

International Life Sciences Institute

ILSI Europe – IAFP webinar on the "Relevance of Microbial End-Product Testing in Food Safety Management"

All opinions and statements are those of the individual making the presentation and not necessarily the opinions or views of ILSI Europe or IAFP

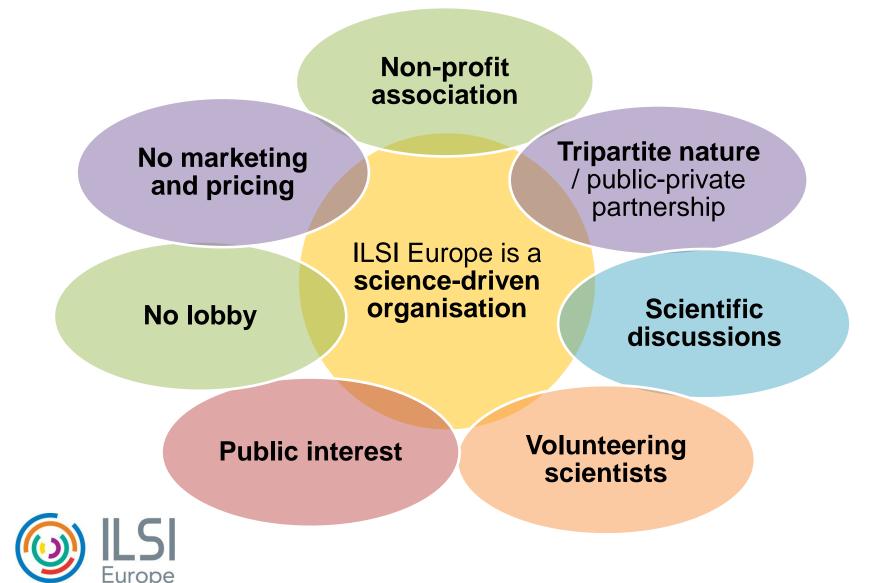
Housekeeping issues

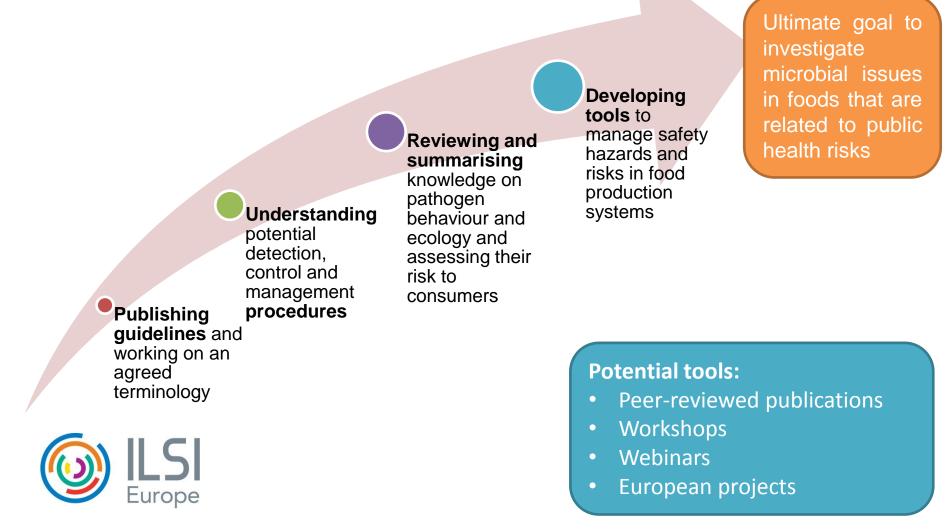
- For best viewing of the presentation material, please click on 'maximize' in the upper right corner of the 'Slide' window, then 'restore' to return to normal view.
- Audio is being transmitted over the computer so please have your speakers 'on' and volume turned up in order to hear. A telephone connection is not available.
- During the session you can submit questions via the **Text Chat section** at the bottom of the screen.
- This webinar is being recorded and will be available for access by IAFP members at <u>www.foodprotection.org</u> and openly accessible via <u>www.ilsi.eu</u>.
- In the rare case that you have any technical difficulties viewing the webinar, please e-mail support at <u>support@telspanvenue.com</u> or call +1 800.898.2315 or +1 800.600.6458.

International Life Sciences Institute

ILSI Europe – IAFP webinar on the "Relevance of Microbial End-Product Testing in Food Safety Management"

All opinions and statements are those of the individual making the presentation and not necessarily the opinions or views of ILSI Europe or IAFP


ILSI Europe – Vision


We build multi-stakeholder science-based solutions for a sustainable and healthier world.

ILSI Key principles

Microbiological Food Safety Task Force: Goals and tools

Microbiological Food Safety Task Force: Topics and Activities

Antimicrobial resistance	 FP7 European project Ecology from Farm to Fork Of microbial drug Resistance and Transmission
Industrial MRA	 Industrial Microbiological Risk Assessment (MRA) in fresh produce and later on in dairy
Virus control options	 Control options for viruses in food processing
Meta-analysis in MRA	 The Use Of Meta-Analysis In Microbiological Risk Assessments

Expert group activities result in peer-reviewed publications

- >4,000 food safety professionals
- Committed to Advancing Food Safety Worldwide®

IAFP Annual Meeting and IAFP European Symposium on Food Safety

ILSI Europe EXPERT GROUP: History-Based Performance of the HACCP Control Systems to Verify the Effectiveness of Food Safety Management

 Marcel Zwietering, Liesbeth Jacxsens, Jeanne-Marie Membré, Maarten Nauta, Mats Peterz

Programme

Moderator: Ms Lilou van Lieshout (ILSI Europe, BE) Moderator: Prof. Marcel Zwietering (Wageningen University, NL)

17.00 Introduction Ms Lilou van Lieshout (ILSI Europe, BE) Prof. Marcel Zwietering (Wageningen University, NL)

17.05 The Role of Validation, Verification and Microbiological Sampling in a *Dr Mats Peterz (Nestlé, CH)* Food Safety Management System

17.20 The Relevance of End Product Testing: The Example of Canned Foods *Dr Jeanne-Marie Membré (INRA, FR)* and Cooked Ham

17.35 FSMA: Testing as a Tool for Verifying Preventive Controls **Prof. Donald Schaffner (Rutgers University, US)**

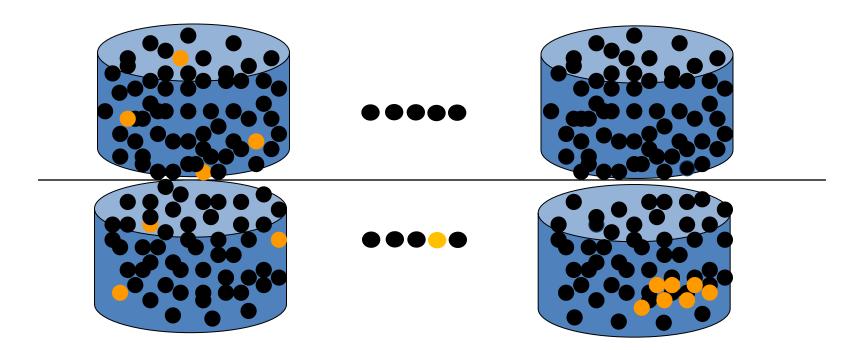
17.50 Q & A

18.00 Closure

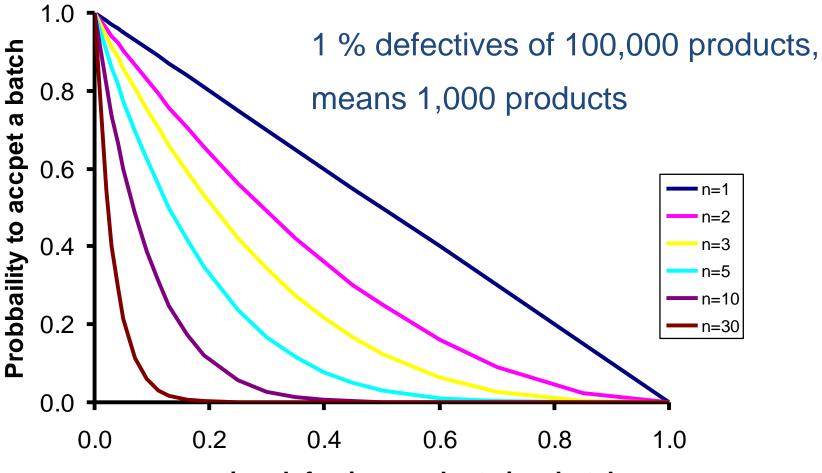
The role of validation, verification and microbiological sampling in a food safety management system

Mats Peterz

Based on a presentation from Prof. Zwietering, Wageningen University


Introduction

- Microorganisms can be heterogeneously distributed
- Taking a sample is a stochastic process
- Performing a sampling plan (n=10) is a stochastic process
- Testing methods are not perfect


Can end product testing control food safety?

End product testing useful or lottery ?

Positives mean something, negatives are no guarantee (often only 300 g of 30,000 kg = 0.001%; 1: 100,000)

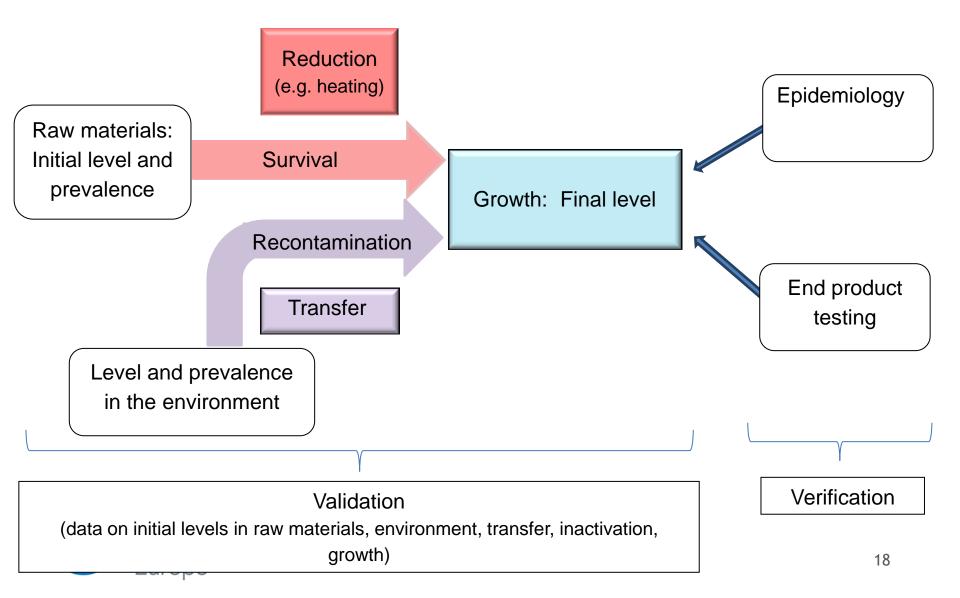
Probability of accepting a lot, c=0

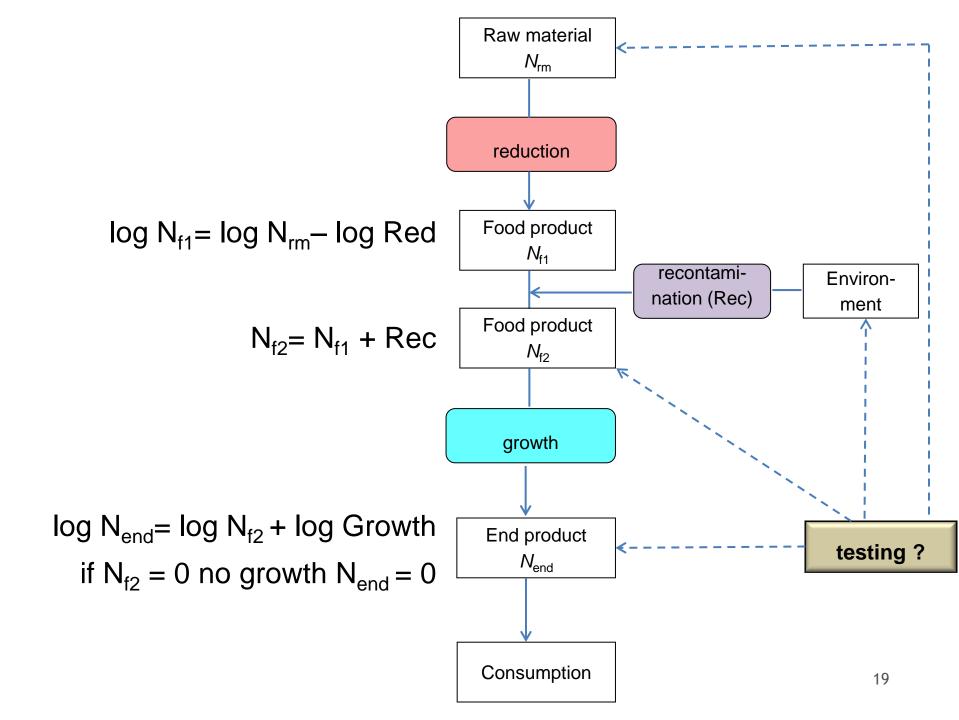
proportion defective products in a batch

Testing frequency based on level of control and history

EU2073/2005 for *Salmonella* minced meat, meat preparations and carcases:

- shall take samples for microbiological analysis at least once a week

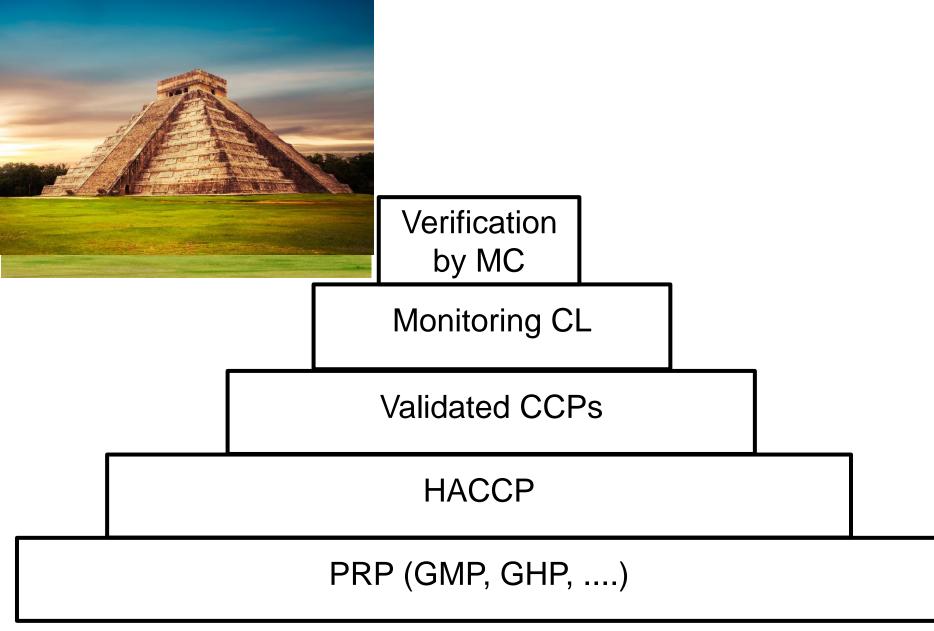

Sampling can be reduced to fortnightly if ...


- satisfactory results have been obtained for 30 consecutive weeks
- or the national or regional *Salmonella* control programme demonstrates that the *Salmonella* prevalence is low

Validation - Monitoring - Verification

- Validation: Obtaining evidence that a control measure, if properly implemented, is capable of controlling the hazard to a specified outcome
 - prove that 72°C 15 s gives a 6 D reduction for *Listeria* in milk
- **Monitoring:** a planned sequence of observations of control parameters to assess whether a control measure is under control
 - continuous verification of T=72°C and residence time
- Verification: The application of procedures and other evaluations, in addition to monitoring, to determine whether a control measure is or has been operating as intended
 - microbial testing to verify Listeria absence in 5 times 25 ml of milk

Validation / Verification


Examples of Information Sources

Validation:

- Scientific literature
- Databases
- Base line studies
- Predictive microbiology
- Risk assessments
- Specific experiments (e.g. challenge tests)

Verification:

- Microbial testing
- Consumer complaints
- Authority testing
- Reports on outbreaks, zoonosis and recalls

Verification by MC

Conclusions

- All samples negative is no guarantee of safety
- A positive sample is indicating unsafety
- Sampling is useful for verification

Control of safety is only to a very limited extend supported by end-product testing

Case studies

The relevance of end-product testing is described and evaluated for two case studies:

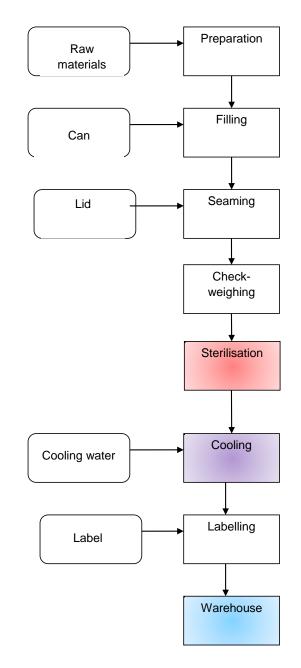
- Canned food (*Clostridium botulinum*)
- Cooked sliced ham (*Listeria monocytogenes*)

The relevance of end product testing: the example of canned foods and cooked ham

Jeanne-Marie Membré

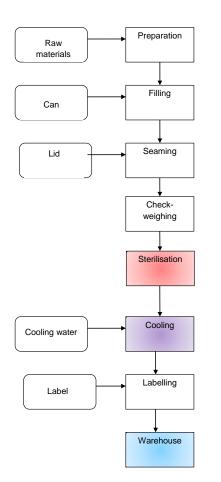
Relevance of microbial finished product testing in food safety management

Marcel Zwietering, Liesbeth Jacxsens, Jeanne-Marie Membré, Maarten Nauta, Mats Peterz


International Life Sciences Institute

Canned foods

 A minimal F_{121°C} value of 3 minutes is used to guarantee sufficient reduction of *Clostridium botulinum* spores (for nonacid products).


(Often F_{121} is much higher in practice to also inactivate spoilers)

- With a >12D processing, there is very low probability of survival of spores.
- Likewise, in hermetically sealed cans, the recontamination is prevented.

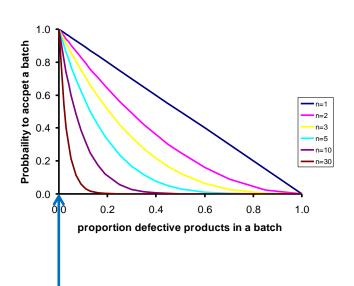
C. botulinum in a canned product

Europe

Process step	Possible microbial behaviour	Likelihood of microbial behaviour
Raw materials	Initial introduction	May happen
Sterilisation	Reduction by HT	Very effective
Post HT-process	Recontamination	Negligible
Storage	Growth	Irrelevant

% contaminated end-product extremely low (<< 1/10,000)

Canned foods - Verification


- External sources to verify the level of end-product contamination
 - RASFF Portal (European Rapid Alert System for Food and Feed)
 - European Union summary reports
 - Literature studies
- RASFF Portal (1998-2013):
 - 3 notifications in 16 years
- EFSA Report (2010-2012):
 - About 10 outbreaks per year, not necessarily from industrially canned products

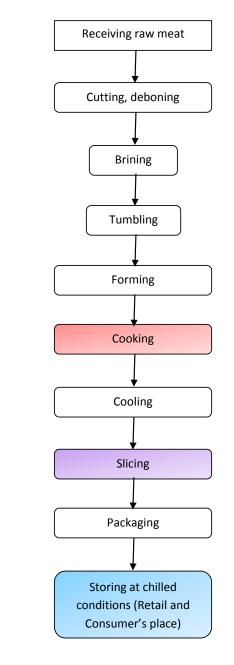
Overall number of reported cases within Europe is rather low (annual European domestic market: 8 bn kg of canned foods)

Canned foods - relevance of sampling

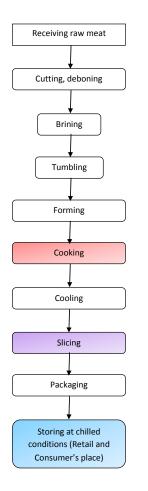
• Efficiency of end-product sampling?

P _{target}				No detection 1 - P _{detect} <i>n</i> =1	<i>n</i> for 95% detection probability
0.000001	1	per	1,000,00 0	0.999999	2,995,731
0.00001	1	per	100,000	0.99999	299,572
0.0001	1	per	10,000	0.9999	29,956
0.001	1	per	1,000	0.999	2,994

Huge (non-realistic) sampling plans will be necessary!


1 per 10000

With a so small expected rate of defective end-products, sampling is ineffective


Sliced cooked Ham

- Cooked boneless, formed premium ham
- Effective thermal treatment (70°C for 40')
- Relatively high probability of recontamination by *Listeria monocytogenes* at the slicing steps
- *L. monocytogenes* is able to grow under chilled conditions.

L. monocytogenes in cooked ham

Process step	Possible microbial behaviour	Likelihood of microbial behaviour
Raw materials	Initial introduction	May happen
Cooking	Reduction by HT	Very effective
Post HT-process	Recontamination	Possible (e.g. from slicer)
Storage	Growth	Expected at chilled temperature

% contaminated end-product might be non negligible

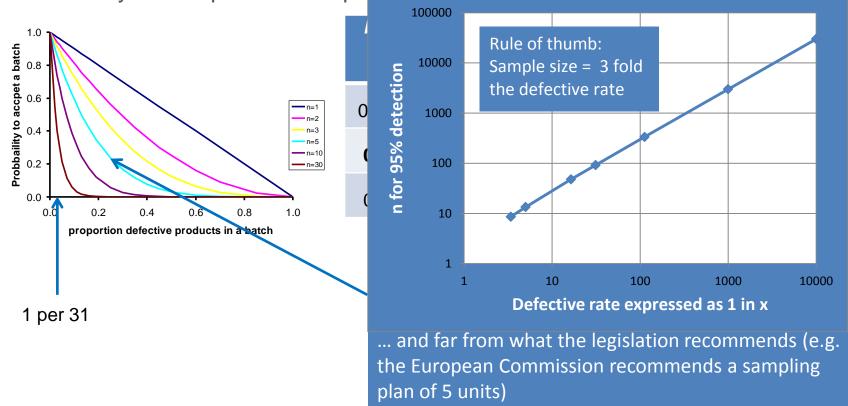
Cooked ham - Verification

- External sources to verify the level of end-product contamination
 - RASFF Portal (European Rapid Alert System for Food and Feed)
 - European Union summary reports
 - Literature studies
- RASFF Portal (1998-2013):
 - 19 notifications in 16 years (8: company's own tests, 11: official tests of products on the market)
- EFSA Reports (2010-2012):
 - On average 5.1% of samples from pig-meat, cooked, ready-to-eat products collected at retail in 2011 and 2012 were *L. monocytogenes* positive

.../...

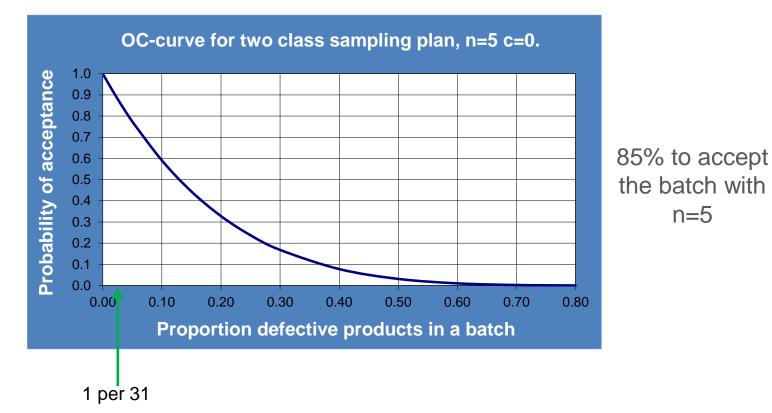
Cooked ham - Verification

• Literature studies


Products and origin	Sample size (g)	No. of positive samples/no. of samples	Prevalence (%)	Reference
Luncheon meats, USA	25	82/9199	0.89	Gombas et al., 2003
Ham, Brazil	25	1/65	1.5	Martins and Germano, 2011
Ham, United Kingdom	100	40/949	4.2	Little et al., 2009
Cooked ham, Belgium	25	54/879	6.1	Uyttendaele et al., 1999
Prevalence estimates			Mean 3.2	

Literature and Epidemiological data: prevalence : 3 to 5% (+ batch Variability)

Cooked ham - relevance of sampling


Efficiency of end-product sampling?

Cooked ham - relevance of sampling

A sampling plan of 5 units (European Commission recommendation) ullet

n=5

Cooked ham - food safety management

- Control measures
 - Preventing recontamination by *L. monocytogenes* at the slicing steps.
 - Best practises on cleaning and operations of the factory environment around the slicer and packaging equipment.

Sampling plan

• A *L. monocytogenes* monitoring plan around the slicers (environment, equipment in contact with the product, floor... etc.) is recommended.

Cooked ham – e.g. targeted sampling plan (focused on the environment)

- Sampling plan in the environment (adapted from the New South Wales Food Safety Authority of Australia, 2008):
 - It is recommended that at a minimum, businesses operators sample five environmental sites for *Listeria* spp. monthly.
- Actions in case of <u>positive sample found</u>:
 - Immediately investigate the potential cause of the problem and initiate corrective action in accordance with its food safety program.
- Sampling plan <u>following the corrective actions</u>:
 - Increase the frequency of environmental testing, for instance from monthly to weekly testing, and continue to test until the environmental swabbing program has achieved three consecutive negative sampling results.

Conclusions

- Assurance of food safety cannot be based on end-product testing
- An efficient food safety management system must be implemented
 - Based on the HACCP principles and with proper pre-requisite programmes
 - Identifying what the crucial step(s) in the process are
 - Monitoring results at CCPs are vital (↔ information on the variability and consistency of process parameters), e.g.
 - Canned Product: thermal process is a crucial step
 - E.g. relevant records: temperature and holding time
 - Cooked ham: slicing step is a crucial step
 - E.g. relevant records: cleaning procedures
- End-product testing can be used for verification of the implemented food safety management system → Particularly true if end-product defective rate is relatively high (e.g. cooked ham, where inter-batch variability is high).

FSMA: Testing as a tool for verifying preventive controls

Prof. Donald Schaffner

Background

- FDA Preventive Controls proposed rule reviewed ~1 year by Office of Management and Budget (OMB)
 - OMB struck provisions requiring product testing, environmental monitoring, and supplier approval and verification
 - OMB review helps ensure that agencies carefully consider consequences (including both benefits and costs)
- RLB and DWS Approached by the PEW Charitable Trusts in 2013 to develop a scientific "white paper" re: microbiological testing in the context of FSMA preventive controls rule
- The FPT article is that report, these slides provide a summary

Definitions

- Monitoring
 - Measurements and observations taken in real-time
 - Designed to insure proper functioning food safety system
 - Think HACCP CCPs or GMPs
- Verification and validation
 - Is the system is continuing to function as intended?

Definitions: Verification vs. Validation

- Plan says "cook to at least 160° F (71.1° C)" and product is cooked to 161° F (71.7° C).
 - Verified
- Plan says "cook to at least 160° F (71.1° C)" and the product is cooked to 159° F (70.6° C).
 - Not verified
- Plan says "refrigerate to 45° F (7.2° C) to control Salmonella growth
 - Valid
- Plan says "refrigerate to 45° F (7.2° C) to control Listeria growth"
 - Invalid

Definitions

- Science-based: Uses the best scientific information we have, within a regulatory framework
 - Temperature limits for growth of Salmonella vs. L. monocytogenes
 - Correlation of indicators with pathogens
- Risk-based:
 - According to Codex Risk is "a function of the probability of an adverse health effect and the severity of that effect, consequential to a hazard(s) in food" so a risk-based system considers that probability

Three types of testing

- Traditional lot testing
- Environmental testing
- Process control verification testing

Traditional lot testing

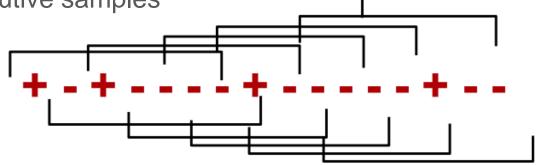
- Purpose: examine a product lot for which you have no information (e.g., port of entry)
- Should not be necessary under HACCP
- When part of food safety (e.g. "test-and-hold/hold-andrelease"), function is as preventive control and not verification tool
- Effectiveness decreases substantially when "defect rate" drops below 2 – 3%
- Limited use for foods with limited shelf life

Environmental testing

- Testing of both non-food contact surfaces and foodcontact surfaces
 - interpretation and significance of the findings are substantially different
- Environmental testing is typically a verification activity designed to access effectiveness of sanitation/prerequisite programs
- Might also be "sanitation control point"
 - ATP testing is a sanitation **monitoring** activity

Process Control Verification Testing Example

- Consider the production of a food that uses a 5-log thermal inactivation of *Salmonella*
 - Prior surveys that indicated that the level of Salmonella in the raw material is <1 CFU/100 g
- Monitoring
 - time and temperature achieved during the thermal process.
- Verification
 - periodically examine finished product samples for indicator microorganism or for *Salmonella*


Testing Example

- What to do if...
 - CCP monitoring indicates the process was functioning properly but...
 - testing indicates that a microbiological indicator or pathogen was present
- Possible explanations
 - raw materials had significantly increased levels of contamination
 - new source of contamination after thermal treatment
 - the thermal process was not functioning properly, despite indications to the contrary

Process control testing for verification

- Limited number of tests across lots over time (vs. extensive testing of each lot)
- Can use statistical process control
- Examples:
 - Salmonella test once per day, presence/absence, more than 1 positive sample in a 7-day period indicates loss of control
 - Lack of generic *E. coli* in two 10-ml samples per 1000 gallons of juice, two positive assays in a moving window of seven consecutive samples

Process Verification Testing checklist

- If "yes" answers are provided to all questions below
- Then specifics of testing program (sampling plans, frequency of testing, and actions to be taken) can be developed for process verification
 - Not currently doing "test and hold/hold and release"?
 - Are practices that lead to increased pathogen risk known?
 - Is testing feasible (commonly available test, affordable, etc.)?
 - Are there indicators or pathogens that can be used to check for loss of control?
 - Is there regulatory or industry guidance on appropriate microbe levels or frequency?

Summary

- Not all "microbial testing" is the same
 - Traditional lot testing
 - Environmental testing
 - Process control testing for verification
- Testing has a role to play in insuring food safety
- For more information
 - Buchanan, R. L., and D. Schaffner. 2015. FSMA: Testing as a Tool for Verifying Preventive Controls. Food Prot. Trends. 35:228-237.

www.ilsi.eu www.foodprotection.org

The 7 principles of HACCP

- 1. Conduct a Hazard Analysis
- 2. Identify Critical Control Points (CCPs)
- 3. Establish Critical Limit(s)
- 4. Establish Monitor of the CCP
- 5. Establish Corrective Actions when a CCP is not under control
- 6. Establish Record Keeping Procedures
- 7. Verification

Contact Information for Presenters

- Lilou van Lieshout Moderator ILSI Europe lvanlieshout@ilsieurope.be
- Prof. Marcel Zwietering Moderator Wageningen University marcel.zwietering@wur.nl
- Dr. Jeanne-Marie Membré INRA jeanne-marie.membre@oniris-nantes.fr
- Dr. Mats Peterz
 Mats.Peterz@rdls.nestle.com
- Prof. Donald Schaffner schaffner@aesop.rutgers.edu

Rutgers University

Nestlé

