Approaches for Prioritizing and Evaluating Trace Contaminants

IAFP Brussels
30 March 2017

Gabriele Scholz

Nestlé Research Center Lausanne, CH
gabriele.scholz@rdls.nestle.com
Challenges in Using Risk Assessment for the Management of Chemical Contaminants in Foods

Occurrence
- Increasing analytical sensitivity leads to detection of more and more chemicals at very low levels
- Occurrence data available in raw materials and/or finished products
- Incidental vs recurring contamination (acute vs chronic exposure)

Exposure
- Sources of exposure can be varied (different dietary sources & non-dietary sources)
- Exposed population (infants, adults)

Regulation
- Regulatory limits do not exist for all chemical contaminants in all foods or raw materials
- Global vs local legislation (inconsistencies)
- Health Based Guidance Values (ADI, TDI) may have been established, refer to human exposure (need to be translated into levels in food/ raw materials)

Need to be managed to protect the consumer
Objective

To define a global, harmonised and consistent strategy to manage chemical contaminants in raw materials that is scientifically sound and defendable

- Global
- Raw materials
- Scientific

Output:

Tool for the prioritisation of chemicals to be managed in raw materials, entailing the use of decision trees

- Severity
- Risk (likelihood to cause harm)
Concept: General Risk Assessment Paradigm

1. Hazard identification
 - Toxic effect (severity)
 - Decision tree
 - Grading: α, β, γ, δ

2. Hazard characterisation
 - Safe levels of exposure (HBGVs)
 - ‘Surrogate’ HBGVs
 - Safety-based guidance values (SBGV)

3. Exposure assessment
 - Occurrence in raw materials
 - Raw material categorisation
 - Dietary intake

4. Risk characterisation
 - Risk (likelihood to cause harm)
 - Decision tree
 - Grading: N, L, M, H
Severity

Criteria for setting the severity (decision tree)

- Chronic exposure (not acute), oral route (not inhalation or injection)
- Carcinogenicity, reproductive and developmental toxicity
- Structural changes/ functional damage in critical organs or systems
- Mutagenicity/ absence of a threshold
- Reversibility
- Evidence in humans/ plausibility for human effect

➢ Categorisation into α, β, γ, δ (most severe - least severe)
Decision Tree for Severity

Is the substance \textbf{carcinogenic} or toxic for the reproduction or the development? NO

Is there evidence for mutagenicity or absence of threshold? NO

Is there evidence for Human health effect or a strong \textbf{plausibility} for a Human health impact based on the mode of action? NO

\textbf{Category} α

Is the substance \textbf{neurotoxic}, \textbf{immunotoxic}, or damaging the functional structure of a vital \textbf{organ} or blood or bones? NO

Is the adverse effect \textbf{permanent}? NO

Is there evidence for Human health effect or a strong \textbf{plausibility} for a Human health impact based on the mode of action? NO

\textbf{Category} β

\textbf{(1)} for substances with ratio LOAEL/NOAEL \leq 3 or substances with toxicity data of low quality, e.g. missing chronic studies

\textbf{(2)} for substances with good toxicological database that suggests the severity is overestimated

Is the substance leading to diarrhea, decrease in food intake or in body weight or any other \textbf{mild transient} physiological effect? NO

\textbf{Category} γ

\textbf{Category} δ
Health Based Guidance Values

HBGV

- Established by competent authorities (JECFA, EFSA…)
- Most comprehensive, global, recent

Surrogate HBGV (sHBGV)

- In absence of HBGV
- Depending on type of effect (threshold or not)

Issue: how to translate HBGV into safe levels in raw materials?

Table: No HBGV available (no ADI or TDI)

<table>
<thead>
<tr>
<th>Non-threshold effect</th>
<th>Threshold effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD¹, e.g. BMDL₁₀, TD₅₀</td>
<td>NOAEL, LOAEL, in silico tox</td>
</tr>
<tr>
<td>Margin of exposure (MOE)²</td>
<td>Uncertainty / extrapolation factors²</td>
</tr>
<tr>
<td></td>
<td>- Inter-, intra-species</td>
</tr>
<tr>
<td></td>
<td>- Subchronic to chronic</td>
</tr>
<tr>
<td></td>
<td>- Route to route</td>
</tr>
<tr>
<td></td>
<td>- LOAEL to NOAEL</td>
</tr>
<tr>
<td></td>
<td>- ...</td>
</tr>
</tbody>
</table>

POD/MOE → POD/UFs

Surrogate HBGV

¹ POD, point of departure
² Appropriate margin of exposure (MOE) or uncertainty factor (UF) associated with low concern for human exposure
Exposure

Occurrence data
- Nestlé database (6’000’000 analytical data for RM, almost 3’000 compounds)
- Defined ‘cleaning’ process (e.g. treatment of left censored data, \(n \))

Food intake
- GEMS/Food cluster diets (WHO, 2012)
- Global average diet: weighted average across clusters

Raw material categorisation
- Definition of main and subcategories based on GEMS and FoodEx2* categories
- Mapping of all Nestlé raw materials to subcategories

Exposure
- Deterministic, using median occurrence values
- Based on intakes of the \textit{main} category, using 60 kg body weight

*(EFSA, 2015)
RM Categorisation

- Alignment with GEMS/Food Cluster diets
- Global food intake scenario (weighted average across all cluster diets)

<table>
<thead>
<tr>
<th>groups</th>
<th>intake (g)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Grains</td>
<td>353</td>
<td>Wheat</td>
<td>Rye</td>
<td>Oats</td>
<td>Corn</td>
<td>Rice</td>
<td>Barley</td>
<td>Others</td>
</tr>
<tr>
<td>2 Seeds and roots</td>
<td>193</td>
<td>Nuts</td>
<td>Leguminous seeds</td>
<td>Oilseeds</td>
<td>Starchy roots</td>
<td>Rice</td>
<td>Barley</td>
<td>Others</td>
</tr>
<tr>
<td>3 Vegetables</td>
<td>265</td>
<td>Brassica vegetables</td>
<td>Fruiting vegetables</td>
<td>Leafy, stalk and stem vegetables</td>
<td>Bulb and root vegetables</td>
<td>Legume vegetables</td>
<td>Other vegetables</td>
<td>Other vegetables</td>
</tr>
<tr>
<td>4 Fruit</td>
<td>197</td>
<td>Berries and other small fruits</td>
<td>Citrus fruits</td>
<td>Pome fruits</td>
<td>Stone fruits</td>
<td>Tropical and subtropical fruits</td>
<td>Other fruits</td>
<td>Heat processed fruits</td>
</tr>
<tr>
<td>5 Dairy</td>
<td>151</td>
<td>Milk (raw, processed and powder)</td>
<td>Whey & other milk derivates</td>
<td>Cheese</td>
<td>Yoghurt</td>
<td>Butter Milk</td>
<td>Cocoa & Malt beverages</td>
<td>Lactose</td>
</tr>
<tr>
<td>6 Proteins</td>
<td>159</td>
<td>Mammals</td>
<td>Eggs & Eggs derivates</td>
<td>Poultry</td>
<td>Fish & Sea food</td>
<td>Vegetable proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Sweets</td>
<td>72</td>
<td>Sugars, candies</td>
<td>Cocoa & its non-liquid derivate</td>
<td>Chocolate and chocolate equivalent</td>
<td>Honey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Fats</td>
<td>38</td>
<td>Vegetable fats & Oils</td>
<td>Terrestrial animal fats (incl. poultry fats)</td>
<td>Marine animal fats</td>
<td>Milk fat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Miscellaneous</td>
<td>35</td>
<td>Seasonings (spices, herbs, & condiments)</td>
<td>Sauces, savories & vinegar</td>
<td>Miscellaneous agents for food processing</td>
<td>Additives, flavorings, sweeteners & coloring agents</td>
<td>Vitamins and minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Beverages</td>
<td>2000</td>
<td>Water</td>
<td>Fruit & vegetable juices</td>
<td>Coffee</td>
<td>Tea</td>
<td>Coffee substitutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30/03/2017

Confidential
Proprietary information of Nestlé S. A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation.
Issue: Translation of HBGV into Safe Levels in Raw Materials

Quota concept

- Allocate fractions of the TDI/ADI to food categories and beverages
- Additional margin was reserved for other sources of exposure (environmental) or process formation (if applicable) and uncertainties on sources
- Default setting:
 - Consider equal contamination in all raw materials across categories → exposure contribution is determined by the relative food intake.
- Quota concept:
 - Allocation of fractions of the TDI to the different RM (main) categories, based on available knowledge on occurrence (or absence) in different RM categories
 - Safety Based Guidance Values (SBGV)
Safety Based Guidance Value (SBGV)

Definition:

The **SBGV** refers to the level of a given chemical in a specific food raw material (expressed in mg/kg of raw material) consumed in the context of an average global diet, that can be ingested (orally) on a daily basis over a lifetime without an appreciable health risk.
Risk (likelihood to cause harm)

Decision tree

- Used to set the level of risk
- Categories: negligible (N), low (L), medium (M), high (H)

Based on

- Level of exhaustion of HBGV (<50%, >50%, >100%)
- Frequency of exceeding the SBGV (cut-off 25%) → ‘occurrence flag’
- Numerical median concentration value (>2x SBGV)
- Significant exposure contribution to HBGV (>10% of HBGV)
Decision Tree for Risk

1. **Is total average exposure to the compound ≥ 50% of the HBGV?**
 - **YES**
 - **NO**

2. **Is total average exposure to the compound ≥ 100% of the HBGV?**
 - **YES**
 - **NO**

3. **Is the sub-category flagged for ≥ 25% prevalence above the SBGV?**
 - **YES**
 - **NO**

4. **Is the median concentration in the flagged sub-category ≥ 2-fold above the SBGV?**
 - **YES**
 - **NO**

5. **1 - Negligible risk**

6. **2 - Low risk**

7. **3 - Medium risk**

(1) Health Based Guidance Value (ADI, TDI, ‘surrogate’ HBGV)
(2) Safety Based Guidance Value
Risk Assessment Tool

Consumption

<table>
<thead>
<tr>
<th>Group</th>
<th>Quota</th>
<th>Safety Based Guidance Value ([\text{mg/kg}])</th>
<th>Exposure</th>
<th>Health Based Guidance Value ([\text{mg/kg bw/day}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARGIN</td>
<td>10.0%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beverages</td>
<td>2.0%</td>
<td>20.0%</td>
<td>1.714288</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>0.04%</td>
<td>5.0%</td>
<td>24.49179</td>
<td></td>
</tr>
<tr>
<td>All-Food</td>
<td>1.44%</td>
<td>65.0%</td>
<td>7.03125</td>
<td></td>
</tr>
<tr>
<td>Grains</td>
<td>0.35%</td>
<td>27.0%</td>
<td>6.523808</td>
<td>2.6%</td>
</tr>
<tr>
<td>Seeds and roots</td>
<td>0.04%</td>
<td>3.7%</td>
<td>7.03125</td>
<td>0.5%</td>
</tr>
<tr>
<td>Vegetables</td>
<td>0.42%</td>
<td>29.4%</td>
<td>7.03125</td>
<td>8.6%</td>
</tr>
<tr>
<td>Fruit</td>
<td>0.20%</td>
<td>13.8%</td>
<td>7.03125</td>
<td>1.5%</td>
</tr>
<tr>
<td>Dairy</td>
<td>0.35%</td>
<td>10.5%</td>
<td>7.48140</td>
<td>0.0%</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.16%</td>
<td>11.1%</td>
<td>7.03125</td>
<td>5.4%</td>
</tr>
<tr>
<td>Sweets</td>
<td>0.07%</td>
<td>5.0%</td>
<td>7.03125</td>
<td>0.2%</td>
</tr>
<tr>
<td>Fats</td>
<td>0.04%</td>
<td>0.5%</td>
<td>1.466165</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Health Based Guidance Value</th>
<th>Consumption ([\text{Kg/day/capita}])</th>
<th>Exposure</th>
<th>Groups contribution to exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>1.75</td>
<td>2.00000</td>
<td>0.03200</td>
</tr>
<tr>
<td>Eggs & Eggs derivatives</td>
<td>90</td>
<td>0.00000</td>
<td>9.00000</td>
</tr>
<tr>
<td>Fish & Seafood</td>
<td>521</td>
<td>5.40000</td>
<td>0.84480</td>
</tr>
<tr>
<td>Vegetable proteins</td>
<td>767</td>
<td>19.00000</td>
<td>19.00000</td>
</tr>
</tbody>
</table>

Analytical data

- Distribution of contaminant in the group
- Groups contribution to exposure

Confidential: Proprietary information of Nestlé S.A., Vevey, Switzerland – This document should not be reproduced or disclosed without prior authorisation.
Significance Matrix

Combination of Severity x Risk (from decision trees)

Triggers consideration in:
- HACCP studies
- Surveillance/ monitoring programs
- RM purchasing specifications
Case study: Cadmium

Background
• Heavy metal naturally present in the environment
• Human activities lead to release into the environment

Severity
• Category 3 (high)
 ▪ Nephrotoxic, endocrine-disrupting, and non-genotoxic carcinogenic properties (threshold effect)

Risk
• Foodstuffs are major sources of exposure, large analytical database (little uncertainty)
• HBGV: TWI = 2.5 µg/kg body weight/week (EFSA, 2011)
• Total exposure is close to the TWI (consistent with literature)
 ➢ Significant hazard in cocoa, chocolate and some of their derivates
Conclusions

Prioritisation based on the principles of food chemical risk assessment

- Results are consistent with published information (exposure, risks)
- The outcome of the matrix can be used as an input to management of chemical contaminants (justification for monitoring, mitigation, investigation, HACCP studies, setting of specifications…)
- Flexibility
 - Applicable to more specific dietary scenarios (regional diets, local populations or customer defined diets)
 - Chemicals can be grouped according to a common mode of action or existence of a group TDI, using equivalence factors (e.g. chlorate/perchlorate)
 - Limited applicability to process related contaminants (if occurring in RMs)
 - Currently out of scope: small children, ‘pure’ process contaminants, allergens, packaging materials
Publication

Re-submitted

‘A new global scientific tool for the assessment and prioritization of chemical hazards in food raw materials’

Authors

Thomas Stroheker, Gabriele Scholz and Paolo Mazzatorta
Acknowledgement

Project team

Nestle Research Center
• Paolo Mazzatorta (‘TOP’ Project Manager)
• Thomas Stroheker
• Gabriele Scholz
• Benoît Schilter

Nestlé Quality Management
• Pascal Volery
• Richard Stadler

Chemical contaminant experts in Nestlé Product Technology Centers and Quality Assurance Centers