Jaqueth	Betterton, Md.

ENGLAND ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., Dwight Lichly West Palm Beach | Vice-Pres., L. E. Mayhugh Miami |
| Sec.-Treas., W. A. Krienke, Dairy Dept., U. of Florida | 2nd. Vice-Pres., Frank H. Oxhorn, 1051 East Main St., Louisvi |

Directors

- Emmitt Dozier Jacksonville
- Austin Graham Winter Haven
- Lillian Pomerando Jacksonvilly
- J. D. Robinson Plant City
- S. D. Williams Jacksonville

LABORATORY SECTION CHAIRMAN

- Mrs. Ruth Vrooman North Miami Beach

GEORGIA CHAPTER OF THE INTERNATIONAL ASSOCIATION OF MILK AND FOOD SANITARIANS, INC.

| Pres., Carl Willson Atlanta | Vice-Pres., Elco Morris Rome |
| Sec.-Treas., John J. Sheuring, Dairy Dept., U. of Georgia | Athens |

BOARD OF DIRECTORS

- S. E. Region Jacksonville
- E. C. Region Henry Walker
- W. C. Region Milton Moore
- N. E. Region Keith Fitch
- S. W. Region Jesse Plaid
- N. W. Region J. R. Shurling

IDAHO SANITARIANS ASSOCIATION

| Pres., C. J. Hammond Boise | Vice-Pres., Frank H. Oxborn Boise |
| Sec.-Treas., Jack C. Ross, Panhandle Dist. Health Dept., Sandpoint |

INDIANA ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., David E. Hartley Indianapolis | Vice-Pres.-Elect, William Komenich Gary |
| 1st. Vice Pres., Harold S. Adams | 2nd. Vice Pres., Samuel T. Elder Indianapolis |
| 2nd. Sec.-Treas., Elva Evansville |
| Sec., Karl K. Jones, 1330 W. Michigan St. Indianapolis |
| Sec., Clarence L. Taylor Indianapolis |
| Auditors: Vincent V. Kiser Bluffton |
| Arman Shaker Vinncennes |

IOWA ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., Burt Hagan Cedar Rapids |
| Vice-Pres., Lyle Cunningham Des Moines |
| Sec.-Treas., Robert Biltman, State Health Dept., Des Moines, Iowa. |

EXECUTIVE BOARD

- Dr. M. P. Baker Ames |
- Grover Seeberger Mason City |
- KANSAS ASSOCIATION OF MILK SANITARIANS |
- Pres., Dean Duke Marion |
- Vice-Pres., Augustine Sauer Sabetha |
- 2nd. Vice-Pres., Samuel Hoover Junction City |
- Sec.-Treas., Frank L. Kelley, Kansas State Board of Health, Topeka |
- Auditors: Cal Emerson Pratt |
- Dan Evans Kansas City |

KENTUCKY ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., A. P. Bell Louisville |
| Vice-Pres., L. E. Mayhugh Louisville |
| Sec.-Treas., Frank H. Oxhorn, 1051 East Main St., Louisville |

<table>
<thead>
<tr>
<th>Directors</th>
<th>Louisville</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis Smith</td>
<td>Somerset</td>
</tr>
<tr>
<td>R. N. Maddox</td>
<td>Mayfield</td>
</tr>
<tr>
<td>T. R. Freeman</td>
<td>Lexington</td>
</tr>
<tr>
<td>H. L. DeLozier</td>
<td>Louisville</td>
</tr>
</tbody>
</table>

MICHIGAN ASSOCIATION OF MILK SANITARIANS

| Pres., Orville Nelson Rockford |
| 1st. Vice-Pres., William Wade Flint |
| 2nd. Vice-Pres., Robert Dalton Lansing |
| Sec.-Treas., Robert Lyons, Lansing-Ingham County Health Dept., City Hall, Room 207, Lansing |

RECORDING SECRETARY, Dr. Frank Peabody, Dept. Microbiology and Public Health, Mich. State University, East Lansing.

DIRECTORS

- Past Pres., Dr. Clyde K. Smith East Lansing |
- Ken Kerr Grand Rapids |
- Ronald Leach, Corruna |
- Ferris Smith Kalamazoo |
- Armin Roth Wyandotte |
- Ralph Moore Ada |

MINNESOTA ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., J. J. Jezeksi St. Paul |
| Vice-Pres., E. C. Spreen Grand Rapids |
| Sec.-Treas., G. H. Strode, Mentor Department of Agriculture, 515 State Office Building, St. Paul, Minnesota. |

DIRECTORS

- H. E. Birdsall St. Paul |
- R. W. Kohlstadt Bertha |
- Chester Ness Litchfield |
- E. C. Omundson Albert Lea |
- O. M. Osten Minneapolis |
- R. J. Schneider Rochester |

MISSOURI ASSOCIATION OF MILK AND FOOD SANITARIANS

| Pres., Bernie Hartman Kansas City |
| 1st. Vice-Pres., Vernon Gump Lebanon |
| 2nd. Vice-Pres., O. D. Niswonger, Jr. Poplar Bluff |
| Sec.-Treas., John H. McQueen, Director Buran of Food and Drugs Division of Health, Jefferson City, Mo. |

AUDITORS

- Gerald Cook Sedalia, Mo. |
- Tom Baker 38 Topping Lane, Kirkwood, Missouri. |

NEW YORK STATE ASSOCIATION OF MILK SANITARIANS

| Pres., Dr. Geo. H. Hopson Poultney |
| Sec.-Treas., William O. Skinner White Plains |
| 118 Stocking Hall, Cornell U. Ithaca |

MEMBERS OF THE BOARD

- James C. White Ithaca |
- Robert Metzger Syracuse |
- Walter H. Grunge N.Y.C. |
- William Gay Owego |

NORTH DAKOTA ASSOCIATION OF SANITARIANS

| Pres., John E. Fields Dickinson |
| Sec.-Treas., John E. Cobb, 317 Griffin Bismarck |

OREGON ASSOCIATION OF MILK SANITARIANS

| Pres., Roy Stein Corvallis |
| Vice-Pres., Kenneth Carl Salem |
| Sec.-Treas., Archie Miner 5016 Olive Street, Eugene, Oregon. Eugene Farmers Creamery. |

AUDITORS

- Al Tinsdale Salem |
- Grover C. Poe Portland |

EXECUTIVE COMMITTEE

- Spencer George Tillamook |
- H. E. Kilman Portland |
Pennsylvania Dairy Sanitarians Association
Pres., Homer Young Glenshaw
Vice-Pres., Alan Miller Oxford
Sec., Walter Arnold Vandehilt
Treas., C. O. Herlinger Selings Grove

Rhode Island Association
of Dairy and Food Sanitarians
Pres., Dr. James W. Cobble ... Kingston
Vice-Pres., Charles Ross Providence
Sec., Dr. Richard M. Parry, 138 Greenwich Ave. ... Warwick
Treas., Dr. Thomas J. Grenan, Jr. ... Providence

Rocky Mountain Association
of Milk and Food Sanitarians
Pres., Wm. E. Polzen Denver, Colo.
Pres.-Elect, Carl Rasmussen Sheridian, Wyo.
Vice-Pres., Charles Walton Pueblo, Colo.
2nd Vice-Pres., Paul Freebain Salt Lake City, Utah
Sec.-Treas., John E. Guinn, Wyoming State Dept. of Health, Cheyenne, Wyo.
Auditors:
Larry Gordon Cherokee, Texas
Ovrdle DeFrai Fort Worth
Sanitation Section Texas Public Health Association
Chairman, Carl H. Scholle Dallas
Vice-Chairman, Don Shaddock ... Fort Worth
Secretary, David H. Evans ... Austin
Section Council:
L. M. Hollar (3 yr)
W. W. Clarkson (2 yr)
Lige Fox (1 yr)

South Carolina Association of Sanitarians, Inc.
Pres., T. P. Anderson Columbia
Vice-Pres., Marshall Hildebrand Columbia
Sec.-Treas., C. W. Harrell, P. O. Box 5302, Five Points Station, Columbia.
Directors:
James H. Moore Charleston
J. D. Kirby Greenwood
W. W. Vincent Conway
Alan Kolb Columbia
Rudolph McCormack Ridgeland
J. P. Still Orangeburg

South Dakota Association
of Sanitarians
Pres., Howard Froiland Aberdeen
Vice-Pres., Charles Halloran Pierre
Sec.-Treas., Louis F. Renfify State Dept. of Health, Pierre
Executive Board
Past Pres., Ira DeHaai Spearfish
Elected member, Ray Kallemeyn Sioux Falls

Tennessee Association of Sanitarians
Pres., John P. Montgomery Dresden
Vice-Pres., Arthur M. Teefer .. Memphis
Sec.-Treas., R. A. Rhodes 1400 Lambuth, Jackson
Auditors:
W. E. Creech Morristown
Herman A. Matheny Covington

Virginia Association of Milk and Food Sanitarians
Pres., M. K. Cook Roanoke
1st Vice-Pres., E. H. Phillippe Danyville
2nd Vice-Pres., T. L. Anderson Staunton
Sec.-Treas., J. F. Pace, State Dept. of Health, State Office Bldg. Richmond
Auditors:
A. L. Turner Richmond
J. W. Moschler Richmond

Washington Milk Sanitarians Association
Pres., James G. Greenway Seattle
Pres.-Elect, C. C. Prouty Pullman
Sec.-Treas., Frank W. Logan, City Health Dept., Public Safety Bldg., Seattle.
Auditors:
Harold Janzen Yakima
Fred Bennett Seattle

Wisconsin Association of Milk and Food Sanitarians
Pres., Burdette Fisher Kiel
Vice-Pres., James T. Judd Shawano
Sec.-Treas., L. Wayne Brown, 421 Chemistry Bldg., U. of Wis. Madison
Past Pres., Robert M. Keown Kiel
Directors:
Alvin Noth Reedsburg
Don Hart Sun Prairie

NEWS AND EVENTS

AUTHORIZATIONS TO USE THE 3-A SYMBOL

The concerns the names of which are listed below have been granted authorization to affix the 3-A Symbol to the models of equipment listed, by the 3-A Sanitary Standards Symbol Administrative Council. The Council emphasizes that this is not to be considered a complete roster of concerns which offer equipment conforming to pertinent 3-A Sanitary Standards.

66
Downey, Calif.
Blackburn Stainless Steel Products
Models: Oval Holding—150-2500 gals.
Bottom Refrigerated
Full Refrigerated

No. 65
Kenosha, Wisconsin
G. S. H. Products Corporation,
Fittings for Sanitary Piping — 0800-0806

No. 67
Kenosha, Wisconsin
G. S. H. Products Corporation,
Model Numbers on file. List too voluminous for publication.

Inlet and Outlet Leak Protector Valves - 1400

No. 69
Kenosha, Wisconsin
G. S. H. Products Corporation,
Model Nos: 10F, 10FL, 10CL, and 11 CL.
KRIENKE RETURNS FROM COSTA RICA ASSIGNMENT

Walter A. Krienke, associate dairy technologist with the University of Florida Agricultural Experiment Station and Sec.-Treas. Florida Association of Milk and Food Sanitarians, has returned recently from a tour of duty in Costa Rica, where he spent seven weeks advising with a milk producers' cooperative and small plants near San Jose.

He was awarded a medal of recognition for technical assistance to La Cooparativa de Productores de Leche. His trip was under the technical assistance agreement between the University of Florida and Servicio Tecnico Interamericana de Cooperacion Agrocola at San Jose.

Krienke consulted on size, arrangement, types of equipment and new products for a milk plant soon to be constructed. The present plant is bottling milk and making a small amount of ice cream. Pasteurization of milk was started only about 5 years ago, and it now constitutes about one-third of all milk being sold. Milk sanitation work is in need of technical assistance right from the cow to the consumer.

The Florida technologist suggested making chocolate milk bottling cream in more convenient containers, starting a cottage cheese operation and expanding ice cream manufacture.

The Costa Ricans plan to make variegated ice creams under a process developed by Krienke at the Florida station.

To help balance the dairy program for the Central American republic, the cooperative is planning small cheese plants in outlying areas. Krienke advised on equipment, methods and varieties of cheese.

PAPERS PRESENTED AT AFFILIATE ASSOCIATION MEETINGS

Editorial Note: The following listing of subjects presented at meetings of Affiliate Associations is provided as a service to the Association membership. Anyone who desires information on any subject is encouraged to write to the Secretary of the Affiliate Association concerned for the address of the speaker. Information desired then may be requested from the speaker (a copy of the paper presented may be available for the asking.)

ASSOCIATED ILLINOIS MILK SANITARIANS
(Spring Conference, May 21, 1956)
Mr. P. Edward Riley, Sec.-Treas., Illinois Dept. of Health, 1800 W. Fillmore Street, Chicago, Ill.
High Coliform Counts, Why? C. A. Abele, Director of Educational Programs, The Diversey Corporation.
Insect and Rodent Control for Dairy Plants. Dr. Edward L. Holmes.
You Can't Miss It! William E. Skadden
Comparative Merits of Four Tests for Determining Bacterial Quality of Raw Milk.
Panel discussion—Moderator, J. C. McCaffrey
Panel members: William Moseley, Dr. Harold Calbert, Robert Smith, Richard M. Hoyt.

CONNECTICUT ASSOCIATION OF DAIRY AND FOOD SANITARIANS, INC
(Spring Meeting, May 9, 1956)
Mr. H. Clifford Goslee, Sec., 256 Palm St., Hartford, Conn.
Flavors Associated with Milk Production. Professor Alec Bradfield
Flavors Associated with Milk Processing and Distribution. Dr. A. C. Fay
A Plan for Scoring Milk and Milk Products. Professor Leonard B. Dowd

SOUTH DAKOTA ASSOCIATION OF SANITARIANS
Louis Remily, Sec.-Treas., State Dept. of Helath, Pierre, S. D.
Suburban Developments and Environmental Sanitation. Edward R. Mullaly
Recent Consideration in the Bulk Milk Enforcement Program. Milt Held
Sanitation in Disaster. Gerald Ferguson

Rural Health Program. Dr. Donald DeVaulis
Public Health Significance of Antibiotics in Milk. Dr. Edward Berry
Consideration in the Development of Standards in the Food Industry. John R. Fritz
Current Recommendations for Fly Control for the Milk and Food Industries. C. E. Garhardt
Radiological Hazards Associated with Shoe Fitting Devices. Paul F. Woolrich

State Institutional Sanitation Program. R. S. Wallace
Carmelized and Aged Milk-Milk Quality Control. Dr. G. Shadwick
Moderator — Loren Carlson
Panel members — A Milkman’s Interest in State Legislation. Gus Rachetto
A Restaurant Operator’s Interest in Food Laws. Carl Burgess
A Senator’s View of Milk and Food Laws. Alfred D. Roessler
A Representative’s Views of the Milk and Food Laws. Albro Ayres

Trends in Milk and Food Laws in Our Bordering States. Milton Held

Organization of County Health Department. A panel discussion.
Moderator — Louis Remily
Panel members — Dr. G. J. VanHeuvelen, Harlan Stricklett, Dr. T. E. Eyres.

Experiences in the Rapid City Vector Control Program. R. J. Morgan

VIRGINIA ASSOCIATION OF MILK AND FOOD SANITARIANS
(Eleventh Annual Conference, March 15-16, 1956)
J. F. Pace, Sec-Treas., State Health Dept., Richmond, Va.

New Laws and Regulations Relating to Food and Milk Inspection Program. Mark I. Shanbaltz and Parke C. Brinkley

Laboratory Approval and Practical Bacteriology in Milk and Food. Dr. M. J. Eggert, W. F. Skinner and George Sooy

How the Restaurant Industry and Public Health Officials Are Accepting Their Responsibility in Elevating the Standards of Sanitation of Food Establishments in Virginia, As Well As Nationwide. Walter D. Tiedeman

Relationship of N. S. F. Standards to the Manufacturing Cost of Food Service Equipment. W. P. Swartz, Jr.

The Affairs of the International Association of Milk and Food Sanitarians. H. L. Thomasson

Proposed Laws for Registration of Milk and Food Sanitarians. C. F. Hanger

Approved Equipment for Dispensing Milk. James W. Smith

The Milk Ring Test for Brucellosis. Dr. W. L. Bendix

IDAHO SANITARIANS ASSOCIATION
(Milk Plant and Dairy Farm Sanitarians Short Course, March 26-30, 1956)
J. C. Ross, Sec-Treas., Panhandle Dist. Health Unit, Sandpoint, Idaho.

Butter Manufacturing; (1) What happens when we make butter, (2) Problems of butter plants in Idaho, (3) Sanitation problems of butter plants. Prof. H. A. Hartley

Evaporated Milk and Milk Powder; (1) What happens when we make evaporated milk and milk powder, (2) Problems of evaporated milk and milk powder plants, (3) Sanitation problems of evaporated milk and milk powder plants. Dr. J. C. Boyd

Cheese Manufacturing Panel; (1) What happens when we make cheese, (2) Problems of cheese plants in Idaho, (3) Sanitation problems of cheese plants. Prof. H. A. Hartley

Ice Cream Manufacturing Panel; (1) The manufacture of ice cream, (2) Problems of ice cream plants in Idaho, (3) Sanitation problems of ice cream plants. Dr. R. A. Hibbs

Problems Involved in the Bulk Handling of Milk. Prof. C. C. Prouty

Some New Cleaning Techniques on the Farm and in the Dairy Plant. Dale Garner

Processing Bottled Milk Dr. R. A. Hibbs

Informal Discussion of Kitchen Construction and Dishwashing. Bob Green

How to Write Better Business Letters. Prof. Sherman Practical Dairy Rations. Dr. R. H. Ross

What a Good Dairy Cow Looks Like. Prof. D. L. Fournet

Labor Utilization in Milk Receiving Rooms. Dr. J. C. Boyd

Speech Craft. Prof. Whitehead

MISSOURI ASSOCIATION OF MILK AND FOOD SANITARIANS
(Twenty-fourth Annual Milk and Food Sanitation Conference, April 16-18, 1956)

Bulk Milk Handling. A panel discussion.
Moderator, George Bauer

Panel Members — Problems of the Tank Truck Driver. Larry Davis

Milk Producer Viewpoint. Kermit Linebarger

Health Department Viewpoint. C. W. Dronggold

Flavor Problems. J. E. Edmondson

Stump the Panel. Moderator — Milton R. Fisher

Panel members — John McCutchen, Milton E. Held, Webster Scott, Louis Blattner

Comparison of DMC, SPC, and Laboratory Problems. R. G. Jensen

Inhibitors—

The Laboratory Determination of Bacterial Inhibitors in Milk. Jerry Skopek

Raw Milk Positive to Inhibitors and Farm Inspection. C. W. Dronggold

Care of Rubber Parts — Sanitation Problems. R. S. Guthrie
MICROBIOLOGICAL ASSAY

of Amino Acids and Vitamins

Difco Media are available for the microbiological assay of

- Leucine
- Isoleucine
- Methionine
- Lysine
- Arginine
- Cystine
- Tyrosine
- Phenylalanine
- Tryptophane
- Citrovorum Factor
- Inositol
- p-Aminobenzoic Acid
- Riboflavin
- Niacin
- Thiamine
- Pantathenic Acid
- Biotin
- Vitamin B₁₂
- Folic Acid
- Pyridoxine
- Choline

Each medium is free from the essential growth requirement factor for which the medium is recommended. The addition of this factor in specified increasing concentrations elicits a growth response of the test organism which may be measured acidimetrically or turbidimetrically. Appropriate media for carrying cultures in stock, and preparation of inocula for each test are available.

Complete details of media for Microbiological Assay available upon request

DIFCO LABORATORIES
DETROIT 1, MICHIGAN

Present Status of Brucellosis and Tuberculosis Eradication Problems in Missouri. L. A. Rosner, R. E. Omohundro
Status of Poultry Sanitation. Joe Atkinson, Samuel Alfeld, B. L. Durben
Hot Water Heating for Dish Machine Use. T. C. King
Stainless Steel in the Milk and Food Industry. (Speaker to be announced)

SANITATION MAINTENANCE SHOW & CONFERENCE SCHEDULED FOR CHICAGO, OCTOBER, 1957

The expanding importance of sanitation maintenance will receive National recognition this coming Fall when the second annual Sanitation Maintenance Show and Conference takes place at Navy Pier, Chicago. Produced by Orkin Expositions Management, nationally known exposition and trade show producers, the Show will be held from October 14-16, 1957, inclusive.

Sponsored by the Industrial Sanitation Management Association, Association of Food Industry Sanitarians, and the National Association of Bakery Sanitarians, the Show scored a strong success in New York this past October when 3500 sanitation maintenance executives from 30 states and 10 foreign countries attended.

Based on this strong recognition of the industry’s only show and conference for the actual buyers and users of sanitation maintenance products and services, the sponsors expect attendance at the 2nd Show to double last year’s turnout.

The producers state that manufacturers’ inquiries since the past Show also indicate a substantial increase over the 86 exhibitors who displayed in New York.

Under the chairmanship of J. Lloyd Barron, Manager of the Sanitation Department of National Biscuit Company, an important series of conferences on sanitation maintenance problems will again be held concurrently with the Show at the Navy Pier. Experts will speak on various phases of the field; the popular
“clean-up” session will provide an industry-wide forum for the exchange of ideas. The full program will be announced later.

Orkin Expositions Management has produced many of the nation’s top expositions, including the National Electrical Industries Show, Armory Furniture Show, International Housewares Show, the famous Do-It-Yourself Shows, and other industry events.

Information about the Sanitation Maintenance Show & Conference can be obtained by writing to Orkin Expositions Management, 19 W. 44th Street, New York 36, N.Y.

CLASSIFIED ADS

POSITIONS AVAILABLE

SANITARIAN I — generalized program. $5045 per year. Civil Service requirements: B. S. degree in public health, sanitary science, food or dairy technology; other degrees acceptable with experience.

APPLICATIONS — from Personnel Officer, Department of Public Health, Room 504, City Hall Annex, Philadelphia, Pa.

WANTED FOOD INSPECTORS

Must have college degree. Starting salary $3936.00. Annual merit increases. Write Herbert McLeod, Jr., Virginia Department of Agriculture, Richmond.

SANITATION CONSULTANT FOR INDUSTRY — New Opportunity

One of nations largest and most experienced industrial sanitation consulting firms has opportunity for man in Middlewest at good salary, all expenses and bright future. Position requires ability to travel, good scientific background and some experience in inspection work, plus inherent business ability. A good opportunity in a growing firm. Write Dr. E. L. Holmes, Executive Director, American Sanitation Institute, 884 Hodiamont Avenue, St. Louis, Mo.

INDEX TO ADVERTISERS

American Can Co. Inside Back Cover
Babson Bros. Co. Back Cover
Baltimore Biological Laboratories VI
Creamery Package Mfg. Co. Page 244
Difco Laboratories Page 243
Ex-Cell-O Corp. — Pure Pak Div. II, III
IAMFS, Inc. .. VIII, IX, X
Johnson & Johnson I
Klenzade Products, Inc. VI
Lazarus Laboratories — Div. West
Disinfecting Co. IV
Oakite Products, Inc. Page 244
Penssalt Chemicals Inside Front Cover
Stainless & Steel Products Co. VIII
The Haynes Co. VII
The Heil Co. .. VII
Vacuum Can Co. VI
Vitex Laboratories — Div. Nopco
Chemical Co. ... IV

CHLORINE or QUATERNARY...

with Oakite it's low cost sanitation

If you prefer a chlorine type sanitizer, Oakite BACTERICIDE, 100 ppm in cold or warm water, gives instant bacteria destruction at minimum cost. Drains free, safe on all surfaces.

If you prefer a quaternary ammonium type, Oakite SANITIZER No. 1 is the low-cost answer. Dilute solution kills quickly, leaves residual film to sustain germicidal action until rinsed off.

For details write to Oakite Products, Inc., 38C Rector St., New York 6, N.Y.
Notice
Attractive Membership Lapel Button and Decal

Now Available
Convolution — Blue . . . Circle & Bar — Silver . . . Field — Blue
Letter "S" — White . . . Lettering — Blue

International Association of Milk & Food Sanitarians, Inc.
Box 437, Shelbyville, Indiana

Notice

Every Milk Sanitarian should have a complete set of
3A Sanitary Standards. DO YOU HAVE YOURS?

Order Blank on the back of this notice.—Order Now!!!
Application for Membership

INTERNATIONAL ASSOCIATION OF MILK & FOOD SANITARIANS, Inc.
Box 437, Shelbyville, Indiana

Name
Please Print

Date

Address

□ New

□ Renewal

Business Affiliation
Annual Dues $5.00
□ Check □ Cash

(Membership includes subscription to Journal of Milk & Food Technology.)
(Please Print)

Recommended by

Subscription Order

JOURNAL OF MILK & FOOD TECHNOLOGY

Name
Please Print

Date

Address

□ New

□ Renewal

Educational & Public Libraries (Annually) $4.00.
□ Check □ Cash

Individual Non-Member Subscription (Annually) $6.00

Governmental Agencies, Commercial Organizations
(Please Print)

1. A. M. F. S. & J. M. F. T.
Box 437, Shelbyville, Ind.

Change of Address

FROM

Name
Please Print

Date

Address

TO

Name
Please Print

Address
(Please Print)

1. A. M. F. S. & J. M. F. T.
Box 437, Shelbyville, Ind.

Order for 3A Standards

Name
Please Print

Date

Address

() Complete Set @ $2.00 =

() Complete set bound (durable cover) @ $3.75 =

5 Year Service on Standards as Published = 2.50 additional

Order for Reprints of Articles

Schedule of prices for reprints; F. O. B. Shelbyville, Indiana

<table>
<thead>
<tr>
<th>Amt.</th>
<th>Title</th>
<th>1 Page</th>
<th>2 Pages</th>
<th>3 & 4 Pages</th>
<th>5 & 8 Pages</th>
<th>12 P. Pages</th>
<th>Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or less</td>
<td></td>
<td>$12.50</td>
<td>$15.00</td>
<td>$21.00</td>
<td>$30.00</td>
<td>$50.00</td>
<td>$21.67</td>
</tr>
<tr>
<td>Add'l 100's</td>
<td></td>
<td>1.60</td>
<td>1.60</td>
<td>3.00</td>
<td>4.20</td>
<td>7.00</td>
<td>3.37</td>
</tr>
</tbody>
</table>
Cafeteria managers, too, prefer CANCO cartons

...because they save refrigerator space, minimize "clutter," and lower clean-up costs!

Canco cartons help the cafeteria manager make his lunchroom more attractive, more efficient. Because they're disposable, there are no empties to collect, store and return.

Cafeteria patrons prefer Canco cartons, too—in all of the popular sizes. For this superior container is much easier to open and provides "controlled pouring," is sturdy, handsome, sanitary.

If you are a public health official, you can take pride in the fact that fresh milk is now available almost everywhere in Canco disposable milk containers. Much credit for this advance goes to public health officials, who early recognized the disposable container as a great milestone on the road to better milk distribution.
A long time ago, someone around here was wise enough to write these words:

"DO NOT install a pipe line with a riser, as that almost certainly will lead to trouble ... it always has ... it seems to us that it always will. If there is just no possible way to install the line without a riser, then don't sell or install it."

Since then, people who have made a study of pipe lines tell us how right we were ... how milk churns up and down in risers ... how rancidity and off-flavors result ... and how nearly impossible it is to get a pipe line with risers really clean.

That's why we still walk away from a job rather than install a riser. No risers churn Surge clean milk ... ever.

Copyright 1957 — Babson Bros. Co.