



#### Detection of Contaminants in Raw Materials Using Spectral Imaging

Videometer A/S Horkaer 12B, 3. floor DK-2730 Herlev, Denmark

www.videometer.com

jmc@videometer.com

"Digital Technologies as an enabler for a continuous transformation of food safety system"

DITECT - H2020-SFS-37-2019 - 861915-2

## Videometer A/S

- Spectral imaging company
- Founded 1999
- Products
  - Lab instruments,
  - Turn-key in-line systems, and
  - R&D projects
- 750+ imaging R&D projects since 2000
- In-line 24/7 spectral imaging since 2002
- Based in Copenhagen, Denmark
- Partnerships worldwide







## Spectral imaging





## Pure samples 1 and 2 in sRGB



Durum

Common wheat



### Pure samples 1 and 2 after nCDA





#### Anisakis in atlantic cod



sRGB image

Spectrally detected parasites

## LED band-sequential spectral imaging





- LEDs: Stable, durable, large selection, rapidly developing technology
- Up to 20 different high-resolution bands acquired sequentially in 0.5-1.0 seconds
- May be combined with emission filters, backlight, and darkfield illuminant
- Combined reflectance spectral imaging and fluorescence spectral imaging possible!



# **Spectral Imaging**





N images obtained at N specific wavelengths

## **Corn infection**

Bartolić *et al.*: Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B 1 contaminated (Zea mays L.) seeds: a preliminary study, March 2022, Scientific Reports 12(1), DOI: 10.1038/s41598-022-08352-4





Control (embryo down)

Infected (embryo down) Videometer Imaging Technology, www.videometer.com



## Corn infection fingerprint



Control (embryo down)

Infected (embryo down) Videometer Imaging Technology, www.videometer.com



## **Corn infection fluorescence**



Control (embryo down)

Infected (embryo down) Videometer Imaging Technology, www.videometer.com



#### Corn infection fluorescence spectra



Infected (embryo down)

Videometer Imaging Technology, www.videometer.com



#### VIDEOMETER

## Automated Corn Quality Inspection





#### HT-2 in oats



Sample 21: 0.0 ppb

Sample 14: 136.1 ppb

Sample 9: 34.6 ppb



#### HT-2 in oats



Sample 21: 0.0 ppb

Sample 14: 136.1 ppb

Sample 9: 34.6 ppb



## T-2/HT-2 LCMS results from QUB



Indicative T-2/HT-2 levels on oats for direct human is 200 ppb (µg/kg) EU COMMISSION RECOMMENDATION of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products

## Red Fusarium and gray mold model validation



Malting barley

Red color: red, orange or purple areas on kernels

Black color: Gray and black mold areas on kernels Comparison between VideometerLab® measurements and the level of Fusarium DNA quantified by qPCR

The Fusarium calibration for

barley is developed together

with Carlsberg Research

Center and Viking Malt.



omet

## White powder problem













## Other ingredient





# Impurities





#### At-line or on-line milk powder analysis after drying



Manual or automatic sampling after spray-drying

## Scorched particle spectral signatures





#### sRGB close-up with scorched particles marked







## Bad sample





## Slightly better sample





## Conclusion

- Spectral imaging is a versatile, non-destructive and rapid screening tool for food safety assessment
- Examples included here:
  - Parasite detection in Atlantic cod (for illustration)
  - Aflatoxin detection in corn
  - General insect and mold damage detection in corn
  - DON potential, Fusarium and gray mold detection in malting barley
  - HT-2 detection in oats
  - General contaminant detection in powder, blending homogeneity
  - Powder allengen detection, peanut powder in almond powder
  - Process induced toxin potential in dairy powder, scorched particles



EU Horizon 2020 Research grant no. 861915, the DiTECT project supported this work.