Mechanistic Insights to Cold Plasma Functionalised Liquids: Antimicrobial efficacy and Interactions with Processing and Storage Conditions

Daniela Boehm, Evanthia Tsoukou, Sing Wei Ng, Paula Bourke

Technological University Dublin, Ireland
Plasma
Plasma – the 4th state of matter
Plasma treatment of liquids

Plasma activated liquids (PAL)

Plasma functionalized liquids (PFL)

Plasma treated liquids (PTL)
Plasma functionalized liquids (PFL)

Chemical changes:
- ONOO⁻
- HONO
- NO₃⁻
- OONOO⁻
- H₂O₂
- NO₂⁻

Biological activity:

Applications:
- Wounds
- Cancer treatment
- Surface decontamination
- Food
- Sanitizing agent
- Agriculture
- Waste/wastewater

Biological activity:

ONOO- → HONO → pH ↓ → NO₃⁻ → OONOO⁻ → H₂O₂ → NO₂⁻
What happens during plasma treatment of liquids?

Schematic diagram of formation of reactive species in liquid
Different plasma functionalized liquids

Plasma device + treatment parameters

Liquid composition

![Images of plasma devices and liquid bottles]

- Reactive species
- Unknown
Plasma functionalized liquids based on discharge in air

DBD-120 system

RSS system
Reactive chemical species in plasma functionalized liquids

- Chemistry:
 - pH, ORP, conductivity
 - Detection of long-lived ROS/RNS
 - H_2O_2: TiOSO$_4$
 - Oxidative species (peroxides, HNO$_2$): KI (buffered/non-buffered)
 - NO$_2^-$: Griess
 - NO$_3^-$: Dimethylphenol

System parameters
- Plasma devices
- Treatment

Process parameters
- Storage
- Temperature

Liquid parameters
- Composition
- Buffering

Tsoukou et al. (2018), *Plasma medicine*
Niquet, Boehm et al. (2017), *Plasma Processes and Polymers*
The DBD120 system

Voltage: 0-120kV
Frequency: 50 Hz
Gap: 22mm

Liquid composition

<table>
<thead>
<tr>
<th></th>
<th>Buffered (KH$_2$PO$_4$/K$_2$HPO$_4$)</th>
</tr>
</thead>
</table>
| | - | +
| Saline (NaCl) | -/- | -/+ |
| | +/- H$_2$O | +/+ PB |
| | +/- S | +/+ PBS|

Tsoukou et al. (2018), Plasma medicine
Chemical characterization

- **pH**
 - PAW
 - PAPBS
 - PAS
 - PAPB

- **Hydrogen Peroxide**
 - PAW
 - PAPBS
 - PAS
 - PAPB

- **Nitrites**
 - PAW
 - PAPBS
 - PAS
 - PAPB

- **Nitrates**
 - PAW
 - PAPBS
 - PAS
 - PAPB

PAW: Plasma activated Water
PAPBS: Plasma activated PBS
PAS: Plasma activated Saline
PAPB: Plasma activated PB

Evanthia Tsoukou

PAW: Plasma activated Water
PAPBS: Plasma activated PBS
PAS: Plasma activated Saline
PAPB: Plasma activated PB
The RSS plasma system

Dr. Peng Lu

Spark (SD)
Glow (GD)

ROS-rich
H_2O_2, NO_3^-

RNS-rich
NO_3^-, NO_2^-

Lu et al. (2017) Plasma Processes and Polymers
Different plasma systems – different chemistry

<table>
<thead>
<tr>
<th></th>
<th>PTW-MW</th>
<th>PTW-DBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input energy</td>
<td>90-920 W min</td>
<td>300-3500 W min</td>
</tr>
<tr>
<td>Nitrous acid</td>
<td>2-12 mM</td>
<td>Not detected</td>
</tr>
<tr>
<td>Nitrite</td>
<td>2-20 mM</td>
<td>Not detected</td>
</tr>
<tr>
<td>Nitrate</td>
<td>1-25 mM</td>
<td>0.1-0.8 mM</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Not detected</td>
<td>0.02-0.4 mM</td>
</tr>
<tr>
<td>Contact time for microbial inactivation</td>
<td>~1 min</td>
<td>~60 min</td>
</tr>
</tbody>
</table>

Collaboration between TU Dublin and the INP Greifswald:

Comparison of chemical composition and antimicrobial efficacy of plasma activated water

Effects of PFLs on prokaryotic cells

- **Antimicrobial activity**
 - **Microbial target**
 - **Temperature stability**
 - **Liquid composition**
 - **Storage stability**
 - **pH dependency**

<table>
<thead>
<tr>
<th>PAL</th>
<th>Antimicrobial Efficacy (E.coli/S.aureus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAW</td>
<td>Strong/Strong</td>
</tr>
<tr>
<td>PAPBS</td>
<td>Weak/Strong</td>
</tr>
<tr>
<td>PAS</td>
<td>Strong/Strong</td>
</tr>
<tr>
<td>PAPB</td>
<td>Median/Median</td>
</tr>
</tbody>
</table>

- **E.coli S15**
- **S. aureus S15**

Antimicrobial activity and stability of PFLs

![Graphs showing antimicrobial activity and stability of PFLs on day 1 and day 2.](image)

Day 1
- **PAW-Day 1**
- **PAS-Day 1**
- **PAPBS-Day 1**
- **PAPB-Day 1**

Day 2
- **PAPBS-Day 2**
- **PAPB-Day 2**

* log cfu/ml vs. Plasma Treatment Time (min) for E.coli and S.aureus 60min.
The role of pH in PFL antimicrobial activity

Neutralization of pH

- H2O
- H2O + 4.5xPBS
- PAW 5min
- PAW 5min + 4.5xPBS

Reduction of pH

- PBS
- PB + HCl
- PAPB 5min
- PAPB 5min + HCl

- NaCl
- NaCl + 4.5xPBS
- PAS 5min
- PAS 5min + 4.5xPBS

- PBS
- PBS + HCl
- PAPBS 5min
- PAPBS 5min + HCl
Antimicrobial activity and stability (RSS system)

PFW:
Spark (S) 5, 10, 15min
Glow (G) 5, 10, 15min

Day 1

- **E. coli 60 min**
 - CTL
 - S5
 - S10
 - S15
 - G5
 - G10
 - G15

- **S. aureus 60 min**
 - CTL
 - S5
 - S10
 - S15
 - G5
 - G10
 - G15

1 Week

- **E. coli 60min**
 - CTL
 - S5
 - S10
 - S15
 - G5
 - G10
 - G15

- **S. aureus 60min**
 - CTL
 - S5
 - S10
 - S15
 - G5
 - G10
 - G15
Temperature stability

Bactericidal effects retained after prolonged storage at -80, -150°C
Retention of antimicrobial efficacy at high temperature

Enhanced antimicrobial efficacy at high temperature and pressure?
Stability of PFL

Why does it matter?

- Off-site production
- Storability
- Applications in fumigation/vapourization
- Understanding chemistry and secondary reactions
Safety of plasma activated liquids

Short and long-term safety

Cytotoxicity testing
- Mammalian cell models
- *Galleria mellonella*

Genotoxicity testing
- Mammalian cell model (HPRT assay)
- Bacterial cell model (AMES test)

Long-term exposure – mutagenic effects

<table>
<thead>
<tr>
<th>PBS</th>
<th>Day in culture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>nd</td>
</tr>
<tr>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>nd</td>
</tr>
<tr>
<td>B</td>
<td>nd</td>
</tr>
<tr>
<td>C</td>
<td>nd</td>
</tr>
<tr>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>nd</td>
</tr>
<tr>
<td>B</td>
<td>nd</td>
</tr>
<tr>
<td>C</td>
<td>nd</td>
</tr>
<tr>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>nd</td>
</tr>
<tr>
<td>B</td>
<td>nd</td>
</tr>
<tr>
<td>C</td>
<td>nd</td>
</tr>
</tbody>
</table>

Increasing rate of mutations over time

Highest occurrence of mutations
H$_2$O$_2$ in PFL contributes to cytotoxic effects
other reactive species are involved

Differences in cytotoxic effects of biomolecule solutions
not a result of different H$_2$O$_2$ concentrations
Plasma-treated biomolecule solutions – mutagenic potential

Cell culture medium supplemented with 10% (v/v) biomolecule solution (in DMEM-F12) at each sub-culturing over 34 days
In vivo toxicity testing

Galleria melonella, injection model

Dead larvae

![Image of dead larvae]

![Graphs showing % survival for BSA, Arachidonic Acid, Glucose, and Cholesterol]
Toxicity testing of a plasma treated food model

- lettuce broth
 Plasma treatment:
 0, 1, 5, 10 min

Short-term in vitro toxicity

Long-term in vitro mutagenicity

- PFL can be
 - Storable (limited shelf-life at RT, extended shelf-life in frozen state)
 - Controllable (chemistry - device, discharge, liquid parameters)
 - Stable (temperature)
 - Modifiable? (influencing secondary reactions)

- Antimicrobial efficacy depends on
 - Concentration and type of ROS/RNS
 - Low pH
 - Contact time
 - Microbial species
Outlook - Challenges and opportunities

- **Engineering**
 - Selectivity
 - Scalability (Process assurance, reproducibility)
 - Storability

- **Application**
 - Versatility
 - Mode of application
 - Washing
 - Vapourization/fumigation
 - Freezing

- **(Bio)Chemistry**
 - Reactive species
 - Molecular modifications
 - Biochemical/cellular mechanisms
Tailoring plasma functionalized liquids for specific applications?

<table>
<thead>
<tr>
<th>Plasma device + treatment parameters</th>
<th>liquid composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B G</td>
<td>A B C G H I</td>
</tr>
</tbody>
</table>

Defined effect
INP Greifswald
Dr Jörg Ehlbeck
Dr Uta Schnabel
Rijana Niquet
Funding: PlasmaShape

Science Foundation Ireland
Starting Investigator Research Grant
15/SIRG/3466
PrinciPAL - “Harnessing plasma-activated liquids (PAL) for biomedical applications”

Research was also supported by a NIH/SFI/HRC tripartite consortium grant through NIAMS of the National Institutes of Health under award number RO1AR076941 and by a research grant from Science Foundation Ireland (SFI) under the Grant Number SFI/16/BBSRC/3391 (EnvironSafe).
Thank you!

Questions?

Contact:
Daniela Boehm
TU Dublin
School of Food Science and Environmental Health
Grangegorman, Dublin 7 Ireland
Daniela.Boehm@tudublin.ie