

Mechanistic Insights to Cold Plasma Functionalised Liquids: Antimicrobial efficacy and Interactions with Processing and Storage Conditions

Daniela Boehm, Evanthia Tsoukou, Sing Wei Ng, Paula Bourke

Technological University Dublin, Ireland

Plasma – the 4th state of matter

Plasma treatment of liquids

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

UNIVERSITY DUBLI

What happens during plasma treatment of liquids?

Schematic diagram of formation of reactive species in liquid (Kim, S.; Kim, C.-H. Biomedicines 2021, 9, 1700. <u>https://doi.org/10.3390/biomedicines9111700</u>)

Plasma device +

Plasma functionalized liquids based on discharge in air

Reactive chemical species in plasma functionalized liquids

□ Chemistry: □ pH, ORP, conductivity Detection of long-lived **ROS/RNS** \square H₂O₂: TiOSO₄ Oxidative species (peroxides, HNO₂): KI (buffered/non-buffered) $\square NO_2^-$: Griess □NO₃⁻: Dimethylphenol

The DBD120 system

-		
	kun	High voltage electrode
Dielectric barrier	Sample	E.H.
		Ground electrode

Voltage: 0-120kV Frequency: 50 Hz Gap: 22mm Liquid composition

10

Tsoukou et al. (2018), Plasma medicine

Chemical characterization

The RSS plasma system

Different plasma systems – different chemistry

PTA outlet with pressure valu **PTW-MW** 90-920 W min Input energy Positive electrode Nitrous acid 2-12 mM species Nitrite 2-20 mM Variac Dielectric ba Nitrate 1-25 mM 220V Input Hydrogen peroxide Not detected PTW (MW) DBD plasma Contact time for microbial $\sim 1 \min$ MW plasma inactivation 1.0-1min (24h PTST) 5s Collaboration 5min (24h PTST) 25s nitrous acid 10min (24h PTST) 5min (0h PTST) 50s 3000µM NaNOa 0.15 10min (0h PTST) ----- 5s (24h PTST) --- 600μM NaNO₂ the INP Greifswald: sqe 0.5nitrate ୁ ସୁଧ୍ୟ 0.10------ 25s (24h PTST) ----- 50s (24h PTST) 0.05-0.00composition and 300 350 400 250 350 300 400 wavelength [nm] wavelength [nm]

Not detected Not detected 0.1-0.8 mM 0.02-0.4 mM ~60 min

between TU Dublin and

Comparison of chemical antimicrobial efficacy of plasma activated water

PTW-DBD

300-3500 W min

Effects of PFLs on prokaryotic cells

https://doi.org/10.3390/app11031178

Antimicrobial activity and stability of PFLs

The role of pH in PFL antimicrobial activity

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

> TECHNOLOGICAL UNIVERSITY DUBLI

Temperature stability

Bactericidal effects retained after prolonged storage at -80, -150°C

Heating time at 100°C (min)

Stability at high temperature and pressure

Tsoukou E., et al (2021). Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. Applied Sciences

Why does it matter?

- Off-site production
- Storability
- Applications in fumigation/vapourization
- Understanding chemistry and secondary reactions

Safety of plasma activated liquids

Short and long-term safety

Cytotoxicity testing

- Mammalian cell models
- Galleria melonella

Genotoxicity testing

- Mammalian cell model (HPRT assay)
- Bacterial cell model (AMES test)

Increasing rate of mutations over time

Cytotoxicity and the role of H_2O_2

Model biomolecule solutions

- Differences in cytotoxic effects of biomolecule solutions
 - not a result of different H₂O₂
 concentrations

Plasma-treated biomolecule solutions – mutagenic potential

Cell culture medium supplemented with 10% (v/v) biomolecule solution (in DMEM-F12) at each sub-culturing over 34 days

In vivo toxicity testing

Toxicity testing of a plasma treated food model

lettuce broth
 Plasma treatment:
 0, 1, 5, 10 min

Heslin et al (2020), Safety evaluation of plasma-treated lettuce broth using in viera and in vivo toxicity models Front. Phys D. DOI: 10.1088/1361-6463/ab7ac8

long-term in vitro mutagenicity											
	Lettuce	Days in Culture									
	Broth		0	6	13	20	27	34	40		
Untr 1 mi	Control	А	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
	Untreated	В	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
		С	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
	1 min	А	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
		В	nd	-/-/-	-/-/-	-/-/-	-/+/+	-/-/-	-/-/-		
		С	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
	5 min	А	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
		В	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
		С	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/+	-/-/-		
	10 min	А	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
		В	nd	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-	-/-/-		
n vi	ro	С	nd	-/-/-	-/-/-	-/-/-	+/+/+	-/-/-	-/-/-		

Short-term *in vivo* toxicity

Conclusion

• PFL can be

- Storable (limited shelf-life at RT, extended shelf-life in frozen state)
- Controllable (chemistry device, discharge, liquid parameters)
- Stable (temperature)
- Modifiable? (influencing secondary reactions)

- Antimicrobial efficacy depends on
 - Concentration and type of ROS/RNS
 - Low pH
 - Contact time
 - Microbial species

Outlook - Challenges and opportunities

Engineering

- Selectivity
- Scalability (Process assurance, reproducibility)
- Storability

(Bio)Chemistry

- Reactive species
- Molecular modifications
- Biochemical/cellular mechanisms

Application

- Versatility
- Mode of application
 - Washing
 - Vapourization/fumigation
 - freezing

Tailoring plasma functionalized liquids for specific applications?

liquid composition

Plasma device + treatment parameters

Acknowledgements

TU Dublin/UCD

Prof Paula Bourke DIB Prof P.J. Cullen Dr Evanthia Tsoukou **Dr Peng Lu Dr Caitlin Heslin** Dr Dana Ziuzina **Prof James Curtin** Dr Carmen Bueno-Ferrer Dr Vladimir Milosavljevic Dr Chaitanya Sarangapani Dr Apurva Patange Dr Lu Han Dr Agata Los Singwei Ng Sonal Chaple Soukaina Barroug **Beatriz Pinheiro Lopes** Lee Shannon Amy Browne Louise Treint Maxime Delit

OLLSCOIL TEICNEOLAÍOCHTA BHAILE ÁTHA CLIATH

Dr. Julianne Megaw

INP Greifswald

Dr Jörg Ehlbeck Dr Uta Schnabel **Rijana Niguet** Funding: PlasmaShape

Science Foundation Ireland Starting Investigator Research Grant 15/SIRG/3466

PrinciPAL - "Harnessing plasma-activated liquids (PAL) for biomedical applications"

Research was also supported by a NIH/SFI/HRC tripartite consortium grant through NIAMS of the National Institutes of Health under award number RO1AR076941 and by a research grant from Science Foundation Ireland (SFI) under the Grant Number SFI/16/BBSRC/3391 (EnvironSafe).

TU Dublin

Thank you!

Questions?

Contact: Daniela Boehm TU Dublin School of Food Science and Environmental Health Grangegorman, Dublin 7 Ireland

Daniela.Boehm@tudublin.ie

