# Role of biofilm formation in developing synbiotic food for promoting well-being and heath

Satish Kumar Rajasekharan Department of food science, Institute of Postharvest Technology Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, 7528809 Israel



# מינהל המחקר החקלאי | מרכז וולקני

AGRICULTURAL RESEARCH ORGANIZATION (ARO) | VOLCANI CENTER

### **Cone-shaped story**



Figure 1. Cone-shaped colonies formed by a lactic acid bacteria







**Consolidated bundles** 

Figure 3. V-shaped cells and consolidated bundles consisting of live (green) and dead cells (grey)

Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring

Rajasekhharan and Shemesh, npj biofilms and microbiomes 2022

11/05/2022

What are probiotics????

Live bacteria (not –pathogenic) that proved beneficial for humans when take as supplements

# Probiotics form beneficial biofilms, that can remove pathogen biofilms

**Probiotics can be used to treat pathogens** 

# What are prebiotics ?????



# → Rich in fibre → prebiotics

### Chickpea

# What are Synbiotics ?????

# **Probiotic – prebiotics complex**

# **Beneficial bacteria – fibre complex**

# What are biofilms??????

A sessile community formed by bacteria that attaches to biotic and abiotic surfaces

Can be harmful (if formed by pathogens), and beneficial (if formed by probiotics)



#### Sites for biofilm formation in human by pathogens



# Chickpea milk- a prebiotic model





# **Benefits of probiotic biofilms on food matrices**

- Prebiotics (food matrices) serve as a scaffold for probiotic colonization (biofilm formation)
- Probiotic biofilms on these scaffold prevent pathogen colonization – probiotic blanketing
- Allows safe and fast passage through the GIT to gut ,where probiotics can detach and colonize.

Allows probiotic adaptation to hostile conditions.

### **Designing chickpea-based synbiotic food**



### Brief data on chickpea (Cicer Arietinum L.)

(Susan et al., 2013, Foods)

11/05/2022

SKR

| Compounds         | Chickpea grains |
|-------------------|-----------------|
| Monosaccharides   | 0.32-0.97       |
| ribose            | 0.03-0.19       |
| fructose          | 0.23-0.28       |
| glucose           | 0-0.065         |
| Disaccharides:    |                 |
| sucrose           | 1.09-2.28       |
| maltose           | 0.16-0.68       |
| Oligosaccharides: | 3.87-6.98       |
| raffinose         | 0.62-1.45       |
| ciceritol         | 2.51-2.78       |
| stachyose         | 0.74-2.56       |
| verbascose        | 0-0.19          |
|                   |                 |

Source: Sánchez-Mata et al., 1998; Alajaji et al., 2006

### Chickpea milk components that favours colonization

Non-fluorescent fibers



DIC Blue filter Green filter Cyan filter Red filter

**Dietary Fibers in chickpea** 

1. Lignin (detected by green autoflouresence)

2. Cellulose

3. Hemicellulose

4. Resistant starch

#### *PI stains the autoflouresent components*



CPM contains predominantly insoluble starch



#### KOH treatment enhances solubility suggesting them to be 'Resistant starch fibres'



Chickpea milk

# Chickpea milk + PI

The fibers are Resistant starch

.

4

# Subsets of sessile B. subtilis cells in chickpea milk





#### In chickpea milk, 3 subsets of cells exist.

- 1. Cells that form pellicle
- 2. Cells that form "attached flocs/biofilm" particularly on "autofluoresent chickpea fibres.
- 3. Cells that are in suspension and that are loosely positioned over "non-fluorescent fibers.

#### Pellicles with reddish-pink pigment (72 h)



Pigment production is an 'adaptive response'



#### *Z*-section confirms bacterial attachment to auto-fluorescent fibres

Matrix mutants did not attach to the fibres



# Macroscopic phenotypes in CPM





### **Pigment Production**

#### Pigmentation under shaking condition – 24 h



Wild-type 3610

WT

**∆tasA** 





- Maril Methanol treatment + NaOH/KOH (2mM)

**Red** pigment turns yellow cells and chickpea debris

9000 rpm, 10 min, 4°C

Pigment extraction- exhibits biochemical traits of

pulcherrimin



Debris, cells separated from pigment

Supernatant adjusted to pH 1.0

2000 rpm,

+ incubate 100°C, 30 min (water bath)



Remove supernatant, Drying





**Red** precipitate reappears





11-05-2022

#### Soluble Fiber (Pectin) might Act as an Environmental Cue





# Chickpea-Derived Prebiotic Substances Trigger Biofilm Formation by *Bacillus subtilis*





11/05/20

21

### Probiotic blanketing, adaptation, and protection in chickpea milk



### Survivability following In vitro gastro-intestinal digestion.



#### Survivability following pasteurization



- I thank IAFP and its organizers for the opportunity.
- I thank Dr. Moshe Shemesh and members of the Shemesh lab

